

Honeymoon Update Review Concluded and New Feasibility Study Initiated

Overview

Honeymoon Review Outcome

- The Honeymoon Review has indicated an expected material and significant deviation from the
 assumptions underpinning the Company's 2021 Enhanced Feasibility Study (EFS). This in turn would
 be expected to impact life of mine production and cost from FY27 onwards, primarily due to less
 continuity of higher-grade mineralisation, mineralisation not overlapping, less leachability and
 smaller wellfields.
- As a result, Boss is formally withdrawing the EFS and confirms that it should no longer be relied upon as a guide to future operational performance.
- Through the Honeymoon Review, Boss has identified a potential pathway forward based on Boss' updated understanding of the resource, deposit characteristics and an alternative wide-space wellfield design that could be suitable to Honeymoon.

Pathway Forward and Next Steps

- The potential suitability of a wide-spaced wellfield design at Honeymoon is at a concept stage.
- Boss has initiated a series of accelerated work programs to assess the potential economic benefits
 of, and to provide an update on work associated with, the wide-spaced wellfield design (a 'New
 Feasibility Study'). An initial update will be provided in Q1CY26 with completion of a Scoping Study
 targeted for Q2CY26 and completion of a New Feasibility Study in Q3CY26.
- A wide-spaced wellfield design could potentially deliver lower costs and improved lixiviant grades compared to the current wellfield design by increasing leaching time, lowering reagent use and utilising wellfield infrastructure over a larger surface area and more uranium under leach.

Organic Growth Opportunities

- Boss has initiated a detailed work program to bring the Gould's Dam and Jason's Deposit satellite
 deposits into the production profile. An updated resource model and details associated with this
 work program, including timing, will be provided during Q1CY26.
- Successful execution of a wide-spaced wellfield design could improve resource recoverability and cost structure at the satellite deposits.

Robust Financial Position

Boss remains in a strong financial position with A\$212 million of cash and liquid assets as at 30 September 2025 which will enable it to self-fund the key work programs associated with the New Feasibility Study, a potential change to wellfield design and the potential early development of Gould's Dam and Jason's Deposit.

FY26 Guidance and Outlook

- Boss remains on track to deliver to FY26 production and cost guidance of 1.6Mlbs drummed, C1 cost of \$40-45/lb (US\$27-28) and all in sustaining cost (AISC) of \$75-80/lb (US\$41-45/lb).
- Strong production at Honeymoon in Q2 with 357klbs of U₃0₈ drummed to 10 December 2025.

FOR FURTHER INFORMATION PLEASE CONTACT:

Based on the current wellfield design and prior to the outcomes of the New Feasibility Study, FY27 is
expected to be similar to FY26 in terms of production and cost but AISC would be ~15% higher than
in FY26 given the higher proportion of sustaining capital.

A conference call will be held today at 9:00am AWST (12:00am AEDT). The call can be accessed at https://loghic.eventsair.com/933561/258118/Site/Register

Boss Energy Limited (ASX: BOE; OTCQX: BQSSF) ("**Boss**" or the "**Company**") provides an update on the conclusion of the Honeymoon Review, the initiation of a New Feasibility Study, FY26 Guidance and Outlook.

As previously announced¹, Boss commenced the Honeymoon Review to determine the extent to which the potential for less continuity of mineralisation and leachability exists when compared to the assumptions in the 2021 Enhanced Feasibility Study (EFS).

The Honeymoon Review has indicated an expected material and significant deviation from the assumptions underpinning the Company's 2021 Enhanced Feasibility Study (EFS). This could in turn impact life of mine production and cost from FY27 onwards, primarily due to less continuity of higher-grade mineralisation, mineralisation not overlapping, less leachability and smaller wellfields.

The EFS had served as the basis for the medium to long-term planning under which the Company was operating, however, based on the results of the Honeymoon Review, Boss is formally withdrawing the EFS and advises that it should no longer be relied upon as a guide to future performance.

Through the Honeymoon Review, Boss considered the appropriateness of the current wellfield design and whilst only at an early concept stage, Boss' initial observations are that an alternative wide-spaced wellfield design has the potential to better optimise the Honeymoon resource and assets and maximise value for shareholders. Boss has initiated a New Feasibility Study to assess the potential economic benefits of the wide-spaced wellfield design. An initial update will be provided in Q1CY26 with completion of a Scoping Study targeted for Q2CY26 and completion of a New Feasibility Study in Q3CY26.

Boss Managing Director Matthew Dusci said:

"Work undertaken on the Honeymoon Review has provided Boss with an updated understanding to indicate that execution of the wellfield design as set out in the EFS would be expected to result in a material and significant deviation from the EFS from FY27 in terms of life of mine production and cost."

"Although Boss acknowledges this disappointing outcome, the Honeymoon Review and delineation drilling programs have enabled the identification of a potential pathway forward through a new wide-spaced wellfield design. While additional work is necessary to finalise a New Feasibility Study, this development presents an opportunity for Boss to potentially lower operating costs, optimise production profiles, and extend mine life compared to the current wellfield design.

"It has been Boss' expanded wellfields team with international ISR expertise that has identified the widespaced wellfield design. We believe that the Honeymoon deposit has the characteristics required to make it amenable to this new design. Boss has initiated a significant work program to deliver the New Feasibility Study and a potential change in mining approach which is only really possible in an ISR setting."

"If successful at Honeymoon, this style of wellfield design would be used, and could potentially improve resource recoverability and cost structure at the Gould's Dam and Jason's Deposit satellite deposits.

¹ See the Company's announcements dated 28 July 2025 ("Honeymoon FY26 Guidance" and "June 2025 Quarterly Results Presentation"), 5 August 2025 ("Response to ASX Aware Query"), 11 September 2025 ("Honeymoon Review Update"), 29 October 2025 ("September Quarterly Report") and 20 November 2025 ("Chair's Address and Managing Director's Presentation to AGM") for further details.

"Importantly Boss remains in a strong financial position and has the capacity to self-fund a potential change to a wide-spaced wellfield design and bring Gould's Dam and Jason's Deposit into the production profile."

"We acknowledge there is a significant amount of work required for Boss to restore shareholder value. The team is committed to delivering on this important measure through optimising what we see as a robust uranium production asset, if a new wide-spaced wellfield design can be successfully implemented."

Summary

Honeymoon Review

The Honeymoon Review has indicated an expected material and significant deviation from the assumptions underpinning the Company's 2021 Enhanced Feasibility Study (EFS). This in turn would be expected to impact estimated life of mine production, annual production rates, the C1 and sustaining capital cost per pound of uranium produced from FY27 onwards, primarily due:

- Less continuity of higher-grade mineralisation: Initial delineation drilling results indicate that there
 is less continuity of higher-grade mineralisation but still strong continuity of lower grade
 mineralisation which is below the cutoff grade used in the current wellfield design.
- Mineralisation does not overlap: Lenses that were previously understood to be continuous and overlapping across three stacked sand horizons are instead more pod-like and therefore established wellfield infrastructure is unlikely to be used to access uranium in each horizon, in the current wellfield design.
- **Less leachability:** Boss' understanding of the potential impact of uranium situated within or near impermeable lithology continues to improve as more data is received. The proportion of uranium within impermeable lithologies could impact uranium recovered.
- Wellfields are smaller: Due to the reduced continuity of mineralisation and the lack of overlapping lenses, the average wellfield size, under the current wellfield design, will be smaller (in terms of pounds of uranium under leach per wellhouse and spatial coverage) as the wellfield design is constrained to higher grade mineralisation.

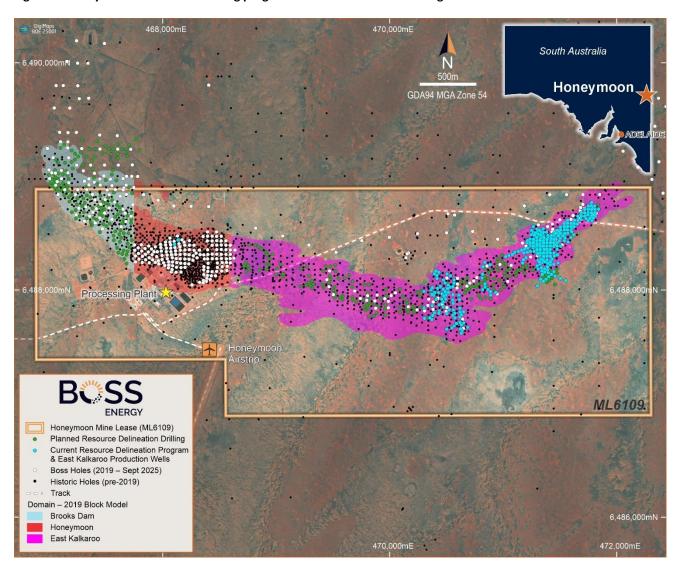
New Feasibility Study Initiated

As part of the work undertaken for the Honeymoon Review, a potential alternative wide-spaced wellfield design to optimise the mining of lower-grade uranium resources via in-situ leach, has been identified.

