

Antimony Results and Worley Engagement Advancing Processing Pathways

Felix Gold Limited (ASX: FXG) is pleased to report additional drilling results from the NW Array antimony-gold prospect at the Treasure Creek Project in the Fairbanks Mining District, Alaska, including 3.04m @ 6.3% Sb. Multiple drill holes confirm the continuity of high-grade stibnite veining exposed in trenching earlier this year, with a shorter parallel footwall vein structure also identified. These and other results support the model of multiple, sub-parallel antimony-bearing vein structures within the mineralised system, adding to the overall mineralisation inventory as the Company advances toward bulk sampling. In addition Worley has been engaged to conduct site smelter site selection and investigate potential fast tracking metal production through toll treatment options.

Highlights

Antimony Result

- Multiple holes confirm continuity of high-grade stibnite vein zone exposed in trench 25NWTR005
- **3.04m @ 6.3% Sb** from 36.58m (25TCRC029)
- 6.09m @ 2.59% Sb from 21.34m (25TCRC016)
- **3.05m @ 3.54% Sb** from 15.24m (25TCRC026)
- Parallel footwall vein zone identified with grades up to 5.89% Sb over 1.53m
- High-grade breccia-style mineralisation intersection of 7.54m @ 2.47% Sb (25TCDC003)
- Results support model of multiple stacked vein structures; system remains open
- Gold assay results pending for a substantial number of holes; news flow expected through Q1 2026

Worley Engagement

Worley has been engaged to advance U.S. site selection for Felix Gold's own processing facility
while simultaneously assessing potential toll-treatment options, with the objective to create parallel
pathways that preserve strategic control and accelerate the timeline to first metal.

Felix Gold's Executive Director, Joe Webb, commented:

Felix Gold continues to execute rapidly across the full value chain, with technical, permitting, and downstream workstreams advancing in parallel with the objective to accelerate the pathway to first metal while preserving long-term strategic optionality. Engineering and baseline programs have now progressed to a point where downstream processing decisions are transitioning from conceptual assessment to site-selection and execution planning, with Worley engaged to advance U.S. site selection for the Company's own processing facility while simultaneously assessing potential toll-treatment options.

Recent drilling continues to validate and expand the NW Array geological model. Multiple holes have confirmed strong continuity of the high-grade vein zone exposed in trenching, while the identification of parallel footwall zones and broader breccia-hosted mineralisation supports the interpretation of a stacked, corridor-scale system that remains open along strike and at depth. This work is directly increasing the

inventory capable of feeding a U.S. domestic antimony supply chain, with ore supply—rather than processing capacity—representing the true bottleneck to near-term production.

The Company is advancing toward near-term production through bulk sampling, with commencement targeted as soon as practicable following receipt of necessary permits and Board approval. Subject to these approvals, the project is positioning with the objective for a transition from bulk sampling into sustained operations.

Felix Gold is making rapid, coordinated progress across all critical workstreams as it advances toward first metal, with multiple near-term catalysts spanning drilling results, bulk sampling readiness, metallurgy, downstream processing and permitting. Extensive gold and antimony assays are pending, baseline and engineering programs are well advanced, and metallurgical work continues to confirm the ability to produce military-grade concentrate through simple processing.

In parallel, Worley has been engaged to progress U.S. site selection for the Company's own processing facility while also assessing toll-treatment options, providing parallel pathways to accelerate production while preserving strategic control. Engagement with multiple U.S. federal agencies is intensifying as Felix Gold advances alignment on domestic antimony supply and national-security objectives.

Together, these initiatives position the Company as a leading, near-term solution to a critical U.S. military-grade antimony supply-chain gap, while maintaining the commercial flexibility required to maximise long-term value from a scarce, high-grade asset. Further detail on this strategic update is set out below.

The production timeline remains subject to completion of appropriate technical studies, permitting approvals, funding, and Board approval.

Join the conversation

For any questions regarding this announcement or to join in with the conversation, view this announcement on our <u>Investor Hub</u>.

Go to Investor Hub

Strategic Update

Near-Term Catalysts

Multiple near-term catalysts are converging as Felix Gold accelerates toward its objective of first metal:

- Pending gold and antimony assay results from an extensive drilling program
- Bulk sampling operations as soon as practicable subject to permit and Board approval
- Metallurgical optimisation confirming military-grade concentrate via simple processing
- Advancement of economic and development studies
- U.S. site selection for own processing facility alongside toll-treatment assessments
- Intensifying engagement with U.S. federal agencies on securing domestic antimony supply
- Production timeline is conceptual and subject to completion of appropriate technical studies, permitting approvals, funding, and Board approval.

Strategic Positioning

Central to this approach is Felix Gold's deliberate focus on military-grade and semiconductor-grade antimony supply chains. While broader consumer-grade antimony markets fluctuate, pricing and demand for high-purity, defence-critical material continue to strengthen, underscoring the strategic value of the Company's NW Array mineralisation. Entering early sales agreements would constrain commercial flexibility, limit alignment with strategic counterparties, and risk materially undervaluing an asset that is increasingly recognised as strategically scarce. Accordingly, the Company is prioritising pathways that maximise long-term value and preserve commercial optionality.

Permitting & Baseline Programs

At the project level, Felix Gold is materially de-risking the transition from bulk sampling into sustained operations. All baseline programs required for long-term development are well advanced or complete, including wetlands delineation, air monitoring, surface water and fish habitat studies, waste-rock characterisation, cultural heritage assessments, and groundwater monitoring, with eleven monitoring wells installed across Treasure Creek. In parallel, detailed engineering for on-site mining and processing is progressing, and drafting of the long-term operating permit is well advanced and remains on track for submission in Q1. Together, these activities significantly increase confidence in a seamless progression to continuous operations.

Downstream Processing

Downstream, Felix Gold is deliberately assessing compressing timelines to first metal. Worley has been engaged to advance site-selection work for the Company's own U.S.-based processing facility, reflecting the level of engineering maturity now achieved and the strategic importance of retaining long-term control over metal production. In parallel, Worley is also assessing potential toll-treatment options within the United States, providing a secondary pathway that could materially accelerate initial metal production while final site and development decisions are completed. These parallel pathways are complementary, not mutually exclusive, and ensure speed without sacrificing strategic positioning.

Material Quality

Metallurgical testwork has already confirmed that NW Array material can produce military-grade concentrate through simple, single-stage processing, materially reducing technical and execution risk. As downstream arrangements are finalised, the Company may undertake short-term stockpiling of high-grade material, ensuring ore is immediately available for conversion to metal once processing pathways are locked in. This approach accelerates—rather than delays—the achievement of first production.

Government Engagement

In parallel, engagement with multiple U.S. federal agencies continues to intensify as the strategic importance of secure, domestic antimony supply becomes increasingly recognised. Discussions are focused on near-term production, downstream processing pathways, and alignment with U.S. critical-minerals and national-security objectives. This engagement reinforces the Company's decision to preserve strategic optionality and maintain flexibility in potential commercial and development structures as it advances toward first metal.

Treasure Creek Project Overview

The Treasure Creek Project is located in the Fairbanks Mining District, Alaska, approximately 30km north of Fairbanks and 20 minutes from Felix's operational base. The Fairbanks Gold Mining District has produced over 16 million ounces of gold historically and hosts Kinross Gold's Fort Knox mine, a Tier 1 operation.

Felix is the largest landholder in the Fairbanks Mining District. The district's existing infrastructure—power, roads, skilled workforce and proximity to processing facilities—offers a straightforward development pathway for both gold and antimony.

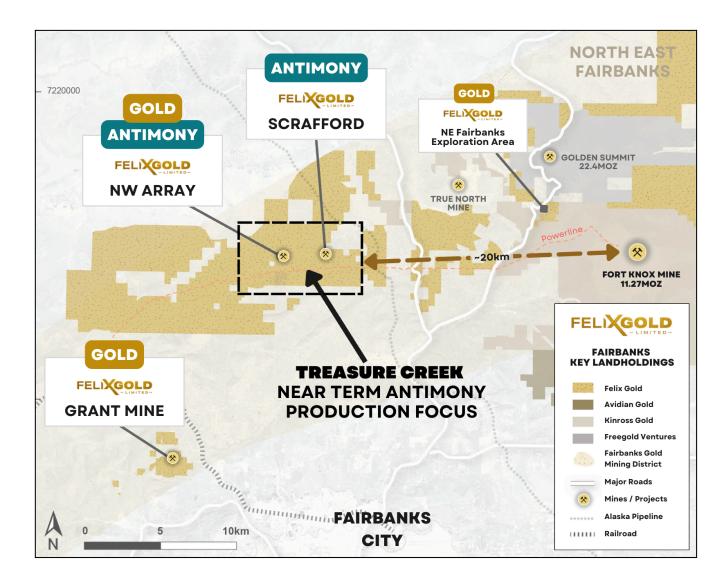


Fig 1. Location of NW Array within Treasure Creek with near-term antimony production focus

NW Array Prospect

The NW Array Prospect hosts both high-grade antimony and gold mineralisation within the same structural corridor. Gold generally forms a broader mineralisation halo within and around antimony-bearing structures.