The wide-spaced wellfield design is for a wellfield that has wider spacing between injection and extraction wells, fewer pore volume exchanges (PVE) and a longer residence time for the lixiviant to leach the uranium, which together reduce the C1 and capital cost per pound of uranium produced (as compared to if the current wellfield design is used to extract lower-grade uranium). This, in turn, enables a reduction in the cutoff grade, which further supports the fractionalisation of costs.

Based on an initial understanding, Honeymoon appears to demonstrate the characteristics to be amenable to a wide-spaced wellfield design i.e. hydraulic connectivity, favourable mineralogy and good permeability. A New Feasibility Study has been initiated to better understand the potential for an alternative wide-spaced wellfield design to drive value by enabling the resource and assets to be maximised.

Honeymoon Review - Key Findings


Data

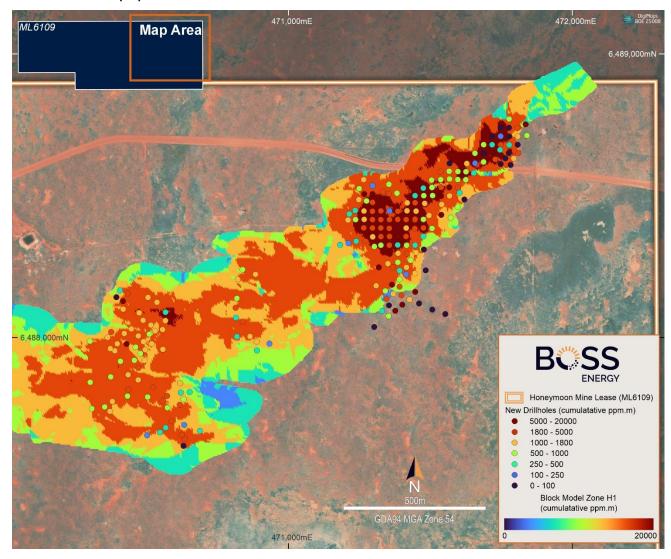
The Honeymoon Review has taken into combined consideration the initial delineation drilling data (program is not yet complete but expected to complete in Q2CY26), operating data, external specialist technical input, Boss technical team input and data modelling and interpretation which has enabled Boss to compare the iterative combination of these inputs to prior assumptions. Boss intends that a new block model and JORC Mineral Resource Estimate incorporating completion of the delineation drilling program, including updated estimates of lithology, will be completed by Q3CY26.

Accelerated Resource Delineation drilling

Boss commenced an accelerated delineation drilling program in mid-September 2025, with a particular focus on the East Kalkaroo and Brooks Dam domains. Historically, the most-drilled portion of the resource has been the Honeymoon domain.

Figure 1: Honeymoon delineation drilling program and other historical drilling

The current delineation drilling program assumes an initial spacing of 35m x 35m and currently estimates a total program of 431 holes for 55,000 metres. Of this, 161 holes for 20,660 metres have been completed to 10 December 2025. The program is expected to be completed in Q2CY26.


The program has started at Far East Kalkaroo and is moving from East to West, with drilling yet to commence at Brooks Dam. A table of drilling results is set out in Appendix One.

Continuity of mineralisation

A comparison of initial drilling results as compared to the current block model at East Kalkaroo indicate that there is less continuity of higher-grade mineralisation. This indicates higher-grade mineralisation appears to be more pod-like rather than continuous.

The Honeymoon Review indicates extensive lower-grade mineralisation to exist throughout East Kalkaroo. The potential to economically extract the lower-grade mineralisation with a wide-spaced wellfield design will be confirmed as a part of the New Feasibility Study.

Figure 2: East Kalkaroo delineation drilling and production well results compared to the current block model for the lower horizon (H1)

Leachability

Boss has received, through additional drilling and analysis, additional information regarding the amount of uranium in, or on the boundary of, impermeable lithology (e.g. clay). Boss' understanding of the potential impact of uranium situated within or near impermeable lithology continues to improve as more data is received. The completion of the delineation drilling program and a new block model, including an updated lithology model, could potentially further improve Boss' understanding of lithology.

Uranium situated within impermeable lithology is generally more difficult to leach via ISR or any other method that is economically viable. Uranium on the boundary of impermeable lithology has a greater level of variability (potentially positive or negative) and this uranium could at least be partially recovered. Uranium on the boundary also has a greater level of potential for inaccurate data i.e. given that the grade is measured at 25cm intervals, a small measurement error could mean that the uranium is either all within sand and recoverable or all within impermeable lithology and unlikely to be recoverable.

Resource Sensitivity to Cut-off

The Honeymoon resource appears to be supported by extensive lower-grade uranium mineralisation throughout and is highly sensitive to changes in cutoff grade. The Honeymoon review has identified a wide-spaced wellfield design that could be better suited for leaching lower-grade uranium resources as a potential pathway forward.

The table below illustrates the opportunity that exists if Boss is able to successfully execute a wide-spaced wellfield design. Substantial uranium that is currently excluded by the existing wellfield design, could become recoverable, for example if the cutoff grade is reduced from 400ppm to 100ppm U_3O_8 , this could potentially increase the uranium metal that could be included in the wellfield design by up to ~49%.

Table 1: Illustrative contained U₃O₈ by cutoff (ppm) and support

Contained U₃O ₈ by average grade (ppm)	0-50	50-100	100-150	150-250	250-400	400+
Medium block size* (% of contained U₃O ₈)	3%	8%	10%	19%	20%	40%

^{*}Generated at 40m X 40m support.

A new block model, which incorporates all delineation drilling results, is required to be generated before the amount of contained uranium can be accurately estimated by average grade and resource area.

Honeymoon Domain Wellfield Performance

The Honeymoon domain currently includes five wellfields ("B1" to "B5"), four operational ("B1" to "B4") and one yet to commence operation ("B5"). The start and expected end dates of each of the Honeymoon domain wellfields, based on the current wellfield plan, are set out in the table below:

Table 2: Honeymoon domain wellfields start date and estimated end date

Wellfield	Start date	Current estimated end date
Wellfield 1 ("B1")	Apr-24	May-27
Wellfield 2 ("B2")	Oct-24	Sep-26
Wellfield 3 ("B3")	Mar-25	Nov-27
Wellfield 4 ("B4")	Aug-25	Jan-27
Wellfield 5 ("B5")	Jan-26 (planned)	Oct-28

Boss has reviewed actual wellfield performance for wellfields B1 to B4 and expected performance for wellfield B5 against the EFS for the Honeymoon domain (lower horizon). Wellfields in this domain are expected to underperform the EFS in terms of total extracted uranium. As demonstrated in the chart

below, Boss has currently extracted circa one-fifth of the total pounds, as set out in the EFS, of the Honeymoon domain (lower horizon).

Whilst the Honeymoon domain (lower horizon) performance to date appears to be tracking in line with the EFS recovery curve, the Honeymoon Review indicates that the current wellfield design is expected to produce a total of 1.5Mlbs to 2.5Mlbs less than was set out in the EFS. This variance assumes a benefit from optimisation programs such as optimising lixiviant, leaching performance, wellfield planning and installing smaller extension (wider-spaced) patterns around existing wellfields.

Wellfield recovery (%) 80 70 60 50 40 30 20 10 0 30 40 Pore Volume Exchanges 0 10 20 70 50 60 EFS design Actual performance

Figure 3: Actual performance and recovery comparison (Honeymoon Domain, lower horizon)

Given that all the wellfield infrastructure for the Honeymoon domain (lower horizon) has been established, potential wide-spaced wellfield patterns could potentially only have a small impact on the lower horizon of the Honeymoon domain (being those Wellfields B1 to B5) albeit if the technical and economic viability of a longer residence time is successful, the recovery of the tail end of the recovery curve could be improved. Further work is required to understand the potential recoverability of the upper horizons at Honeymoon.

Figure 4: Potential additional patterns around Honeymoon

Pathway Forward and Next Steps

Summary

The appropriateness of the current wellfield design was considered as a part of the Honeymoon Review as a key assumption underpinning the EFS. The Honeymoon Review has indicated that the resource appears to be highly sensitive to cutoff grade which has a material impact on the potential uranium put under leach if the cutoff grade can be reduced. The initial modelling indicates that a wide-spaced design (50m-150m) could reduce Honeymoon's cost structure which would enable a substantial amount of uranium, currently being excluded by the current wellfield design, back into the production profile.

The chart below demonstrates how a wide-spaced design could potentially reduce the cost to extract lower average grade uranium by reducing capital intensity (i.e. wells and wellhouse cost per pound of uranium) and lowering reagent consumption by reducing the number of times lixiviant is passed through the ore body (PVE) which would increase the time that the lixiviant is in contact with the uranium, thereby increase the average grade.

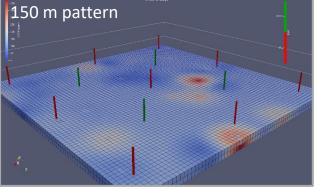

Variance to current design (%) 550 500 Higher grade 450 Longer time (days) to recovery 400 350 300 250 200 150 100 50 Wider spaced wells (50)Lower PVE (100)Lower reagent consumption (150)40 50 60 70 80 90 100 110 120 130 140 150 Well spacing (m) Time to final recovery Grade Reagents consumption

Figure 5: Impact of wider spaced design compared with 43 metre spaced design

An illustrative visualisation of the difference between a 150m spaced pattern and a 50m spaced pattern is set out below. Boss currently utilises a \sim 40m spacing in its wellfields.

Figure 6: Illustration of a wide-spaced (150m) wellfield design compared to a narrower (50m) wellfield design.

150 m pattern

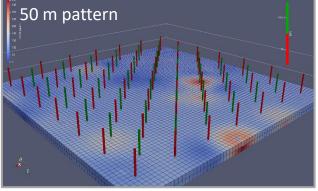


Table 3: Comparison of a potential wide-spaced alternative and current wellfield design

Key Metric	Potential wide-spaced design alternative	Current design
Resource suitability	Low-grade with high permeability and hydraulic connectivity between wellfields	Higher-grade wellfields and estimated returns.
Well spacing	Wide well spacing (~75-150m)	Tighter well spacing (~40m)
Pore volume exchanges (PVE)	Less PVE	70 PVE
Total recovery	Same recovery target	70% of the resource under leach
Flow rate	No change at each individual injection or extraction well	~30-36m³/hr of lixiviant at extraction well
Wellhouse	Subject to feasibility study	Larger wellhouse
Recovery time	Similar recovery time	Dependent on pounds under leach per wellfield
Capital intensity	Less wellfield infrastructure per m ²	More wellfield infrastructure per m ²
Reagent consumption	Lowered by fewer PVE	Higher based on more PVE
PLS Grade	Increased by longer residence time	Reliant on higher orebody grade
Wellfield design cutoff grade	Lowered by reducing capital intensity and reagent consumption	Higher driven higher capital intensity and reagent consumption
Average velocity / Residence time	Slower, more days in ground (~40-90 days)	Faster, more days in ground (~5 days)
Operational complexity	Simpler, less wells, less flow	Higher, more wells, higher flow

The opportunity to implement a wide-spaced design at Honeymoon, is initially understood, to be somewhat unique to the Honeymoon deposit given Boss' current understanding of:

- the impact of including extensive low-grade mineralisation in the wellfield design
- good permeability across the deposit which enables maintaining high flowrates for extractor and injector wells and to control the path of the lixiviant over a greater distance
- good hydraulic connectivity which enables lixiviant to flow between injector and extractor wells to be unencumbered
- mineralised layers that are not distributed too vertically which prevents excessive dilution of reagents
- relatively low acid consumption given low carbonate content and low acid consuming clay. This
 means that by increasing residence time, it is not expected to result in a proportional increase in acid
 required to maintain the targeted pH levels.

New Feasibility Study Initiated

Boss has historically successfully solved some significant technical challenges at Honeymoon and will continue to add leading technical capability to deliver a New Feasibility Study, subject to successful completion of the following next steps:

implement hydrogeological tests (tracer / pumping) to test hydraulic connectivity of the reservoir

- complete additional mineralogical characterisation to improve understanding of mineralogy (including clays and uranium bearing minerals) at Honeymoon and the potential impact to reagent consumption
- validation of the reservoir simulation through history matching of Honeymoon production data
- run preliminary reservoir reactive transport simulations to test different wellfield sizing and leaching condition based on current GT maps
- run final reactive transport simulations on updated resource block model
- establish trial patterns to confirm order of magnitude of residence time and PLS grade (at least 2-3 months) which could be simulated with a smaller pattern initially to obtain some initial data and get an initial validation to confirm total recovery is in line with expectations
- optimise wellhouse design to best suit wide-spaced pattern
- complete delineation drilling
- complete new resource block model including updated lithology model
- complete new wide spaced wellfield design
- confirm new design with regulators
- · complete production scheduling and sequencing
- financial modelling including capital and operating cost estimations
- monitoring of wellfield performance at East Kalkarroo to reinforce validation of hypothesis for lowgrade / larger spacing model

Key Milestones and Work Programs

Boss is seeking to accelerate several key work programs in parallel to deliver the New Feasibility Study and Gould's Dam and Jason's Deposit JORC resource and permitting pathway to maximise value. Boss remains in a strong financial position to self-fund the work programs, with estimated timings below

Table 4: Key Milestones and Work Programs

Table 4. Rey Wilestones and Work Frograms	
Key Milestone and Work Program	Estimated Completion
Initial updated resource model (not JORC compliant, for internal purposes)	Q1 CY2026
Gould's Dam and Jason's Deposit JORC Resource and permitting pathway	Q1 CY2026
Update on wide-spaced wellfield design	Q1 CY2026
Accelerated drilling program complete	Q2 CY2026
Updated JORC resource model including some delineation drilling results	Q2 CY2026
Scoping study finalised on wide-spaced wellfield design	Q2 CY2026
Final JORC Resource model including all delineation drilling results	Q3 CY2026
Completion of New Feasibility Study and FY27 Guidance provided	Q3 CY2026

Organic growth opportunities

Satellite deposits

Boss believes that if it is able to successfully implement a wide-spaced wellfield design, this could potentially improve the recoverable uranium metal and reduce capital intensity and C1 cost, at its satellite deposits. The current understanding of Gould's Dam and Jason's Deposit lithology is that the uranium is mostly contained in sandy horizons which would be well suited to a wide-spaced wellfield design.

The early development of Gould's Dam and Jason's Deposit, which Boss has the capacity to self-fund, is considered a key near-term opportunity for the Company. An updated resource statement and timetable of work required to bring these satellite deposits into production is expected to be provided in Q1 CY26.

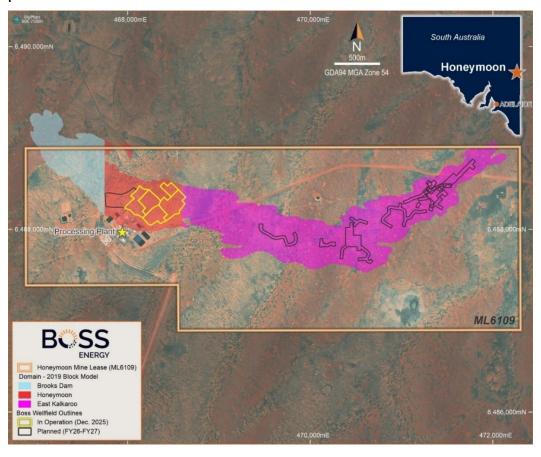
400,000mE 450,000mE 350,000mE South Australia - 6,550,000mN Honeymoon < EL 6512 Gould's Dam Deposit Jason's Deposit 6,500,000mN 6,500,000mN -EL 6510 South Australia EL 6020 Honeymoon Mine EL 6511 EL 6081 6,450,000mN 6,450,000mN BUSS Road Lake Eyre Basin (Cenozoic) Boss Tenement

Figure 7: Gould's Dam and Jason's Deposit satellite deposits relative to Honeymoon

FY26 Guidance and Outlook

FY26 Guidance

Boss confirms it remains on track to deliver FY26 Guidance. Production from the Honeymoon Operation during the December 2025 quarter has totalled 357klbs U_3O_8 drummed as of 10 December 2025.


Boss continues to track favourably against C1 Cash Costs and AISC compared to FY26 Guidance as a result of a number of work programs to improve cost, productivity and efficiencies, including lixiviant optimisation which continues to show positive results in line with the September 2025 quarter. Any potential updates to FY26 C1 cost guidance will be provided in the December 2025 quarterly report.

Outlook

Based on the current wellfield designs, FY27 production and cost estimates are expected to be approximately in line with FY26 guidance but a higher proportion of sustaining capital could potentially result in an AISC that is ~15% higher than in FY26.

FY27 estimates are subject to change following the completion of a New Feasibility Study. It is unlikely that production in FY27 will exceed FY26, even if the wide spaced wellfield design is implemented, given the time required to bring on new wellfields.

The current wellfield design at Honeymoon, Far East Kalkaroo and Central East Kalkaroo is set out below but this could change following the completion of a New Feasibility Study. Is is **Figure 8: Operating and planned wellfields**

Key Takeaways

- Boss is formally withdrawing the EFS given it has identified a material and significant deviation from the assumptions underpinning the EFS from FY27 onwards.
- Whilst the Honeymoon Review shows extensive uranium mineralisation, it is of a lower-grade and not expected to be captured in current wellfield designs.
- Boss has identified a potential pathway forward and initiated a New Feasibility Study to investigate a wide-spaced wellfield design.
- Potential successful execution of a wide-spaced wellfield design could reduce Boss' cost to extract from a lower-grade resource which could improve resource recoverability at Honeymoon, Gould's Dam and Jason's Deposit.
- Boss remains in a strong financial position to self-fund the key work programs associated with the assessment of a wide-spaced wellfield design, with A\$212 million of cash and liquid assets as at 30 September 2025.
- Boss remains on track to deliver to FY26 production and cost guidance.
- Boss will keep the market informed with ongoing work programs including an update in Q1CY26, completion of a Scoping Study targeted in Q2CY26 and completion of a New Feasibility Study targeted in Q3CY26.