The prospect includes the historic Scrafford Mine, Alaska's second-largest historical antimony producer with recorded production grades up to 58% Sb. Felix's exploration in early 2025 discovered a 25-metre-long stibnite vein near surface with intersections including 3m @ 50.26% Sb (true width). Systematic drilling has now defined additional veining and extended mineralisation over an area approximately 200 metres by 125 metres to depths exceeding 150 metres vertically, with the system remaining open along strike and at depth.

Gold assay results from the 2025 drilling program remain pending, with continued news flow expected through Q1 2026.

Key Project Attributes

- Location: Alaska, USA stable jurisdiction with established mining history
- Infrastructure: 20 minutes from Fairbanks with year-round road access, grid power, and a skilled workforce
- Mineralisation: High-grade stibnite with simple mineralogy (predominantly Sb₂S₃)
- **Timeline:** Objective is to commencement prior to or early in 2026 for initial production from bulk sampling
- Permits: Bulk sample permit amendment lodged; multi-year permit targeting Q1 2026 submission
- Strategic Context: Domestic US antimony supply for defence and industrial applications

Drilling Results - NW Array 2025 Program

Program Overview

An extensive program of drilling at the NW Array gold-antimony prospect has recently been completed. To date a total of 56 RC holes for 3,077 m (including 9 water monitoring bores) and 67 diamond holes for 5,858.65 m have been completed. Drilling is targeted at better defining the extents and grade of high-grade antimony and gold mineralisation intersected in previous drilling and trenching campaigns.

Samples from the drilling program have been submitted to MSA Laboratories in Vancouver for multi-element analysis with specialised methods for high-grade antimony and PhotonAssay for gold. Multi-element and antimony assays are pending for 10 RC holes and 51 diamond holes, with gold assay results pending for 49 RC holes and 58 diamond holes.

Results

Antimony assay results have been received for 11 RC holes, 2 diamond holes and 1 trench. Collar details are presented in Table 2 with significant intersections (above a cut-off of 0.2% Sb) summarised in Table 3. A map of and cross section of results are presented in Fig 2 and Fig 3 respectively.

Main Vein Zone – Trench 25NWTR005 Correlation

Drill holes 25TCRC025, 026, 029 and 030 all intersected the east-west trending and south dipping zone of stibnite veining exposed in trench 25NWTR005, returning grades between 0.58% and 6.3% Sb over downhole widths of 3.0m to 4.5m (estimated true widths between 0.65m and 3.2m). A less continuous but parallel zone of stibnite veining was intersected in the footwall of this main zone, with grades between 0.67% and 5.9% Sb over downhole widths between 1.5m and 3.0m. Although 25TCRC048 should also pass through this veining zone, the highest-grade sample within the corresponding part of the drill hole is only 0.1% Sb.

Northeast Vein Zone

Holes 25TCRC016 and 017 intersected another east-west striking vein some 40m northeast of trench 005 with grades of 2.58% and 1.58% over downhole widths between 3m and 6m respectively. These are correlated with similar grades in previously reported holes in the same structure.

Southern Vein Zone

Hole 25TCRC015 intersected high Sb grades within a WNW striking vein zone to the south of 25NWTR005, consistent with several other RC and diamond core holes in the same area.

Northern Area

The wider intersection in hole 25TCRC003 of 16.76m @ 0.95% Sb is located at the northern end of the current drilling area where the geological interpretation is uncertain at this time. Diamond core holes here intersect zones of intense brecciation and faulting but the orientations of the structures are unclear. Work is ongoing to better understand this area.

Other Results

Intersections within the upper 10m of 25TCRC004 and 25TCDC011 are related to other east-west to northeast-southwest trending vein zones. Antimony mineralisation in the upper part of 25TCDC003 is within a fault breccia, although the orientation of the structure is unclear. High grades in the lower part of 25TCDC003 are also within breccia, which is identical in appearance to the 'black breccia' in 25TCDC004 and other holes in the same area. Hole 25TCDC011 is interpreted to have drilled down the hangingwall contact of this breccia zone, but without intersecting any of the high-grade material.

A narrow stibnite vein striking 112° was mapped in the western end of trench 25NWTR003 corresponds with a sample of 2.56% Sb over one metre.

Eastern Extension Testing

Hole 25TCRC024 was one of three holes (022 and 023) drilled testing the easterly extensions to vein zones. No antimony mineralisation was intersected.

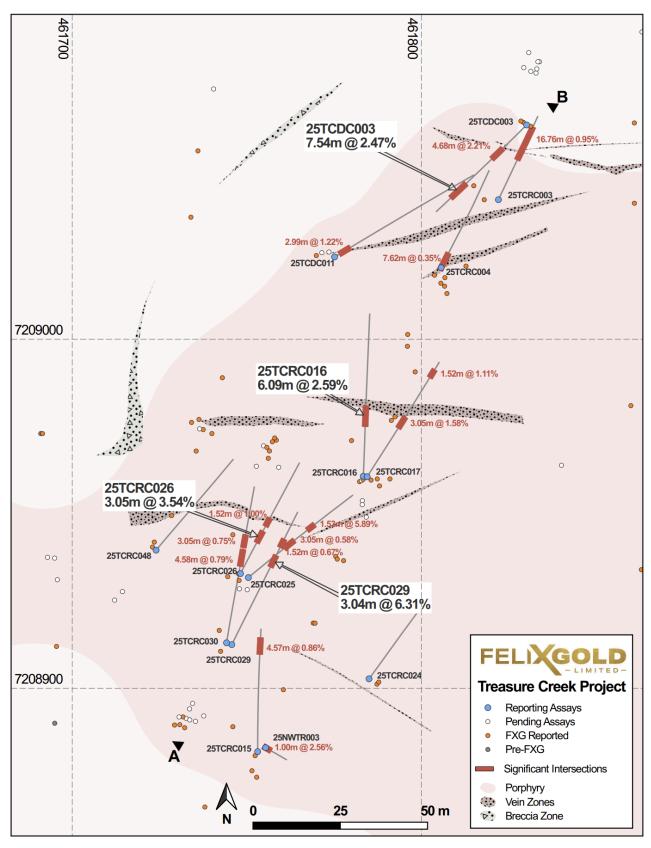
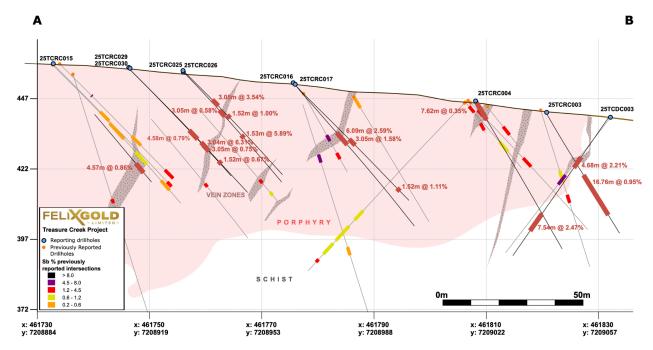



Fig. 2 Reported Assays at NW Array Treasure Creek

Fig. 3 Section A-B (labelled in Fig 2) looking WNW showing new reported intersections. Previously reported antimony intersections are coloured by average Sb grade. Note that indicated vein zones and the general trend of intersections may not align due to the oblique angles between the section line, drill holes and vein zones.

Antimony Context

The 2025 drilling program at Treasure Creek was designed to test high-grade antimony and bulk gold mineralisation at the NW Array prospect. Results from this program, announced through October and November 2025, include:

- 3m @ 50.26% Sb (true width) at surface from trenching
- 17.78m @ 3.17% Sb including 6.7m @ 5.3% Sb from drilling
- 6.1m @ 7.86% Sb from 39.62m in high-grade vein

In November 2025, mineralogical analysis of high-grade trench samples showed **89.2% of the in-situ** material was antimony-bearing minerals with low levels of impurities—a geological rarity. Multiple processing pathways were validated, including production of a concentrate grading 74% Sb (exceeding US military specification) by standard flotation and extraction of 98% of contained antimony metal via direct alkaline leach - electrowining.