This ASX announcement is authorised for release by the Board of Directors of Boss Energy Limited.

For further information, contact:

Matthew Dusci Managing Director and Chief Executive Officer P: +61 (8) 6263 4494

E: boss@bossenergy.com

For media enquiries, contact:

Paul Armstrong Read Corporate P: +61 (8) 9388 1474

E: info@readcorporate.com

Forward-Looking Statements

This announcement contains certain forward-looking information and forward-looking statements (collectively "forward-looking statements"), including: statements regarding the potential benefits or outcomes of the alternative wellfield design; statements regarding the quantity, grade, and recoverability of uranium; statements regarding the potential to bring satellite deposits (e.g. Gould's Dam, Jason's Deposit) into production; plans and schedules regarding future delineation drilling and other operational milestones; timelines and expectations for completion of feasibility studies; statements regarding the Company's future financial capability (including the Company's abilities to self-fund future work programmes); and future plans, projections, objectives, estimates and forecasts, and the timings related thereto.]

All statements, other than statements of historical fact, that address circumstances, events, activities or developments that could, may or will occur are forward-looking statements. Forward-looking statements are generally identified by the use of words such as 'aim', 'expect', 'anticipate', 'intend', 'foresee', 'likely', 'planned', 'estimate', 'potential', and other similar words. Similar expressions and phrases, or statements that certain actions, events or results 'may', 'could', or 'should' (or the negative or grammatical variations of such terms), may also identify forward-looking statements.

Although the Company believes that the expectations reflected in the forward-looking statements are reasonable, undue reliance should not be placed on the forward-looking statements since no assurance can be provided that such expectations will prove to be correct.

Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement and deviations are both normal and to be expected.

None of the Company nor its respective officers, directors, employees or advisers, or any person named in this announcement or any person involved in the preparation of this announcement, makes any representation or warranty (either express or implied) as to the accuracy or likelihood of the fulfilment of any forward-looking statement, or any events or results expressed or implied in any forward-looking statement. Accordingly, readers are cautioned not to place undue reliance on those statements.

Readers should be aware that forward-looking statements are only opinions and are subject to known and unknown risks, uncertainties, assumptions and other factors that may impact the Company's actual results, performance or achievements expressed, projected or implied by the forward-looking statements. Those risks and uncertainties include factors and risks specific to the Company and / or the industries in which the Company operates, as well as general economic conditions, political conditions, prevailing exchange rates and interest rates, and conditions in financial markets.

Forward-looking statements are designed to help readers understand the Company's views as at that time with respect to future events and speak only as of the date they are made. Subject to any continuing obligations under applicable law, the Company and its respective officers, directors, employees and advisers disclaim any obligation or undertaking to distribute after the date of this announcement any updates or revisions to any forward-looking statements to reflect: (a) any change in expectations in relation to such statements; or (b) any change in events, conditions or circumstances on which any such statement is based. All forward-looking statements contained in this announcement are expressly qualified in their entirety by this disclaimer.

Competent Person's Statement

The information contained in this announcement that relates to drilling results is provided by Mr Jason Cherry, who is a Member of the Australasian Institute of Geoscientists (AIG). Mr Cherry has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person, as defined in the JORC 2012 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Mr Cherry has 17 years' experience and is a full-time employee as Geology Manager for Boss Energy Ltd. Mr Cherry consents to the inclusion in this report of the matters based on this information in the form and context in which they appear.

APPENDIX 1 – Table 1: Current drill results (East Kalkaroo production wells)

Lithology Interpretation Legend. Permeability range expressed in millidarcy (mD) is approximate:

S = Sand (>600mD)

SC = Sand > Clay (100-600mD)

CS = Clay > Sand (20-100mD)

C = Clay (<20mD)

SAP = Saprolite (basement)

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
BEW0162 **	471358	6488360	120	121	86.00	86.50	0.50	509	255	CS
DE WOTOZ	4/1556	0400300	120	121	97.50	101.00	3.50	567	1,985	S
BEW0163 **	471300	6488400	119	104	80.00	83.00	3.00	680	2,040	S
BEW0164 **	471082	6488314	119	102	80.00	84.75	4.75	356	1,691	S
BEW0165	471182	6488327	119	127	110.25	110.75	0.50	378	189	С
DLWOIOS	471102	0400327	119	127	120.50	121.00	0.50	387	194	С
BEW0166	471211	6488333	119	127	119.25	119.75	0.50	407	204	С
					83.50	85.25	1.75	490	858	SC
BEW0167	471238	6488340	119	127	102.75	103.25	0.50	334	167	SC
					118.25	118.75	0.50	460	230	CS
					100.25	100.75	0.50	573	287	S
BEW0168	471271	6488340	120	127	102.50	103.00	0.50	494	247	С
					108.75	111.50	2.75	621	1,708	SC
BEW0169	471318	6488248	122	127	100.00	102.00	2.00	432	864	S
DLWOIOS	471316	0400240	122	127	106.25	110.25	4.00	1,414	5,656	S
BEW0170	471350	6488261	120	134	99.50	102.25	2.75	410	1,128	S
DLWOI70	471330	0400201	120	154	105.75	106.25	0.50	267	134	S
BEW0171	471236	6488416	119	127	80.25	81.00	0.75	707	530	SC
DLVV0171	471230	0488410	119	127	111.25	111.75	0.50	1,198	599	SC
					80.00	82.25	2.25	717	1,613	S
					99.75	100.25	0.50	778	389	С
BEW0172	471265	6488387	119	127	105.00	105.50	0.50	393	197	CS
					107.50	109.25	1.75	435	761	С
					110.00	111.25	1.25	395	494	S
BEW0173	471297	6488355	119	132	109.50	110.75	1.25	1,344	1,680	S
					76.75	77.50	0.75	285	214	SC
BEW0174	471326	6488326	120	127	79.50	80.50	1.00	331	331	С
DLWU1/4	4/1320	0400320	120	12/	86.75	87.50	0.75	285	214	CS
					109.00	109.50	0.50	1,249	625	S

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					82.50	86.50	4.00	369	1,476	SC
BEW0175	471357	6488295	120	127	98.75	102.25	3.50	1,659	5,807	S
					107.00	107.75	0.75	1,565	1,174	SC
					82.50	86.50	4.00	369	1,476	SC
BEW0175	471357	6488295	120	127	98.75	102.25	3.50	1,659	5,807	S
					107.00	107.75	0.75	1,565	1,174	SC
BEW0176	471385	6488265	120	127	86.50	87.25	0.75	334	251	S
BEWOITO	471303	0400203	120	127	103.25	103.75	0.50	1,462	731	CS
BEW0177	471416	6488248	120	127	105.00	105.50	0.50	1,207	604	CS
BEWOITT	471410	0400240	120	127	107.00	108.00	1.00	575	575	S
BEW0178 **	471445	6488227	120	127	107.00	107.75	0.75	473	355	S
BEWO178	471443	0400227	120	127	109.50	110.50	1.00	1,175	1,175	S
					80.25	81.50	1.25	825	1,031	S
BEW0179	471267	6488417	119	127	98.50	99.00	0.50	408	204	SC
BEWOI79	471207	0400417	113	127	108.50	109.75	1.25	678	848	SC
					111.75	112.25	0.50	728	364	CS
					81.25	83.00	1.75	774	1,355	S
BEW0180	471296	6488387	119	127	99.00	99.75	0.75	506	380	SC
BLWUISU	4/1290	0488387	119	127	108.25	110.75	2.50	1,313	3,283	CS
					117.75	118.25	0.50	279	140	SC
BEW0181	471326	6488356	120	127	100.00	100.50	0.50	411	206	CS
BLW0181	4/1320	0488330	120	127	110.00	112.50	2.50	676	1,690	S
					86.25	86.75	0.50	506	253	SC
BEW0182	471355	6488326	120	127	97.00	101.00	4.00	790	3,160	S
BLWU102	4/1333	0488320	120	127	108.75	109.25	0.50	988	494	SC
					111.25	111.75	0.50	319	160	SC
					97.50	98.25	0.75	366	275	SC
BEW0183	471386	6488297	122	127	101.50	102.00	0.50	353	177	S
					104.75	105.50	0.75	1,978	1,484	S
					79.25	80.25	1.00	273	273	S
BEW0184	471266	6488446	119	127	100.50	101.50	1.00	287	287	С
PEAAOIO	7/1200	0700440	119	12/	110.25	110.75	0.50	814	407	S
					120.25	121.50	1.25	417	521	S