The metallurgical program identified **separate** gold recovery from antimony concentrates and tailings as a priority for future testwork. **Maximising gold payability via gravity separation or hydrometallurgical extraction prior to concentrate sale will be a key economic driver given the high gold grades observed.**

Table 2: Drill Hole Locations Treasure Creek Tenement, NW Array Target Area

HoleID	Holo Type	UTM_NAD83_Zone 06N Hole Type		N	EOH (m)	Azimuth	Din (m)
појеј	поје туре	East	North	RL (m)	EOH (III)	(m)	Dip (m)
25NWTR003	TR	461755.4	7208883	457.4	7	120	-13
25TCDC003	DD	461830.1	7209061	440.829	61.14	224.6	-54.3
25TCDC011	DD	461775.1	7209024	452.978	67.7	60	-45
25TCRC003	RC	461822.1	7209040	441.86	50.29	24.7	-59.8
25TCRC004	RC	461805.7	7209021	446.505	60.96	26	-59.6
25TCRC015	RC	461753.1	7208882	452.181	50.29	359.4	-44.6
25TCRC016	RC	461783.4	7208961	448.695	67.06	1.6	-45.1
25TCRC017	RC	461784.5	7208961	448.706	54.86	31.8	-45
25TCRC024	RC	461785	7208903	445.84	50.29	55.1	-55.1
25TCRC025	RC	461750.4	7208932	457.162	54.86	49.6	-44.5
25TCRC026	RC	461748.2	7208933	457.249	51.82	26.5	-45
25TCRC029	RC	461745.7	7208913	457.434	60.96	25.3	-44.8
25TCRC030	RC	461744.2	7208913	457.932	64.01	8.8	-43.1
25TCRC048	RC	461724	7208940	463.997	50.29	39.3	-46

Table 3: Significant Antimony Intersections (>0.2 % Sb cut-off)

Hole ID		From (m)	To (m)	Interval (m)	Sb %	As ppm
25TCDC003		17.86	22.54	4.68	2.213	1659
	and	42.69	50.23	7.54	2.472	5116
25TCDC011		3.41	6.4	2.99	1.215	2204
25NWTR003		0	1	1	2.56	371
	and	25.91	42.67	16.76	0.95	1701
	including	27.43	33.53	6.1	1.063	567
	and including	39.62	41.15	1.53	3.6	6560
25TCRC004		0	7.62	7.62	0.353	1602
25TCRC015		41.15	45.72	4.57	0.862	1858
25TCRC016		21.34	27.43	6.09	2.587	581
25TCRC017		24.38	27.43	3.05	1.581	360
	including	25.91	27.43	1.52	2.95	272
	including	48.77	50.29	1.52	1.11	625
25TCRC025		19.81	22.86	3.05	0.58	570
	and	32	33.53	1.53	5.89	281
25TCRC026		15.24	18.29	3.05	3.544	867
	and	22.86	24.38	1.52	1	2059
25TCRC029		36.58	39.62	3.04	6.305	716
	and	45.72	47.24	1.52	0.67	496
		32	36.58	4.58	0.787	568
25TCRC030	and	39.62	42.67	3.05	0.749	600

This announcement has been authorised for release by the Board of Felix Gold Limited

Join the conversation

For any questions regarding this announcement or to join in with the conversation, view this announcement on our <u>Investor Hub</u>.

Go to Investor Hub

18th Dec 2025

Enquiries

Joseph Webb View website: www.felixgold.com.au

Executive Director Get updates directly to your inbox: www.felixgold.com.au/auth/signup

Felix Gold Limited Ph: +61 422 955 411

E: joe.webb@felixgold.com.au

About Felix Gold

Felix Gold Limited (ASX: FXG) is an ASX-listed gold and critical minerals discovery business operating in the highly endowed Tintina Gold Province of Alaska in the United States.

Our flagship asset is a substantial landholding in the world-class Fairbanks Gold District, where historical gold production exceeds 16 million ounces. Felix is the largest landholder in the Fairbanks Mining District. Our tenements sit within one of the largest gold production centres in the entire Tintina belt and lie in close proximity to Kinross Gold's Tier 1 Fort Knox mine and Freegold Ventures' rapidly growing Golden Summit discovery.

The district also hosts significant historical antimony production, including grades up to 58% Sb from the Scrafford Mine at Treasure Creek, Alaska's second-largest historical antimony producer. This dual-commodity endowment positions Felix uniquely in a district with established mining infrastructure and proven geology.

Felix's key projects are located only 20 minutes from our operational base in Fairbanks City, Alaska. This proximity provides access to existing infrastructure, low-cost power, skilled workforce, and year-round exploration capability—delivering genuine development pathways for our assets.

Felix's value proposition is simple: we are striving to be the premier gold and critical minerals exploration business in the Tintina Province through the aggressive pursuit and realisation of Tier 1 gold discoveries.

Visit www.felixgold.com.au for more information.

Competent Person Statements

The information in this report that relates to Exploration Results is based on information compiled by Dr James Lally, a Competent Person who is a Member of The Australian Institute of Geoscientists. Dr Lally is an independent consultant to Felix Gold Limited and is a shareholder in the Company. Dr Lally has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Dr Lally consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

Various statements in this release constitute statements relating to intentions, future acts and events. Such statements are generally classified as "forward-looking statements" and involve known and unknown risks, uncertainties and other important factors that could cause those future acts, events and circumstances to differ materially from what is presented or implicitly portrayed herein. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates" and similar expressions are intended to identify forward-looking statements. Felix cautions shareholders and prospective shareholders not to place undue reliance on these forward-looking statements and references to what events have transpired for other entities, which reflect the view of Felix only as of the date of this release. The forward-looking statements made in this release relate only to events as of the date on which the statements are made. Various statements in this release may also be based on the circumstances of other entities. Felix gives no assurance that the anticipated results, performance or achievements expressed or implied in those statements will be achieved. This release details some important factors and risks that could cause the actual results to differ from the forward-looking statements and circumstances of other entities in this release.

Previous Disclosure - 2012 JORC Code

... . .

-340 01 11

The information in this release that relates to Exploration Results, Mineral Resources and Exploration Targets for Felix's Fairbanks Gold Projects was extracted from the following ASX Announcements:

25 Nov 2025	FXG: Shallow High-Grade Gold Results at Treasure Creek
19 Nov 2025	FXG: Ultra-High Ore Purity Achieves Military-Grade Antimony Concentrate
30 Oct 2025	FXG: Multiple High-Grade Antimony Discoveries and Results
16 Oct 2025	FXG: High-Grade Drilling Results at US Antimony Project
07 Oct 2025	FXG: Further High-Grade Antimony Results at NW Array
15 Sept 2025	FXG: High Grade Antimony Drill Intersections and Project Update
11 June 2025	FXG: Drilling/Studies Underway at High-Grade Antimony Project
29 May 2025	FXG: High-Grade Antimony Concentrate Results from Met Test Work
12 Feb 2025	FXG: High-Grade Antimony True Width of 3m at 50.26%
23 Jan 2025	FXG: High-grade Antimony and Gold Results from Trenching
28 Aug 2024	FXG: High Grade Antimony Assay Results up to 15.99% Sb
20 Jun 2024	FXG: Maiden NW Array Inferred Mineral Resource
19 Oct 2023	FXG: High Grade Antimony Assays up to 28% Sb
17 Jul 2023	FXG: High-Grade Critical Mineral Discovery at NW Array
09 Dec 2022	FXG: Scrafford Shear Potential Grows and High-Grade Antimony Initiatives Commenced
28 Jan 2022	FXG: Felix Gold Prospectus

A copy of such announcements is available to view on the Felix Gold Limited website felixgold.com.au/announcements. These previous reports were issued in accordance with the 2012 Edition of the JORC Code. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX: JORC Code Table 1 Report

Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation drilling was sampled on 1.52 m (5 feet) intervals from which 2-3kg was split and pulverised / crushed to produce samples for ICP multi-element analysis, high grade Sb analysis and gold analysis by PhotonAssay™ Diamond drill core was sampled over downhole lengths between 0.3m and 2.5m (average 1m) to produce samples for ICP multi-element analysis, high grade Sb analysis and gold analysis by PhotonAssay™. Diamond drill-core sample intervals were based on changes in geology. Trenches were excavated using a mechanical excavator to a depth of 1.5 metres. Samples were collected by chipping the exposed area along the trench face with a geological hammer. Polyweave bags were placed under the sampling interval to collect sample debris and to avoid contamination with other material. Samples were generally taken as 1 metre composites 0.75m above the floor of the trench with some smaller composites where the geologist identified different rock types. Total sample weights were generally around 1-2 kg.

Criteria	Explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 Reverse Circulation (RC) holes were drilled with a 76mm (3 inch) face-sampling hammer with 73mm (2.875 inch) drill rods and 102mm (4 inch) casing. Diamond holes were wireline HQ (63.5mm diameter) holes. The diamond drill program reported here was undertaken by C-n-C Drilling LLC utilizing CS 14 skid mounted drill. Core was oriented wherever possible for collection of structural data using a Reflex ACTIII The core was reconstructed into continuous runs on a cradle for orientation marking before it was laid in the box at the drill.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC samples were visually assessed for recovery and were considered representative of bedrock intersected. Visual inspection of samples estimated no significant loss of sample from each 1.52m interval. No relationship between sample recovery and reported analyses has been established. Diamond core recovery was determined by measuring the total length of core in the barrel over the run length. Hole depths were checked against the drillers core blocks at the time of processing. Inconsistencies between the logging and the driller's depth measurement blocks were investigated. Diamond core samples are considered dry. The recovery and condition are recorded between every core block. Generally, recovery is 98-100% but on very rare occasions in weathered material or very broken material, recovery was down to 50%. For Diamond drilling, contractors adjust the rate of drilling and method of recovery issues arise No significant sample loss or bias has been noticed

Criteria	Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Qualitative logging of RC chips and diamond core for lithology and alteration with semi-quantitative logs for oxide and sulphide mineralisation. RC and diamond holes were logged in for their entire lengths. Logging detail is sufficient to support geological modelling and mineral resource estimation. Representative RC chip samples from each 1.52m interval were placed in chip trays and photographed. All drill core was photographed wet using a digital camera and stored on the site server. Core logging included RQD and geotechnical measurements. Structural measurements of veins, fractures and foliation were taken from core using a strip protractor.

Criteria	Explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC intervals were sub-sampled using a 3-tier dry sample splitter attached to the drill rig cyclone. Two samples were taken from each 1.52 m interval, collecting ~12.5% each of the total sample, ranging in weight from 2-3 kg. One sample was retained for archival purposes while the other was sent to the analytical laboratory. Diamond core sampling intervals were determined by the logging geologist, with sampling breaks at major changes in lithology/alteration or mineralisation. Sub-samples were taken by sawing the HQ core in half along its axis using a Dewalt tile saw on-site. One half of the core was bagged for analysis and the other half retained in the core tray. Trench samples were submitted in their entirety for lab preparation. These are considered reconnaissance exploration samples and would not be suitable for resource estimation. Sample sizes for RC and core samples are considered appropriate for both gold and antimony mineralisation. Quality control procedures for ensuring sample representivity in RC sampling comprised the use of field duplicates and pulp duplicates at a rate of 1 in 20, alternating between the two duplicate types. Quality control procedures for ensuring sample representivity in core samples and pulp duplicates at a rate of 1 in 20, alternating between the two duplicate types. Duplicate results show that for RC and diamond drilling sampling is representative for antimony, with variability in results linked to assay methods rather than sampling (see below).

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation,
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

- All samples were submitted to MSA Laboratories in Vancouver, Canada for analysis.
- 4 acid digest with ICP-MS finish was used to analyse for a full suite of trace elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr.
- 4-Acid ICP-MS has an upper detection limit
 (UDL) of 1% for antimony. Suspected very
 high-grade (>10% Sb) samples were
 flagged in sample submission sheets and
 analysed using a wet titration method.
 Samples not flagged as high grade, but
 which returned above UDL assays for ICP
 were re-analysed using a peroxide fusion
 with ICP finish. The cut-off ICP Sb assay for
 re-analysis by peroxide fusion was changed
 to 3000ppm after results indicated that
 volatile loss and insoluble precipitate
 formation was causing some ICP results to
 severely under-call the Sb grade.
- No gold assay results are reported in this announcement, although gold is being analysed using the PhotonAssay technique (MSA labs CPAu-1D method code). Two splits of approximately 500g of rushed material (70% passing 2mm) are taken from the sub-sample submitted to the aboratory using a riffle splitter. Both splits are subjected to high-intensity X-rays and the resulting gamma radiation emissions are detected and used to determine gold concentration in the sample.
- PhotonAssay results include quality flags for some samples:
 - HB (High Background):
 Indicates elevated background radiation detected during measurement, primarily affecting samples <0.1 ppm Au.</p>
 - HET (Heterogeneous): Indicates high within-sample variability based on multiple readings at different angles.
- Quality control procedures include the insertion of certified reference materials, coarse blanks (locally sourced sand) and field and pulp duplicates. Acceptable levels of accuracy and precision have been established, notwithstanding the issues with some Sb analyses described above

Criteria	Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All significant and anomalous intersections are verified by a senior manager during the drill hole validation process. All primary data was collected in the field by Felix Gold contract staff and supplied in digital format to Felix Gold. No twinned holes were drilled for this data set. All data is stored and validated within a Plexer relational database managed by Gad Solutions in Brisbane, Australia. Data undergoes QA/QC validation prior to being accepted and loaded in the database. Assay results are merged when received electronically from the laboratory. A senior geologist reviews the dataset checking for the correct merging of results and that all data has been received and entered. Any adjustments to this data are recorded permanently in the database. Digital records of assays are stored electronically. No adjustments have been made to the final assay data reported by the laboratory
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 RC and diamond hole collar locations are initially located by handheld GPS to an accuracy of 3m. After completion of drilling, all drill collars are located with a differential GPS system to an accuracy of 10 cm. The starting points of trenches were located by handheld GPS and handheld compass with up to 3m accuracy. Sample intervals were then measured using a tape measure and marked on trench walls. The bearing of the trench was recorded with a compass. All locations are given in NAD83/UTM Zone 6N projection. Diagrams and location table are provided in the report. Topographic control is by detailed airphoto, DTM file, and differential GPS Downhole surveys were conducted using an Axis Champ north-seeking gyro tool which collected data points approximately every 3 m downhole. True north azimuths supplied from the gyro were corrected to UTM grid north.

Criteria	Explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Variable drill hole spacings were used to adequately test targets and are determined from geochemical, geophysical and geological data with historical drilling information. Data spacing is sufficient to establish geological and grade continuity to a level appropriate for a future update of the current gold-only mineral resource estimate at NW Array with addition of antimony Reported intersections have been composited using a cut-off grade of 0.2% Sb.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are oriented at various angles to mineralised structures, in part due to access restrictions for drill pad locations and also due to the interpreted difference in strike and dip of the main mineralised structures. Although individual holes may not be oriented optimally for sampling some structures, there is no overall sampling bias introduced.
Sample security	The measures taken to ensure sample security.	Samples were collected by company personnel on site, to the company logging and cutting office and delivered direct to the preparation laboratory via company personnel. A transport contractor takes the prepared samples to Vancouver.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been completed at this early stage of the drilling program.

Section 2: Reporting of Exploration Results

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The Treasure Creek Project is located in the Fairbanks Gold Mining District in central Alaska. The Treasure Creek Project area consists of 238 active Alaska State Mining Claims (MCs) and 2 Upland Mining Leases (UMLs) for a total of 11687.31 hectares. There are also 4 pending MCs for a total of 64.75 hectares. The Treasure Creek Project is a consolidation of mining claims and upland mining leases held by Oro Grande Mining Claims LLC (10 MCs and 1 UML), Goldstone Resources LLC (19 MCs and 1 UML), Wally Trudeau (5 MCs), and Felix Gold Ltd (204 MCs). Felix has acquired the mining claims or the exclusive rights to explore and an option to purchase the mining claims. Felix has acquired all requisite operating permits to conduct the current exploration program.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Gold was first discovered at Fairbanks in 1902, since then the wider area has been the subject of an enormous amount of exploration and placer mining by companies and individual prospectors. Since 1969, the Treasure Creek area has been explored by companies including Cantu Minerals, Mohawk Oil, Aalenian Resources/Silverado Mines, American Copper and Nickel Company (ACNC), Amax, Goldstone/Our Creek (OCMC), Canex Resources, Tri-Con Mining and BHP-Utah. Most of the work was focused on Au-Sb mines at and around Scrafford, and in the eastern third of Felix's current tenure. Several diamond holes were completed in the NW Array prospect area.

Criteria	Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 Hard-rock gold mineralisation styles in Felix's Treasure Creek prospect are currently dominated by shear- and fault-vein hosted gold ± antimony deposits, including historic mines at Scrafford (Sb). Broad zones of disseminated and stockwork gold mineralisation are also found within Cretaceous age intrusive rocks, such as at Fort Knox (operated by Kinross) and Golden Summit (Freegold Ventures). Gold mineralisation is linked to a causative intrusion of Cretaceous-Tertiary felsic to intermediated composition. Proximity to the intrusion, structural setting and host rock all control the specific style of deposit produced. Antimony and gold mineralisation is also associated with fracture and fault zones these felsic sill-like bodies. Post-mineralisation cover in the Fairbanks area comprises valley-fill gravels plus locally thick accumulations of wind-blown silt (loess).
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to the body of the text of the announcement for all drill hole information. No material information has been excluded.

Criteria	Explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant Antimony intercepts are regarded as those having minimum continuous mineralisation of 3.0m @ >0.20% Sb. Assays were aggregated by length-weighted averaging with no top-cutting applied. A maximum of 3m of internal waste with 3m consecutive waste intervals was allowed during economic compositing, equivalent to 2 1.5m RC samples. Single high-grade (>1%) were allowed. Significant Gold intercepts are regarded as those having minimum continuous mineralisation of at least 3.0m @ >0.3 g/t Au. Assays were aggregated by length-weighted averaging with no top-cutting applied. A maximum of 5m total of internal waste with 2.5m consecutive waste intervals was allowed during economic compositing. No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All intercepts quoted are downhole widths. The geometry of mineralisation with respect to the hole angle varies due to the wide range of drilling azimuths and variable strike and dip of mineralised zones. In general the east-trending vein zones are between 1 and 3 m true width, and the 'black breccia' zone averages about 4-5m true width. Further drill results should verify the orientations of mineralisation as presented in this announcement.