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					81.25	81.75	0.50	903	452	С
BEW0185	471296	6488416	119	133	97.00	98.50	1.50	695	1,043	S
BLWUISS	471290	0488410	119	133	101.50	102.00	0.50	259	130	CS
					109.50	111.00	1.50	430	645	SC
					80.50	81.00	0.50	875	275	CS
					83.25	83.75	0.50	317	159	SC
BEW0186 **	471325	6488387	119	127	98.50	100.25	1.75	371	649	S
BLWOISO	471323	0486387	119	127	101.50	102.50	1.00	875	875	CS
					109.50	111.50	2.00	1,347	2,694	SC
					120.75	121.50	0.75	623	467	С
					98.00	100.75	2.75	722	1,986	S
BEW0187	471356	6488357	122	133	110.25	111.75	1.50	412	618	S
BLW0187	471330	0488337	122	133	118.25	118.75	0.50	313	157	CS
					121.00	122.75	1.75	262	459	S
BEW0188	471385	6488327	120	133	100.00	100.50	0.50	815	408	С
BEW0189	471417	6488296	120	127	108.75	110.00	1.25	1,673	2,091	SC
BLWV0109	4/141/	0488230	120	127	112.00	112.50	0.50	395	198	CS
					84.75	85.25	0.50	351	176	CS
BEW0190	471355	6488385	119	127	96.50	98.25	1.75	1,321	2,312	S
BLW0190	4/1333	0488383	119	127	100.75	101.25	0.50	388	194	S
					109.50	111.75	2.25	902	2,030	S
					96.00	98.25	2.25	280	630	CS
					100.25	102.50	2.25	1,294	2,912	S
BEW0191	471385	6488358	120	133	105.00	109.00	4.00	433	1,732	S
					111.00	112.00	1.00	410	410	SC
					117.75	118.50	0.75	333	250	С
BEW0192	471416	6488326	120	127	101.50	102.50	1.00	640	640	С
					96.25	96.75	0.50	293	147	SC
BEW0193	471356	6488416	119	127	98.25	99.75	1.50	769	1,154	CS
PEAAOT22	7/1330	0-100-10	113	12/	110.25	111.50	1.25	772	965	SC
					119.00	119.50	0.50	587	294	SC
BEW0194	471385	6488386	119	133	99.25	99.75	0.50	1,579	790	С
DE VV OI 34	7/1303	0-00300	113	133	108.75	111.25	2.50	2,064	5,160	SC

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					71.75	72.50	0.75	670	503	S
BEW0195	471414	6488357	120	127	97.25	97.75	0.50	305	153	SC
					107.50	109.75	2.25	1,119	2,518	SC
BEW0196	471446	6488326	120	127	97.25	97.75	0.50	526	263	CS
BLW0190	471440	0488320	120	127	101.50	102.00	0.50	521	261	SC
BEW0197	471385	6488417	119	133	97.50	100.00	2.50	1,144	2,860	S
BEWOIST	471383	0400417	119	133	110.00	111.50	1.50	883	1,325	SC
BEW0198	471415	6488386	120	127	96.50	97.00	0.50	443	222	SC
BEWOIS	471413	0400300	120	127	99.25	100.00	0.75	2,044	1,533	SC
					83.75	84.25	0.50	275	138	С
					98.50	99.25	0.75	651	488	С
BEW0199 **	471385	6488445	119	133	102.00	102.50	0.50	424	212	С
					108.00	110.50	2.50	591	1,478	SC
					117.25	118.50	1.25	358	448	CS
					96.75	97.25	0.50	298	149	S
BEW0200	471415	6488416	119	133	101.25	102.50	1.25	341	426	SC
					109.75	111.25	1.50	1,828	2,742	CS
					96.75	97.25	0.50	313	157	SC
BEW0201	471445	6488385	120	127	100.75	101.25	0.50	2,031	1,016	CS
52476261	172113	0 100303	120	12,	105.50	106.00	0.50	963	482	CS
					108.75	109.25	0.50	699	350	CS
BEW0202	471475	6488357	120	127	100.50	101.00	0.50	979	490	S
BEW0203	471445	6488415	120	127	96.75	100.50	3.75	534	2,003	S
		0.00.120			108.25	109.25	1.00	672	672	SC
BEW0204	471475	6488387	120	125	99.50	100.25	0.75	1,108	831	S
		0.00007			104.50	107.00	2.50	525	1,313	S
					86.25	86.75	0.50	344	172	С
BEW0205	471450	6488446	119	127	100.00	100.50	0.50	1,123	562	С
22110203		0.00110		,	102.50	103.00	0.50	318	159	CS
					108.25	109.00	0.75	1,001	751	С
					92.75	93.25	0.50	386	193	S
BEW0206	471475	6488417	120	125	100.50	101.50	1.00	429	429	С
					111.00	111.50	0.50	910	455	SC
BEW0207	471506	6488385	120	127	101.75	102.50	0.75	1,040	780	CS

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
BEW0208	471297	6488212	123	127	101.75	104.75	3.00	267	801	CS
BEVVU2U6	4/129/	0400212	123	127	105.75	111.00	5.25	932	4,893	SC
					89.00	89.50	0.50	263	132	С
BEW0209	471336	6488197	121	127	101.25	104.25	3.00	1,065	3,195	S
					107.50	110.25	2.75	841	2,313	SC
					99.75	100.50	0.75	275	206	S
BEW0210	471320	6488227	120	121	104.75	105.25	0.50	287	144	С
					108.25	110.25	2.00	1,562	3,124	S
					101.25	102.00	0.75	605	454	CS
BEW0211 **	471306	6488260	120	122	106.00	106.75	0.75	685	514	S
					108.75	109.50	0.75	559	419	S
BEW0212	471342	6488241	120	121	101.00	102.25	1.25	648	810	SC
BLWUZIZ	471342	0400241	120	121	106.50	110.75	4.25	553	2,350	SC
					82.75	84.50	1.75	672	1,176	S
BEW0213	471332	6488271	120	127	88.25	88.75	0.50	748	374	С
					101.25	101.75	0.50	768	384	CS
BEW0214	471236	6488401	119	121	109.50	111.00	1.50	1,851	2,777	SC
					79.50	82.25	2.75	555	1,526	S
BEW0215	471265	6488372	119	121	102.00	102.50	0.50	370	185	CS
					110.50	111.00	0.50	580	290	CS
					99.50	100.25	0.75	730	548	С
BEW0216 **	471293	6488341	120	121	102.25	103.00	0.75	509	382	С
					109.50	111.75	2.25	480	1,080	CS
					87.00	87.50	0.50	538	269	С
BEW0217	471322	6488304	120	127	103.50	106.25	2.75	361	993	SC
					109.50	110.75	1.25	989	1,236	SC
					87.25	88.00	0.75	374	281	С
BEW0218	471355	6488280	120	122	98.75	102.00	3.25	504	1,638	S
					106.25	108.00	1.75	1,289	2,256	SC
BEW0219	471264	6488402	119	115	79.50	81.75	2.25	779	1,753	SC
DLWUZIS	4/1204	0400402	113	113	98.50	99.00	0.50	352	176	SC
BEW0220	471296	6488371	119	115	96.75	98.25	1.50	408	612	SC
DLWUZZU	4/1290	04003/1	113	113	101.25	101.75	0.50	432	216	CS

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					99.25	100.50	1.25	398	498	S
DEW/0221	471224	6499220	120	121	103.50	104.00	0.50	350	175	С
BEW0221	471324	6488339	120	121	108.50	109.00	0.50	630	315	CS
					110.75	111.25	0.50	568	284	CS
BEW0222	471352	6488310	120	122	98.50	102.25	3.75	1,136	4,260	S
BLWVOZZZ	471332	0486310	120	122	105.75	106.75	1.00	363	363	SC
BEW0223	471265	6488431	118	121	98.50	99.00	0.50	472	236	С
BLW0223	471203	0400431	110	121	108.25	111.00	2.75	1,301	3,578	SC
					77.00	77.50	0.50	368	184	SC
BEW0224	471295	6488401	119	114	79.75	80.25	0.50	419	210	SC
BEW0224	471233	0400401	113	114	82.00	82.50	0.50	668	334	SC
					97.00	99.25	2.25	360	810	S
					79.75	80.25	0.50	301	151	S
BEW0225	471325	6488371	119	127	97.50	100.00	2.50	330	825	S
BLWUZZS	471323	0488371	119	127	109.75	111.25	1.50	1,117	1,676	SC
					121.50	122.00	0.50	557	279	CS
BEW0226	471351	6488341	120	121	97.25	101.00	3.75	800	3,000	S
BEWUZZO	471551	0400341	120	121	108.75	109.25	0.50	423	212	CS
					82.75	83.25	0.50	519	260	SC
BEW0227	471385	6488311	120	121	97.00	97.50	0.50	362	181	SC
BEVVU227	4/1303	0400311	120	121	100.50	101.00	0.50	609	305	С
					111.25	111.75	0.50	339	170	С
					78.25	81.50	3.25	705	2,291	S
BEW0228 **	471296	6488433	119	121	97.25	99.00	1.75	531	929	SC
BLWUZZ8	471290	0466433	119	121	102.00	102.75	0.75	425	319	С
					108.00	110.50	2.50	1,084	2,710	CS
DEMOSSO	47122E	6488404	110	121	97.00	101.00	4.00	400	1,600	S
BEW0229	471325	6488404	119	121	109.50	110.00	0.50	581	291	S
DEMOSSO	4712E4	6499270	110	121	97.75	102.00	4.25	584	2,482	S
BEW0230	471354	6488370	119	121	110.75	111.50	0.75	789	592	CS
					97.50	98.25	0.75	1,063	797	S
BEW0231	471380	6488341	120	122	100.50	101.25	0.75	661	496	S
					110.25	111.00	0.75	475	356	S

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					96.00	98.50	2.50	506	1,265	SC
BEW0232	471283	6488503	118	121	106.25	106.75	0.50	295	148	С
					109.25	109.75	0.50	308	154	CS
					79.00	80.25	1.25	285	356	S
BEW0233	471295	6488461	119	121	97.00	98.00	1.00	836	836	SC
					99.75	100.25	0.50	383	192	С
					98.75	99.50	0.75	600	450	С
BEW0234	471325	6488435	119	121	103.25	103.75	0.50	562	281	С
					108.50	110.50	2.00	448	896	SC
					97.25	97.75	0.50	305	153	CS
BEW0236	471382	6488368	120	121	100.00	100.75	0.75	1,722	1,292	S
BLWO230	471382	0400300	120	121	104.00	105.25	1.25	1,050	1,313	S
					110.25	111.75	1.50	726	1,089	SC
BEW0237	471408	6488340	120	121	100.75	102.50	1.75	724	1,267	S
BLW0237	471408	0488340	120	121	109.25	111.25	2.00	3,493	6,986	SC
					94.75	95.25	0.50	358	179	SC
BEW0238	471307	6488493	118	121	97.25	97.75	0.50	1,501	751	S
BLW0238	4/130/	0466433	110	121	107.25	108.00	0.75	664	498	CS
					110.25	110.75	0.50	900	450	SC
BEW0239	471355	6488432	119	121	99.25	99.75	0.50	1,027	514	С
BLVV0233	471333	0400432	113	121	110.00	110.75	0.75	478	359	SC
BEW0240 **	471383	6488401	119	121	96.75	99.75	3.00	436	1,308	S
BEWOZ40	471303	0400401	113	121	109.25	111.25	2.00	503	1,006	SC
					73.25	73.75	0.50	417	209	SC
BEW0241	471317	6488527	118	115	77.00	78.25	1.25	256	320	SC
BEVV0241	471317	0400327	110	113	107.50	108.00	0.50	374	187	CS
					109.75	110.50	0.75	547	410	SC
					78.75	80.50	1.75	1,250	2,188	S
BEW0242	471332	6488485	118	121	97.50	98.00	0.50	504	252	S
					108.50	110.25	1.75	5,823	10,190	S
					98.25	98.75	0.50	1,064	532	С
BEW0243	471357	6488461	119	121	102.50	103.00	0.50	396	198	SC
					108.50	109.00	0.50	491	246	SC

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					94.50	95.25	0.75	571	428	SC
BEW0244	471386	6488430	119	121	98.50	99.00	0.50	594	297	С
					109.50	110.75	1.25	729	911	CS
					100.00	100.75	0.75	551	413	SC
BEW0245	471415	6488400	119	121	108.50	109.00	0.50	572	286	SC
					110.00	110.50	0.50	485	243	CS
					81.50	82.00	0.50	448	224	S
BEW0246	471392	6488457	119	121	98.50	99.00	0.50	1,048	524	SC
					108.25	110.25	2.00	1,175	2,350	SC
					96.50	100.25	3.75	450	1,688	S
BEW0247	471419	6488424	119	120	108.50	111.25	2.75	925	2,544	SC
					116.25	116.75	0.50	264	132	SC
					70.00	70.75	0.75	533	400	SC
					81.25	81.75	0.50	589	295	С
BEW0248	471392	6488479	119	121	97.50	98.50	1.00	532	532	CS
					100.50	101.25	0.75	661	496	CS
					109.25	110.25	1.00	559	559	CS
BEW0249	471423	6488451	119	127	99.25	99.75	0.50	763	382	CS
BL VV 0249	471423	0488431	119	127	109.75	110.50	0.75	271	203	SC
					78.50	79.25	0.75	329	247	SC
					86.50	87.00	0.50	503	252	С
BEW0250	471454	6488420	120	121	99.50	102.00	2.50	304	760	S
					102.75	103.25	0.50	318	159	С
					108.75	109.75	1.00	407	407	С
BEW0251	471459	6488458	119	133	98.00	100.25	2.25	626	1,409	S
BE WO231	471433	0400430	113	155	108.00	108.50	0.50	1,050	525	S
BEW0252	471460	6488498	119	121	108.00	108.50	0.50	657	329	SC
					85.75	86.75	1.00	280	280	С
BEW0253	471484	6488477	119	115	102.00	102.75	0.75	1,781	1,336	С
					107.75	108.50	0.75	994	746	SC
BEW0254	471502	6488455	120	121	99.75	100.25	0.50	627	314	С
					89.00	89.50	0.50	320	160	SC
					99.25	100.00	0.75	279	209	S
BEW0255	471502	6488497	119	121	101.75	102.25	0.50	546	273	С
					107.00	107.75	0.75	1,206	905	С
					116.75	117.75	1.00	437	437	SAP

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					89.00	89.50	0.50	320	160	SC
					99.25	100.00	0.75	279	209	S
BEW0255	471502	6488497	119	121	101.75	102.25	0.50	546	273	С
					107.00	107.75	0.75	1,206	905	С
					116.75	117.75	1.00	437	437	SAP
BEW0256	471525	6488477	120	115	99.75	100.50	0.75	780	585	S
DE W0230	471323	0400477	120	113	109.75	110.50	0.75	431	323	SC
					84.50	85.00	0.50	344	172	CS
					93.00	93.75	0.75	323	242	S
BEW0258	471545	6488497	120	115	100.75	103.25	2.50	2,422	6,055	S
					104.00	105.00	1.00	275	275	С
					105.50	106.00	0.50	2,160	1,080	S
					79.00	80.75	1.75	328	574	S
					84.75	85.25	0.50	276	138	CS
BEW0259	471296	6488445	119	127	97.00	98.25	1.25	463	579	S
					109.25	110.75	1.50	1,017	1,526	SC
					119.75	120.25	0.50	486	243	С
					96.50	100.75	4.25	649	2,758	S
BEW0260	471325	6488416	119	127	110.25	111.00	0.75	825	619	SC
					121.25	122.50	1.25	1,080	1,350	CS
BEW0261	471267	6488506	118	127	108.25	110.25	2.00	2,800	5,600	SC
					95.50	97.25	1.75	571	999	S
BEW0262	471296	6488477	118	127	107.50	110.75	3.25	500	1,625	SC
					117.50	118.25	0.75	551	413	SAP
					80.50	81.00	0.50	428	214	С
					82.50	83.00	0.50	278	139	SC
BEW0263	471326	6488447	119	127	95.50	96.00	0.50	914	457	S
22110203	1, 1320	0.00447	113		101.00	101.50	0.50	458	229	С
					108.50	109.75	1.25	696	870	SC
					117.25	118.25	1.00	384	384	SC
BEW0264	471296	6488506	118	127	96.50	98.00	1.50	1,064	1,596	CS
DL ** 0207	77 1230	0-100300	110	121	108.25	109.75	1.50	2,330	3,495	S
BEW0265	471325	6488476	118	127	78.25	80.75	2.50	682	1,705	SC