Criteria	Explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Antimony, gold and arsenic assays for all samples in the reported drill holes are included as an appendix to this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Trenching completed earlier this year and in 2024 confirmed the presence of east-striking and south dipping zones of complex stibnite veining that vary in width and tenor over short strike lengths. A maiden Mineral Resource estimate was reported on 20th June 2024 for gold mineralisation at NW Array (FXG announcement 20 June 2024). Antimony was not included in the estimate due to lack of assay data Metallurgical testwork on bulk samples was completed earlier in 2025 on bulk samples from trenching (FXG Announcement 29 May 2025). Testwork achieved 85% Sb recovery, producing 69% Sb grade concentrates via gravity and flotation processes. Bulk density has been determined by the water immersion method on drill core samples, giving a density for porphyry of 2.59 g/cm3 and schist of 2.7 g/cm3. Additional density measurements on drill core samples are being undertaken. Four water monitoring bore holes were drilled as part of the 2025 drilling program and data on groundwater levels has been collected over 2 quarters.

Criteria	Explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The 2025 drill program at NW array is ongoing, mainly targeted at better definition of the known mineralised zones, in particular the high-grade "black breccia" The mineralised system remains open at depth and along strike to the north and south.

APPENDIX: Drillhole Assay Results

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25NWTR003	0	1	1	2.56	370.9
25NWTR003	1	2	1	0.155	876.7
25NWTR003	2	3	1	0.027	1504
25NWTR003	3	4	1	0.053	1506.3
25NWTR003	4	5	1	0.116	2050.2
25NWTR003	5	6	1	0.043	805
25NWTR003	6	7	1	0.256	980.6
25TCDC003	2	2.95	0.95	0.007	657.2
25TCDC003	2.95	5.12	2.17	0.006	556.6
25TCDC003	5.12	6.68	1.56	0.022	1775.9
25TCDC003	6.68	7.47	0.79	0.015	416.5
25TCDC003	7.47	9.23	1.76	0.013	616
25TCDC003	9.23	11	1.77	0.064	1023.1
25TCDC003	11	12	1	0.012	180
25TCDC003	12	12.98	0.98	0.012	170.2
25TCDC003	12.98	13.9	0.92	0.029	342.8
25TCDC003	13.9	15.03	1.13	0.016	604.2
25TCDC003	15.03	16.42	1.39	0.039	2662.7
25TCDC003	16.42	17.86	1.44	0.112	1279.5
25TCDC003	17.86	18.9	1.04	3.01	469.1
25TCDC003	18.9	20.42	1.52	2.97	1433.7
25TCDC003	20.42	22.54	2.12	1.28	2404.5
25TCDC003	22.54	23.8	1.26	0.023	418.2

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCDC003	23.8	24.99	1.19	0.028	1077.6
25TCDC003	24.99	26.23	1.24	0.073	712.4
25TCDC003	26.23	27.34	1.11	0.093	10000
25TCDC003	27.34	28.9	1.56	0.057	10000
25TCDC003	28.9	29.92	1.02	0.064	1865.4
25TCDC003	29.92	30.82	0.9	0.094	1438
25TCDC003	30.82	31.94	1.12	0.126	1358.7
25TCDC003	31.94	33.62	1.68	0.144	8095.1
25TCDC003	33.62	35.22	1.6	0.065	1326.5
25TCDC003	35.22	36.3	1.08	0.04	1563.8
25TCDC003	36.3	37.86	1.56	0.021	2853.9
25TCDC003	37.86	39.94	2.08	0.071	5239.6
25TCDC003	39.94	40.95	1.01	0.159	3611.2
25TCDC003	40.95	42.69	1.74	0.078	5989.6
25TCDC003	42.69	43.73	1.04	0.29	9164.1
25TCDC003	43.73	45.32	1.59	0.26	10000
25TCDC003	45.32	45.84	0.52	0.82	4785.8
25TCDC003	45.84	46.45	0.61	22.02	529.4
25TCDC003	46.53	47.47	0.94	0.49	1007.7
25TCDC003	47.47	48.46	0.99	1.56	1660.5
25TCDC003	48.46	49.12	0.66	1.66	10000
25TCDC003	49.12	50.23	1.11	0.69	657.5
25TCDC003	50.23	51.51	1.28	0.122	978.8
25TCDC003	51.51	52.87	1.36	0.074	1185.6
25TCDC003	52.87	54.41	1.54	0.048	828.2
25TCDC003	54.41	55.5	1.09	0.036	691.2
25TCDC003	55.5	56.87	1.37	0.019	466.7
25TCDC003	56.87	58.06	1.19	0.006	227
25TCDC003	58.06	59.1	1.04	0.005	231.6
25TCDC003	59.1	60.02	0.92	0.004	277.6
25TCDC003	60.02	61.14	1.12	0.002	79
25TCDC011	0	1.32	1.32	0.04	1179.4
25TCDC011	1.32	1.93	0.61	0.061	1227.8
25TCDC011	1.93	2.43	0.5	0.06	1322.5
25TCDC011	2.43	3.41	0.98	0.049	1489.5
25TCDC011	3.41	3.9	0.49	0.42	2822.3
25TCDC011	3.9	4.38	0.48	3.15	858
25TCDC011	4.38	4.8	0.42	0.4	2041.9
25TCDC011	4.8	5.52	0.72	0.24	2992.9
25TCDC011	5.52	6.4	0.88	1.79	2027.1
25TCDC011	6.4	7.3	0.9	0.148	1832.2

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCDC011	7.3	8.32	1.02	0.095	865.8
25TCDC011	8.32	9.43	1.11	0.041	2044.8
25TCDC011	9.43	10.6	1.17	0.042	1712.1
25TCDC011	10.6	11.88	1.28	0.016	780.6
25TCDC011	11.88	13.19	1.31	0.009	351.9
25TCDC011	13.19	14.82	1.63	0.053	2403.7
25TCDC011	14.82	15.7	0.88	0.042	1208.2
25TCDC011	15.7	16.7	1	0.054	2197.9
25TCDC011	16.7	17.67	0.97	0.034	9969.1
25TCDC011	17.67	18.47	0.8	0.034	4504.7
25TCDC011	18.47	19.72	1.25	0.035	1411.5
25TCDC011	19.72	20.18	0.46	NS	NS
25TCDC011	20.18	20.94	0.76	0.022	1204.2
25TCDC011	20.94	22.1	1.16	0.054	3181.3
25TCDC011	22.1	23.35	1.25	0.044	3949
25TCDC011	23.35	24.92	1.57	0.045	4606.6
25TCDC011	24.92	25.97	1.05	0.194	721.8
25TCDC011	25.97	26.73	0.76	0.64	899.5
25TCDC011	26.73	28.1	1.37	0.057	1434.2
25TCDC011	28.1	29.14	1.04	0.022	703.3
25TCDC011	29.14	30.43	1.29	0.017	1050.7
25TCDC011	30.43	31.42	0.99	0.019	1267
25TCDC011	31.42	32.7	1.28	0.014	2017.9
25TCDC011	32.7	33.95	1.25	0.023	1108.5
25TCDC011	33.95	35.4	1.45	0.042	1121.5
25TCDC011	35.4	36.04	0.64	0.77	983
25TCDC011	36.04	36.77	0.73	0.115	3694
25TCDC011	36.77	38.02	1.25	0.113	4337.5
25TCDC011	38.02	38.61	0.59	0.034	6392.2
25TCDC011	38.61	39.2	0.59	0.016	5899.9
25TCDC011	39.2	39.96	0.76	0.022	10000
25TCDC011	39.96	41.03	1.07	0.01	2178.5
25TCDC011	41.03	42.36	1.33	0.009	2847.3
25TCDC011	42.36	43.11	0.75	0.004	2858.9
25TCDC011	43.11	43.43	0.32	0.006	10000
25TCDC011	43.43	44.4	0.97	0.013	10000
25TCDC011	44.4	45.5	1.1	0.007	2089.3
25TCDC011	45.5	46.85	1.35	0.013	1685.8
25TCDC011	46.85	48.03	1.18	0.059	1575.6
25TCDC011	48.03	49.22	1.19	0.029	1872.3
25TCDC011	49.22	50.5	1.28	0.017	1476.9