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	.94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					84.00	85.25	1.25	409	511	SC
					94.50	95.00	0.50	386	193	CS
BEW0266	471356	6488447	119	133	98.50	99.25	0.75	483	362	CS
					101.25	101.75	0.50	346	173	CS
					109.50	110.00	0.50	492	246	SC
BEW0267	471296	6488536	118	127	100.25	100.75	0.50	498	249	S
DEMOSES	471222	C400F14	110	127	98.50	99.00	0.50	342	171	С
BEW0268	471332	6488514	118	127	108.00	109.75	1.75	1,831	3,204	SC
					80.50	81.00	0.50	466	233	S
					97.50	98.25	0.75	774	581	S
BEW0269	471356	6488477	118	127	100.25	100.75	0.50	448	224	С
BEW0209	4/1350	0488477	118	127	106.00	109.25	3.25	577	1,875	SC
					115.50	116.00	0.50	270	135	С
					117.75	120.25	2.50	950	2,375	SC
					86.00	86.50	0.50	272	136	CS
BEW0270	471354	6488507	118	127	97.75	98.25	0.50	494	247	С
					107.75	109.50	1.75	1,877	3,285	S
BEW0271	471451	6488488	119	103	98.75	99.25	0.50	903	452	CS
DEW/0272	471422	6400470	110	107	98.75	99.25	0.50	1,585	793	CS
BEW0272	471423	6488479	119	107	102.25	102.75	0.50	417	209	С
					80.75	83.00	2.25	288	648	S
DEW/0272	471206	6488469	110	109	93.50	94.00	0.50	421	211	S
BEW0273	471396	0488409	119	109	97.75	98.25	0.50	778	389	CS
					101.00	101.50	0.50	400	200	С
DEW/0274	471269	C4004FF	110	100	82.75	84.50	1.75	363	635	S
BEW0274	471368	6488455	119	109	98.75	99.25	0.50	1,560	780	CS
					80.50	82.75	2.25	349	785	SC
BEW0275	471342	6488440	119	109	99.25	100.00	0.75	667	500	S
					101.50	103.25	1.75	403	705	S
BEW0276	471313	6488434	119	103	96.00	99.25	3.25	373	1,212	CS
					77.25	80.50	3.25	550	1,788	S
BEW0277	471295	6488408	119	109	82.25	83.00	0.75	685	514	CS
					97.25	99.25	2.00	620	1,240	SC
BEW0278	471265	6488404	119	103	79.50	81.75	2.25	587	1,321	S
BEW0279	471241	6488387	119	103	82.00	82.50	0.50	286	143	S
BEW0280	471217	6488368	119	109	80.25	81.00	0.75	333	250	S

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
DEM/0204	471100	6400360	110	100	81.25	82.75	1.50	255	383	S
BEW0281	471188	6488360	119	109	97.50	98.00	0.50	467	234	S
BEW0282	471161	6488350	119	103	78.50	79.25	0.75	393	295	S
BEW0283	471132	6488339	119	103		٨	lo significa	nt intercept	s	
BEW0284	471102	6488331	119	103	81.50	84.25	2.75	250	688	S
BEW0285	471050	6488304	119	103	80.50	82.25	1.75	368	644	S
BEW0286	471021	6488293	119	103	80.75	82.75	2.00	289	578	S
BEWU200	4/1021	0466293	119	103	96.00	96.50	0.50	296	148	CS
BEW0287	471171	6488236	120	103	83.50	84.25	0.75	428	321	S
BEW0288	471178	6488267	120	103		۸	lo significa	nt intercept	s	
BEW0289	471202	6488285	120	103	81.50	83.50	2.00	573	1,146	S
					76.75	77.25	0.50	466	233	CS
BEW0290	471418	6488447	119	127	99.00	99.75	0.75	687	515	SC
					108.75	110.75	2.00	623	1,246	SC
BEW0291	471418	6488475	119	127	98.25	98.75	0.50	1,829	915	С
BL W0291	471416	0488473	119	127	110.00	110.50	0.50	434	217	SC
					99.50	100.00	0.50	1,430	715	С
					101.50	102.00	0.50	260	130	С
BEW0292	471446	6488475	119	127	103.50	104.50	1.00	349	349	SC
					109.00	109.75	0.75	997	748	S
					110.25	111.25	1.00	289	289	С
BEW0293	471446	6488501	119	127	108.00	108.50	0.50	916	458	С
BEW0294	471480	6488473	119	127	102.00	102.75	0.75	829	622	CS
DL VVOZ 54	471400	0400473	113	127	109.00	109.75	0.75	1,050	788	CS
					99.25	100.00	0.75	775	581	CS
BEW0295	471477	6488500	119	127	107.50	108.00	0.50	324	162	CS
					115.75	116.50	0.75	269	202	CS
BEW0296	471475	6488527	119	127	110.25	110.75	0.50	844	422	S
					104.75	105.25	0.50	440	220	С
BEW0297	471508	6488501	119	127	107.50	108.00	0.50	1,001	501	С
					117.75	118.25	0.50	440	220	С
					77.75	78.50	0.75	282	212	SC
					85.50	86.50	1.00	316	316	SC
BEW0298	471540	6488470	120	127	99.75	101.75	2.00	350	700	SC
					104.75	105.25	0.50	548	274	SC
					109.75	110.50	0.75	440	330	С

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGAS	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
BEW0299	471505	6488529	119	127	110.00	110.50	0.50	909	455	S
BE W 0299	471505	0488529	119	127	116.00	116.50	0.50	718	359	S
					92.00	92.50	0.50	397	199	S
BEW0300	471538	6488499	120	127	99.25	101.75	2.50	1,591	3,978	S
DE WOOO	471338	0400433	120	127	104.00	106.00	2.00	721	1,442	S
					107.75	108.50	0.75	1,348	1,011	CS
					78.00	78.50	0.50	327	164	С
BEW0301	471504	6488555	120	127	81.00	82.00	1.00	357	357	С
DEWOSOI	471304	0400333	120	127	92.00	92.50	0.50	333	167	С
					116.50	117.75	1.25	770	963	С
BEW0302	471538	6488530	119	127	101.50	102.25	0.75	338	254	SC
DEWOSOZ	471330	0400330	113	127	105.75	108.25	2.50	1,531	3,828	SC
					94.25	94.75	0.50	346	173	S
BEW0303	471567	6488500	120	127	103.00	104.00	1.00	1,206	1,206	S
DEWOSOS	471307	0400300	120	127	105.00	105.50	0.50	394	197	С
					107.75	108.25	0.50	620	310	S
BEW0304	471536	6488557	119	127	91.75	92.50	0.75	348	261	S
DE W0304	471330	0400337	113	127	108.50	109.25	0.75	1,142	857	С
BEW0305	471566	6488530	119	127	100.75	101.75	1.00	2,590	2,590	SC
DEWOSOS	471300	0400330	113	127	106.00	108.25	2.25	1,248	2,808	S
					97.75	98.50	0.75	262	197	S
BEW0306	471535	6488585	119	127	99.50	101.25	1.75	264	462	С
DEWOSOO	471333	0400303	113	127	108.50	110.25	1.75	446	781	CS
					114.75	116.50	1.75	492	861	CS
					86.25	86.75	0.50	399	200	SC
BEW0307	471568	6488559	119	127	104.75	105.25	0.50	393	197	С
					113.25	114.00	0.75	960	720	С
BEW0308	471597	6488529	120	127	99.50	101.00	1.50	2,501	3,752	S
					80.50	81.75	1.25	368	460	S
BEW0309	471566	6488586	119	127	92.00	93.00	1.00	290	290	S
DEVVOJOS	7/1300	0-00500	113	12/	109.75	110.25	0.50	526	263	CS
					115.75	117.00	1.25	480	600	С
BEW0310	471597	6488557	119	133	100.25	101.75	1.50	337	506	SC
BEW0311	471567	6488614	119	127		٨	lo significa	nt intercept	S	

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					90.50	91.00	0.50	267	134	S
BEW0312	471597	6488585	119	127	95.50	96.25	0.75	365	274	С
BLW0312	471397	0486383	119	127	104.00	105.75	1.75	300	525	С
					108.00	108.75	0.75	386	290	S
BEW0313	471625	6488557	120	127	96.00	96.75	0.75	647	485	SC
DEWOSIS	471023	0400337	120	127	101.00	101.50	0.50	1,803	902	S
					91.00	92.50	1.50	350	525	S
BEW0314	471625	6488585	119	127	100.25	101.00	0.75	591	443	С
					102.25	103.50	1.25	273	341	CS
BEW0315	471628	6488614	119	127	108.25	108.75	0.50	2,029	1,015	CS
DEWOOJIS	471020	0400014	113	127	113.50	114.75	1.25	599	749	С
BEW0316	471653	6488580	119	127	101.75	102.25	0.50	512	256	С
BLW0310	471033	0488380	113	127	104.50	105.00	0.50	314	157	С
BEW0317	471657	6488615	119	127	93.75	94.25	0.50	634	317	S
DLW0317	471037	0400013	113	127	103.00	103.50	0.50	272	136	S
BEW0318	471657	6488650	119	127	115.00	115.75	0.75	816	612	С
BEW0319	471687	6488619	119	127	106.75	107.25	0.50	1,194	597	S
BEW0320	471688	6488650	119	127		٨	lo significa	nt intercept:	s	
BEW0321	471688	6488680	118	127	102.25	102.75	0.50	325	163	CS
DLWUJZI	471000	0488080	110	127	114.50	115.00	0.50	761	381	CS
BEW0322	471717	6488650	119	127	107.75	111.00	3.25	3,561	11,573	S
DLWVOJZZ	471717	0488030	113	127	113.00	113.50	0.50	692	346	SAP
BEW0323	471718	6488680	118	127	101.50	102.00	0.50	764	382	SC
DEWOJZJ	471710	040000	110	127	114.75	115.25	0.50	765	383	С
BEW0324	471718	6488710	118	127	89.25	90.00	0.75	543	407	S
BEW0325	471748	6488680	118	127	111.00	114.50	3.50	617	2,160	S
BEW0326	471776	6488650	118	127	102.00	102.50	0.50	495	248	SAP
BEW0327	471748	6488710	118	127	115.25	115.75	0.50	390	195	S
BEW0328	471778	6488679	118	127	108.00	108.75	0.75	651	488	SC
BEW0329	471748	6488741	118	127		۸	lo significa	nt intercept:	s	
BEW0330	471778	6488709	118	127	100.50	101.00	0.50	386	193	С
BEW0331	471808	6488680	119	127	101.00	101.75	0.75	802	602	CS
BEW0332	471777	6488740	118	127	78.00	78.50	0.50	335	168	SC
BEW0333	471778	6488770	110	127	115.00	115.50	0.50	934	467	CS
DL VV USSS	4/1//0	0400770	118	127	116.75	117.50	0.75	630	473	С