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCDC011	50.5	51.2	0.7	0.022	1127
25TCDC011	51.2	52.8	1.6	0.017	617.1
25TCDC011	52.8	53.84	1.04	0.073	1877.1
25TCDC011	53.84	54.3	0.46	0.24	1801.4
25TCDC011	54.3	55.67	1.37	0.127	3056.2
25TCDC011	55.67	56.2	0.53	0.112	6105
25TCDC011	56.2	56.93	0.73	0.147	1924.3
25TCDC011	56.93	58.4	1.47	0.31	5657.9
25TCDC011	58.4	59.53	1.13	0.01	1480.8
25TCDC011	59.53	60.4	0.87	0.039	1642.6
25TCDC011	60.4	61.4	1	0.046	5359.1
25TCDC011	61.4	62.1	0.7	0.138	832.7
25TCDC011	62.1	63.2	1.1	0.077	198.6
25TCDC011	63.2	63.6	0.4	0.106	321.9
25TCDC011	63.6	64.3	0.7	0.069	1437.8
25TCDC011	64.3	64.76	0.46	0.046	1087.5
25TCDC011	64.76	66.03	1.27	0.043	1520
25TCDC011	66.03	66.8	0.77	0.064	499.6
25TCDC011	66.8	67.7	0.9	0.053	881.8
25TCRC003	0	1.52	1.52	0.014	768.5
25TCRC003	1.52	3.05	1.53	0.019	1324.8
25TCRC003	3.05	4.57	1.52	0.017	1504.4
25TCRC003	4.57	6.1	1.53	0.012	494.5
25TCRC003	6.1	7.62	1.52	0.025	601.5
25TCRC003	7.62	9.14	1.52	0.007	251.7
25TCRC003	9.14	10.67	1.53	0.006	151.1
25TCRC003	10.67	12.19	1.52	0.038	237.1
25TCRC003	12.19	13.72	1.53	0.022	524.2
25TCRC003	13.72	15.24	1.52	0.025	841.5
25TCRC003	15.24	16.76	1.52	0.016	349.4
25TCRC003	16.76	18.29	1.53	0.081	502
25TCRC003	18.29	19.81	1.52	0.033	699.8
25TCRC003	19.81	21.34	1.53	0.073	1093.4
25TCRC003	21.34	22.86	1.52	0.041	757.3
25TCRC003	22.86	24.38	1.52	0.051	746.2
25TCRC003	24.38	25.91	1.53	0.161	221.8
25TCRC003	25.91	27.43	1.52	0.21	980.8
25TCRC003	27.43	28.96	1.53	1.11	452.9
25TCRC003	28.96	30.48	1.52	1.07	197.3
25TCRC003	30.48	32	1.52	0.81	584.6
25TCRC003	32	33.53	1.53	1.26	1032.6

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC003	33.53	35.05	1.52	0.8	2348.8
25TCRC003	35.05	36.58	1.53	0.66	1446.2
25TCRC003	36.58	38.1	1.52	0.42	1565.5
25TCRC003	38.1	39.62	1.52	0.27	1417.7
25TCRC003	39.62	41.15	1.53	3.6	6560
25TCRC003	41.15	42.67	1.52	0.22	2106.6
25TCRC003	42.67	44.2	1.53	0.137	1875.8
25TCRC003	44.2	45.72	1.52	0.052	1057.4
25TCRC003	45.72	47.24	1.52	0.035	553.6
25TCRC003	47.24	48.77	1.53	0.026	460.9
25TCRC003	48.77	50.29	1.52	0.023	352.4
25TCRC004	0	1.52	1.52	0.3	1462.7
25TCRC004	1.52	3.05	1.53	0.161	2188.9
25TCRC004	3.05	4.57	1.52	0.34	3065.2
25TCRC004	4.57	6.1	1.53	0.168	687.3
25TCRC004	6.1	7.62	1.52	0.8	610.1
25TCRC004	7.62	9.14	1.52	0.175	1931
25TCRC004	9.14	10.67	1.53	0.099	584.2
25TCRC004	10.67	12.19	1.52	0.18	627.3
25TCRC004	12.19	13.72	1.53	0.137	682.1
25TCRC004	13.72	15.24	1.52	0.066	815.9
25TCRC004	15.24	16.76	1.52	0.062	937.1
25TCRC004	16.76	18.29	1.53	0.097	763.7
25TCRC004	18.29	19.81	1.52	0.031	1014.6
25TCRC004	19.81	21.34	1.53	0.03	1668.4
25TCRC004	21.34	22.86	1.52	0.29	2058.1
25TCRC004	22.86	24.38	1.52	0.021	1052.1
25TCRC004	24.38	25.91	1.53	0.027	3369.3
25TCRC004	25.91	27.43	1.52	0.062	1200.4
25TCRC004	27.43	28.96	1.53	0.017	396.8
25TCRC004	28.96	30.48	1.52	0.014	57.1
25TCRC004	30.48	32	1.52	0.013	279.5
25TCRC004	32	33.53	1.53	0.009	283.3
25TCRC004	33.53	35.05	1.52	0.011	154
25TCRC004	35.05	36.58	1.53	0.013	169.2
25TCRC004	36.58	38.1	1.52	0.011	270
25TCRC004	38.1	39.62	1.52	0.016	332.1
25TCRC004	39.62	41.15	1.53	0.032	6083.4
25TCRC004	41.15	42.67	1.52	0.013	2833.5
25TCRC004	42.67	44.2	1.53	0.017	1918.2
25TCRC004	44.2	45.72	1.52	0.057	3300.9

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC004	45.72	47.24	1.52	0.057	1201.3
25TCRC004	47.24	48.77	1.53	0.046	1702.6
25TCRC004	48.77	50.29	1.52	0.059	2104.8
25TCRC004	50.29	51.82	1.53	0.076	2002
25TCRC004	51.82	53.34	1.52	0.012	906.8
25TCRC004	53.34	54.86	1.52	0.019	734.2
25TCRC004	54.86	56.39	1.53	0.027	5599.1
25TCRC004	56.39	57.91	1.52	0.064	3400.4
25TCRC004	57.91	59.44	1.53	0.044	4382
25TCRC004	59.44	60.96	1.52	0.081	4019.9
25TCRC015	0	1.52	1.52	NS	NS
25TCRC015	1.52	3.05	1.53	0.017	1311.3
25TCRC015	3.05	4.57	1.52	0.016	1088.8
25TCRC015	4.57	6.1	1.53	0.029	1717.3
25TCRC015	6.1	7.62	1.52	0.016	479.1
25TCRC015	7.62	9.14	1.52	0.014	973.4
25TCRC015	9.14	10.67	1.53	0.014	1147.8
25TCRC015	10.67	12.19	1.52	0.027	1349.3
25TCRC015	12.19	13.72	1.53	0.046	937.5
25TCRC015	13.72	15.24	1.52	0.034	690.6
25TCRC015	15.24	16.76	1.52	0.051	2023.4
25TCRC015	16.76	18.29	1.53	0.032	1689.9
25TCRC015	18.29	19.81	1.52	0.084	1475.4
25TCRC015	19.81	21.34	1.53	0.106	2015.6
25TCRC015	21.34	22.86	1.52	0.02	1158
25TCRC015	22.86	24.38	1.52	0.025	1772.8
25TCRC015	24.38	25.91	1.53	0.089	1828.7
25TCRC015	25.91	27.43	1.52	0.051	1498.1
25TCRC015	27.43	28.96	1.53	0.06	1235.6
25TCRC015	28.96	30.48	1.52	0.053	778.1
25TCRC015	30.48	32	1.52	0.022	1651
25TCRC015	32	33.53	1.53	0.014	1180.2
25TCRC015	33.53	35.05	1.52	0.035	971.1
25TCRC015	35.05	36.58	1.53	0.07	1398.8
25TCRC015	36.58	38.1	1.52	0.069	1549.9
25TCRC015	38.1	39.62	1.52	0.035	982
25TCRC015	39.62	41.15	1.53	0.115	1908.5
25TCRC015	41.15	42.67	1.52	0.31	2092.7
25TCRC015	42.67	44.2	1.53	1.95	840.9
25TCRC015	44.2	45.72	1.52	0.32	2647.3
25TCRC015	45.72	47.24	1.52	0.138	1899.7

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC015	47.24	48.77	1.53	0.087	1091.6
25TCRC015	48.77	50.29	1.52	0.11	1785.1
25TCRC016	1.52	3.05	1.53	0.031	682.9
25TCRC016	3.05	4.57	1.52	0.011	772.6
25TCRC016	4.57	6.1	1.53	0.014	464.6
25TCRC016	6.1	7.62	1.52	0.01	484.7
25TCRC016	7.62	9.14	1.52	0.02	1916.1
25TCRC016	9.14	10.67	1.53	0.018	1893.1
25TCRC016	10.67	12.19	1.52	0.008	1206.2
25TCRC016	12.19	13.72	1.53	0.009	252.4
25TCRC016	13.72	15.24	1.52	0.007	256.9
25TCRC016	15.24	16.76	1.52	0.012	720.9
25TCRC016	16.76	18.29	1.53	0.018	1124.7
25TCRC016	18.29	19.81	1.52	0.018	625.9
25TCRC016	19.81	21.34	1.53	0.035	580.8
25TCRC016	21.34	22.86	1.52	3.92	376.4
25TCRC016	22.86	24.38	1.52	3.72	300.8
25TCRC016	24.38	25.91	1.53	0.064	1095.7
25TCRC016	25.91	27.43	1.52	2.66	546.1
25TCRC016	27.43	28.96	1.53	0.05	1133.1
25TCRC016	28.96	30.48	1.52	0.077	1291.3
25TCRC016	30.48	32	1.52	0.12	1070.7
25TCRC016	32	33.53	1.53	0.066	1220.4
25TCRC016	33.53	35.05	1.52	0.03	936.4
25TCRC016	35.05	36.58	1.53	0.032	1128.6
25TCRC016	36.58	38.1	1.52	0.181	887.4
25TCRC016	38.1	39.62	1.52	0.033	758
25TCRC016	39.62	41.15	1.53	0.064	1242.9
25TCRC016	41.15	42.67	1.52	0.037	1369.4
25TCRC016	42.67	44.2	1.53	0.044	1222.7
25TCRC016	44.2	45.72	1.52	0.099	1529.4
25TCRC016	45.72	47.24	1.52	0.058	1240.7
25TCRC016	47.24	48.77	1.53	0.042	1478.5
25TCRC016	48.77	50.29	1.52	0.117	1288.5
25TCRC016	50.29	51.82	1.53	0.049	1034.4
25TCRC016	51.82	53.34	1.52	0.025	1011.2
25TCRC016	53.34	54.86	1.52	0.015	751.3
25TCRC016	54.86	56.39	1.53	0.099	1514.5
25TCRC016	56.39	57.91	1.52	0.02	1135.8
25TCRC016	57.91	59.44	1.53	0.038	1466.4
25TCRC016	59.44	60.96	1.52	0.053	1976

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC016	60.96	62.48	1.52	0.028	855.3
25TCRC016	62.48	64.01	1.53	0.039	2302.1
25TCRC016	64.01	65.53	1.52	0.076	2016
25TCRC016	65.53	67.06	1.53	0.073	966.2
25TCRC017	0	1.52	1.52	0.038	351.8
25TCRC017	1.52	3.05	1.53	0.083	681.8
25TCRC017	3.05	4.57	1.52	0.019	424.5
25TCRC017	4.57	6.1	1.53	0.012	363.4
25TCRC017	6.1	7.62	1.52	0.015	228.7
25TCRC017	7.62	9.14	1.52	0.014	308.8
25TCRC017	9.14	10.67	1.53	0.011	370.4
25TCRC017	10.67	12.19	1.52	0.014	373.1
25TCRC017	12.19	13.72	1.53	0.02	362.3
25TCRC017	13.72	15.24	1.52	0.015	245.6
25TCRC017	15.24	16.76	1.52	0.034	684.5
25TCRC017	16.76	18.29	1.53	0.191	1462.8
25TCRC017	18.29	19.81	1.52	0.057	681.8
25TCRC017	19.81	21.34	1.53	0.047	383.7
25TCRC017	21.34	22.86	1.52	0.023	79.6
25TCRC017	22.86	24.38	1.52	0.009	178.8
25TCRC017	24.38	25.91	1.53	0.22	446.9
25TCRC017	25.91	27.43	1.52	2.95	271.8
25TCRC017	27.43	28.96	1.53	0.129	910.2
25TCRC017	28.96	30.48	1.52	0.055	783.4
25TCRC017	30.48	32	1.52	0.067	497.7
25TCRC017	32	33.53	1.53	0.021	581.5
25TCRC017	33.53	35.05	1.52	0.015	440.6
25TCRC017	35.05	36.58	1.53	0.034	647.2
25TCRC017	36.58	38.1	1.52	0.015	481
25TCRC017	38.1	39.62	1.52	0.013	471.8
25TCRC017	39.62	41.15	1.53	0.014	481.2
25TCRC017	41.15	42.67	1.52	0.014	291.7
25TCRC017	42.67	44.2	1.53	0.015	578.4
25TCRC017	44.2	45.72	1.52	0.049	950.4
25TCRC017	45.72	47.24	1.52	0.035	1275.9
25TCRC017	47.24	48.77	1.53	0.014	675.8
25TCRC017	48.77	50.29	1.52	1.11	624.7
25TCRC017	50.29	51.82	1.53	0.061	813.3
25TCRC017	51.82	53.34	1.52	0.036	646.5
25TCRC017	53.34	54.86	1.52	0.021	267.8
25TCRC024	0	1.52	1.52	0.057	428.7

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC024	1.52	3.05	1.53	0.023	376.1
25TCRC024	3.05	4.57	1.52	0.025	389.3
25TCRC024	4.57	6.1	1.53	0.021	327.7
25TCRC024	6.1	7.62	1.52	0.058	800.6
25TCRC024	7.62	9.14	1.52	0.018	355.9
25TCRC024	9.14	10.67	1.53	0.047	995.2
25TCRC024	10.67	12.19	1.52	0.021	363.1
25TCRC024	12.19	13.72	1.53	0.018	307.4
25TCRC024	13.72	15.24	1.52	0.015	292.3
25TCRC024	15.24	16.76	1.52	0.016	292.2
25TCRC024	16.76	18.29	1.53	0.016	313.4
25TCRC024	18.29	19.81	1.52	0.016	270.2
25TCRC024	19.81	21.34	1.53	0.01	296
25TCRC024	21.34	22.86	1.52	0.01	350.7
25TCRC024	22.86	24.38	1.52	0.007	221.6
25TCRC024	24.38	25.91	1.53	0.006	224.3
25TCRC024	25.91	27.43	1.52	0.007	215.3
25TCRC024	27.43	28.96	1.53	0.008	198.1
25TCRC024	28.96	30.48	1.52	0.01	243.3
25TCRC024	30.48	32	1.52	0.007	135.9
25TCRC024	32	33.53	1.53	0.006	177.2
25TCRC024	33.53	35.05	1.52	0.005	131.5
25TCRC024	35.05	36.58	1.53	0.056	237.9
25TCRC024	36.58	38.1	1.52	0.015	224.8
25TCRC024	38.1	39.62	1.52	0.017	270.1
25TCRC024	39.62	41.15	1.53	0.013	225.4
25TCRC024	41.15	42.67	1.52	0.02	331.9
25TCRC024	42.67	44.2	1.53	0.014	445.6
25TCRC024	44.2	45.72	1.52	0.013	314.2
25TCRC024	45.72	47.24	1.52	0.023	527.8
25TCRC024	47.24	48.77	1.53	0.032	361.6
25TCRC024	48.77	50.29	1.52	0.015	104.3
25TCRC025	1.52	3.05	1.53	0.091	427.7
25TCRC025	3.05	4.57	1.52	0.037	419.8
25TCRC025	4.57	6.1	1.53	0.043	735.6
25TCRC025	6.1	7.62	1.52	0.024	414.9
25TCRC025	7.62	9.14	1.52	0.013	295.2
25TCRC025	9.14	10.67	1.53	0.026	553
25TCRC025	10.67	12.19	1.52	0.007	212.3
25TCRC025	12.19	13.72	1.53	0.01	333.1
25TCRC025	13.72	15.24	1.52	0.021	295.5

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC025	15.24	16.76	1.52	0.057	283
25TCRC025	16.76	18.29	1.53	0.101	453.3
25TCRC025	18.29	19.81	1.52	0.084	332.2
25TCRC025	19.81	21.34	1.53	0.43	545.8
25TCRC025	21.34	22.86	1.52	0.73	594.4
25TCRC025	22.86	24.38	1.52	0.035	540.8
25TCRC025	24.38	25.91	1.53	0.022	367.2
25TCRC025	25.91	27.43	1.52	0.039	555.6
25TCRC025	27.43	28.96	1.53	0.025	346
25TCRC025	28.96	30.48	1.52	0.027	324.4
25TCRC025	30.48	32	1.52	0.038	888.8
25TCRC025	32	33.53	1.53	5.89	281.2
25TCRC025	33.53	35.05	1.52	0.13	212.5
25TCRC025	35.05	36.58	1.53	0.03	469.4
25TCRC025	36.58	38.1	1.52	0.022	176.2
25TCRC025	38.1	39.62	1.52	0.018	114.5
25TCRC025	39.62	41.15	1.53	0.011	55.6
25TCRC025	41.15	42.67	1.52	0.016	113.7
25TCRC025	42.67	44.2	1.53	0.021	457.1
25TCRC025	44.2	45.72	1.52	0.013	284.8
25TCRC025	45.72	47.24	1.52	0.019	98
25TCRC025	47.24	48.77	1.53	0.015	108.9
25TCRC025	48.77	50.29	1.52	0.012	260.6
25TCRC025	50.29	51.82	1.53	0.023	600.8
25TCRC025	51.82	53.34	1.52	0.029	495.2
25TCRC025	53.34	54.86	1.52	0.023	142
25TCRC026	0	1.52	1.52	0.052	602.5
25TCRC026	1.52	3.05	1.53	0.143	521.7
25TCRC026	3.05	4.57	1.52	0.08	589.7
25TCRC026	4.57	6.1	1.53	0.074	447.5
25TCRC026	6.1	7.62	1.52	0.033	297.6
25TCRC026	7.62	9.14	1.52	0.015	385.3
25TCRC026	9.14	10.67	1.53	0.015	844.5
25TCRC026	10.67	12.19	1.52	0.014	619.8
25TCRC026	12.19	13.72	1.53	0.014	279.6
25TCRC026	13.72	15.24	1.52	0.036	410.3
25TCRC026	15.24	16.76	1.52	5.23	727.1
25TCRC026	16.76	18.29	1.53	1.87	1006.9
25TCRC026	18.29	19.81	1.52	0.047	408.6
25TCRC026	19.81	21.34	1.53	0.11	921.8
25TCRC026	21.34	22.86	1.52	0.068	820

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC026	22.86	24.38	1.52	1	2058.5
25TCRC026	24.38	25.91	1.53	0.053	1041.2
25TCRC026	25.91	27.43	1.52	0.029	307.4
25TCRC026	27.43	28.96	1.53	0.037	877.1
25TCRC026	28.96	30.48	1.52	0.018	768
25TCRC026	30.48	32	1.52	0.013	631.3
25TCRC026	32	33.53	1.53	0.012	722
25TCRC026	33.53	35.05	1.52	0.023	291.7
25TCRC026	35.05	36.58	1.53	0.016	245.2
25TCRC026	36.58	38.1	1.52	0.023	561.6
25TCRC026	38.1	39.62	1.52	0.011	381
25TCRC026	39.62	41.15	1.53	0.02	663.9
25TCRC026	41.15	42.67	1.52	0.064	1049.9
25TCRC026	42.67	44.2	1.53	0.019	494.3
25TCRC026	44.2	45.72	1.52	0.022	458.4
25TCRC026	45.72	47.24	1.52	0.025	708.3
25TCRC026	47.24	48.77	1.53	0.027	545.4
25TCRC026	48.77	50.29	1.52	0.028	619.5
25TCRC026	50.29	51.82	1.53	0.04	1145.7
25TCRC029	1.52	3.05	1.53	0.086	481.8
25TCRC029	3.05	4.57	1.52	0.017	202.1
25TCRC029	4.57	6.1	1.53	0.01	58.4
25TCRC029	6.1	7.62	1.52	0.019	194.7
25TCRC029	7.62	9.14	1.52	0.018	147.5
25TCRC029	9.14	10.67	1.53	0.017	118.4
25TCRC029	10.67	12.19	1.52	0.02	160
25TCRC029	12.19	13.72	1.53	0.023	213.3
25TCRC029	13.72	15.24	1.52	0.023	253.1
25TCRC029	15.24	16.76	1.52	0.012	164.3
25TCRC029	16.76	18.29	1.53	0.013	118.2
25TCRC029	18.29	19.81	1.52	0.031	517.7
25TCRC029	19.81	21.34	1.53	0.024	706.3
25TCRC029	21.34	22.86	1.52	0.014	627.5
25TCRC029	22.86	24.38	1.52	0.012	357.6
25TCRC029	24.38	25.91	1.53	0.018	419.2
25TCRC029	25.91	27.43	1.52	0.02	388.4
25TCRC029	27.43	28.96	1.53	0.022	557.5
25TCRC029	28.96	30.48	1.52	0.027	283
25TCRC029	30.48	32	1.52	0.051	405.4
25TCRC029	32	33.53	1.53	0.081	471.3
25TCRC029	33.53	35.05	1.52	0.037	214.7

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC029	35.05	36.58	1.53	0.118	562.6
25TCRC029	36.58	38.1	1.52	10.92	370.7
25TCRC029	38.1	39.62	1.52	1.69	1061.5
25TCRC029	39.62	41.15	1.53	0.082	277.5
25TCRC029	41.15	42.67	1.52	0.043	294
25TCRC029	42.67	44.2	1.53	0.043	402.2
25TCRC029	44.2	45.72	1.52	0.035	359.2
25TCRC029	45.72	47.24	1.52	0.67	495.5
25TCRC029	47.24	48.77	1.53	0.173	648.8
25TCRC029	48.77	50.29	1.52	0.042	372.6
25TCRC029	50.29	51.82	1.53	0.014	226.3
25TCRC029	51.82	53.34	1.52	0.011	116.1
25TCRC029	53.34	54.86	1.52	0.018	314.7
25TCRC029	54.86	56.39	1.53	0.02	312.4
25TCRC029	56.39	57.91	1.52	0.013	570
25TCRC029	57.91	59.44	1.53	0.027	911.1
25TCRC029	59.44	60.96	1.52	0.043	1143.9
25TCRC030	0	1.52	1.52	0.31	674.8
25TCRC030	1.52	3.05	1.53	0.034	745.8
25TCRC030	3.05	4.57	1.52	0.012	160.8
25TCRC030	4.57	6.1	1.53	0.01	126
25TCRC030	6.1	7.62	1.52	0.018	169.9
25TCRC030	7.62	9.14	1.52	0.007	105
25TCRC030	9.14	10.67	1.53	0.014	164.4
25TCRC030	10.67	12.19	1.52	0.037	288.5
25TCRC030	12.19	13.72	1.53	0.014	103
25TCRC030	13.72	15.24	1.52	0.01	87
25TCRC030	15.24	16.76	1.52	0.012	100.9
25TCRC030	16.76	18.29	1.53	0.026	206.1
25TCRC030	18.29	19.81	1.52	0.013	127.3
25TCRC030	19.81	21.34	1.53	0.016	234.4
25TCRC030	21.34	22.86	1.52	0.018	241.2
25TCRC030	22.86	24.38	1.52	0.018	288.5
25TCRC030	24.38	25.91	1.53	0.022	226.4
25TCRC030	25.91	27.43	1.52	0.049	650.5
25TCRC030	27.43	28.96	1.53	0.082	662.9
25TCRC030	28.96	30.48	1.52	0.026	521.1
25TCRC030	30.48	32	1.52	0.02	269.1
25TCRC030	32	33.53	1.53	1.48	508.8
25TCRC030	33.53	35.05	1.52	0.64	701
25TCRC030	35.05	36.58	1.53	0.24	493.6

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC030	36.58	38.1	1.52	0.06	378.2
25TCRC030	38.1	39.62	1.52	0.041	233.6
25TCRC030	39.62	41.15	1.53	0.41	546.9
25TCRC030	41.15	42.67	1.52	1.09	653.4
25TCRC030	42.67	44.2	1.53	0.05	726.6
25TCRC030	44.2	45.72	1.52	0.036	469.5
25TCRC030	45.72	47.24	1.52	0.057	753.5
25TCRC030	47.24	48.77	1.53	0.04	777.8
25TCRC030	48.77	50.29	1.52	0.041	823.2
25TCRC030	50.29	51.82	1.53	0.011	448.9
25TCRC030	51.82	53.34	1.52	0.026	847.7
25TCRC030	53.34	54.86	1.52	0.018	571
25TCRC030	54.86	56.39	1.53	0.056	508.6
25TCRC030	56.39	57.91	1.52	0.082	239.4
25TCRC030	57.91	59.44	1.53	0.052	101.9
25TCRC030	59.44	60.96	1.52	0.043	145.1
25TCRC030	60.96	62.48	1.52	0.051	157.2
25TCRC030	62.48	64.01	1.53	0.036	600.8
25TCRC048	0	1.52	1.52	0.084	1465.7
25TCRC048	1.52	3.05	1.53	0.041	478.7
25TCRC048	3.05	4.57	1.52	0.021	357.2
25TCRC048	4.57	6.1	1.53	0.062	1066.1
25TCRC048	6.1	7.62	1.52	0.043	631.6
25TCRC048	7.62	9.14	1.52	0.08	1323.2
25TCRC048	9.14	10.67	1.53	0.089	2061.4
25TCRC048	10.67	12.19	1.52	0.071	1910.9
25TCRC048	12.19	13.72	1.53	0.052	1280.7
25TCRC048	13.72	15.24	1.52	0.078	916
25TCRC048	15.24	16.76	1.52	0.1	1811.5
25TCRC048	16.76	18.29	1.53	0.094	1608.2
25TCRC048	18.29	19.81	1.52	0.079	1631.7
25TCRC048	19.81	21.34	1.53	0.185	782.4
25TCRC048	21.34	22.86	1.52	0.062	1044.3
25TCRC048	22.86	24.38	1.52	0.043	885.8
25TCRC048	24.38	25.91	1.53	0.064	1458
25TCRC048	25.91	27.43	1.52	0.05	990.9
25TCRC048	27.43	28.96	1.53	0.027	697
25TCRC048	28.96	30.48	1.52	0.027	520
25TCRC048	30.48	32	1.52	0.027	964.8
25TCRC048	32	33.53	1.53	0.024	1084.3
25TCRC048	33.53	35.05	1.52	0.03	915.3

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sb %	As ppm
25TCRC048	35.05	36.58	1.53	0.049	1173
25TCRC048	36.58	38.1	1.52	0.044	665.4
25TCRC048	38.1	39.62	1.52	0.07	385.7
25TCRC048	39.62	41.15	1.53	0.096	553.5
25TCRC048	41.15	42.67	1.52	0.034	320.8
25TCRC048	42.67	44.2	1.53	0.043	341.4
25TCRC048	44.2	45.72	1.52	0.05	994.8
25TCRC048	45.72	47.24	1.52	0.039	813
25TCRC048	47.24	48.77	1.53	0.018	424.3
25TCRC048	48.77	50.29	1.52	0.024	15/12