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp lith
	MGA	\94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	iitn
					83.50	84.00	0.50	352	176	SC
					85.00	86.25	1.25	263	329	S
BEW0334	471807	6488739	119	127	108.50	109.00	0.50	357	179	С
					113.00	114.25	1.25	1,162	1,453	S
					115.75	119.50	3.75	352	1,320	SC
BEW0335	471352	6488539	118	127	93.00	93.50	0.50	853	427	SC
DEW0226	471202	6488509	110	127	106.50	107.50	1.00	536	536	С
BEW0336	471382	0488309	118	127	108.00	108.75	0.75	615	461	SC
DEM/0240	471545	C4004FF	120	121	100.25	100.75	0.50	903	452	С
BEW0340	471545	6488455	120	121	109.00	109.50	0.50	263	132	CS
BEW0341	471256	6488402	110	121	110.50	111.25	0.75	1,568	1,176	SC
BEW0341	471356	0488402	119	121	111.25	112.00	0.75	873	655	С
BEW0342	471354	6488540	118	127	108.75	109.50	0.75	859	644	С
					96.75	98.75	2.00	787	1,574	S
DEW(0242	471446	6400410	110	127	100.25	101.00	0.75	995	746	С
BEW0343	471446	6488418	119	127	102.50	103.00	0.50	444	222	CS
					108.75	109.50	0.75	402	302	С

Values are reported above the nominal 250ppm pU_3O_8 cutoff grade, 0.5m minimum interval thickness and maximum 1m internal dilution. Results below 250ppm are considered unreliable and this cut-off value is used for calculating uranium intersections. All results reported as PFN-derived pU_3O_8 in the above table unless otherwise indicated.

All holes were drilled vertically (-90° inclination and 0° azimuth).

^{**} Denotes intercept calculated using uranium equivalent eU₃O₈

APPENDIX 1 – Table 2: Current drill results (East Kalkaroo delineation drilling)

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp lith
	MGAS)4, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	iidi
					80.50	83.50	3.00	501	1,503	S
BIF0327	470556	6488029	120	120	103.00	104.00	1.00	463	463	С
					106.25	108.25	2.00	379	758	SC
BIF0328	470530	6488024	120	132	80.50	85.25	4.75	893	4,242	S
BIFU328	470330	0488024	120	132	105.75	107.50	1.75	861	1,507	SC
BIF0329	470566	6488060	120	132	100.75	101.25	0.50	488	244	С
Bii 0323	470300	0488000	120	132	106.75	107.25	0.50	1,606	803	С
BIF0330	470566	6488090	120	132	95.00	95.50	0.50	408	204	SC
Bii 0330	470300	0488030	120	132	107.00	107.50	0.50	843	422	С
BIF0331	470515	6488044	120	132	106.75	107.25	0.50	1,839	920	S
Bii 0331	470313	0488044	120	132	117.75	118.50	0.75	575	431	SC
					80.00	81.75	1.75	588	1,029	S
BIF0332	470509	6488013	120	132	101.25	101.75	0.50	444	222	С
					107.75	108.25	0.50	1,066	533	SC
					81.00	81.50	0.50	384	192	SC
BIF0333	470471	6488006	120	132	108.00	108.50	0.50	1,041	521	SC
					114.50	117.00	2.50	466	1,165	SC
					101.50	102.00	0.50	351	176	С
BIF0334	470446	64888031	120	132	110.00	110.50	0.50	1,189	595	С
					112.25	112.75	0.50	577	289	SC
					81.00	82.00	1.00	362	362	S
BIF0335	470421	6488015	121	132	102.00	103.75	1.75	324	567	CS
					107.00	107.50	0.50	1,339	670	CS
					82.75	85.75	3.00	405	1,215	SC
BIF0336	470489	6487986	120	132	105.25	105.75	0.50	977	489	S
					108.50	109.00	0.50	1,874	937	С
					82.25	84.75	2.50	301	753	S
BIF0337	470461	6487967	121	132	109.50	110.00	0.50	1,379	690	SC
					118.75	119.25	0.50	545	273	SC
					81.50	82.00	0.50	313	157	S
BIF0338	470396	6487978	121	132	101.75	102.25	0.50	598	299	С
2 3330	1,70000	0.07570		152	108.50	109.00	0.50	1,507	754	С
					115.50	116.00	0.50	782	391	SC
BIF0339	470388	6487954	121	132	108.50	109.00	0.50	2,051	1,026	С

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGAS	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					80.50	81.00	0.50	634	317	SC
BIF0340	470517	6487978	120	132	101.00	101.50	0.50	862	431	С
					108.00	108.50	0.50	1,944	972	С
BIF0341	470495	6487958	120	132	108.50	109.25	0.75	1,847	1,385	С
DJ502.42	470470	6407044	121	422	87.00	88.00	1.00	540	540	С
BIF0342	470478	6487944	121	132	107.50	108.00	0.50	1,083	542	С
BIF0343	470456	6487920	121	132	108.50	109.00	0.50	1,873	937	С
					108.25	109.00	0.75	1,465	1,099	SC
BIF0344	470492	6487920	121	133	113.00	113.50	0.50	438	219	С
					118.50	119.50	1.00	325	325	S
					96.50	97.00	0.50	378	189	С
					102.50	103.00	0.50	1,346	673	SC
BIF0345	470435	6487869	121	133	109.50	110.00	0.50	447	224	С
					119.75	120.50	0.75	445	334	С
					123.00	124.00	1.00	292	292	SAP
					93.00	93.50	0.50	309	155	S
BIF0346	470426	C407017	121	122	96.00	97.00	1.00	346	346	CS
BIFU346	470436	6487817	121	133	100.00	102.50	2.50	1,193	2,983	SC
					107.00	110.00	3.00	433	1,299	SC
					96.75	97.25	0.50	304	152	CS
DIF02.47	470422	C407704	121	122	101.75	102.25	0.50	482	241	S
BIF0347	470432	6487794	121	133	105.00	107.25	2.25	315	709	S
					108.75	109.25	0.50	1,233	617	S
					92.25	92.75	0.50	440	220	sc
BIF0348 **	470394	6487799	122	133	106.00	108.50	2.50	581	1,453	SC
					110.75	111.50	0.75	1,251	938	С
BIF0349 **	470610	6487955	120	133	101.25	103.25	2.00	868	1,736	SC
BIF0349 · ·	470610	0487955	120	133	109.50	110.50	1.00	859	859	С
					100.50	104.00	3.50	595	2,083	SC
BIF0350 **	470613	6487916	120	133	107.75	108.25	0.50	323	162	S
					112.00	113.75	1.75	698	1,222	SC
					101.25	101.75	0.50	1,797	899	С
BIF0351	470557	6487959	120	133	105.25	105.75	0.50	321	161	SC
					107.50	108.00	0.50	1,134	567	С
					98.75	101.50	2.75	292	803	S
BIF0352 **	470555	6487912	120	133	102.75	103.50	0.75	1,065	799	CS
					106.50	108.25	1.75	1,160	2,030	SC

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
BIF0353 **	470559	6487882	121	133	108.50	109.50	1.00	1,129	1,129	CS
DIFUSSS **	470559	0407002	121	155	112.50	114.25	1.75	279	488	CS
BIF0354 **	470560	6487825	121	133	103.75	105.00	1.25	668	835	SC
Bii 0354	470300	0467623	121	133	109.25	110.25	1.00	1,063	1,063	CS
BIF0355	470523	6487825	121	133	103.50	106.00	2.50	471	1,178	CS
	170323	0107023		100	108.50	109.00	0.50	2,215	1,108	С
					96.25	96.75	0.50	870	435	С
BIF0356	470503	6487791	121	133	100.00	102.75	2.75	400	1,100	CS
					108.75	109.25	0.50	1,169	585	С
					108.50	109.25	0.75	1,631	1,223	С
BIF0357	470429	6487978	121	133	119.75	120.50	0.75	4,167	3,125	S
					120.50	121.75	1.25	772	965	SAP
					92.75	93.50	0.75	362	272	CS
BIF0358	470471	6487893	121	133	101.75	102.50	0.75	1,018	764	CS
2 0000		0.07000			105.75	107.50	1.75	331	579	S
					108.50	109.00	0.50	1,083	542	SC
					93.50	94.00	0.50	1,044	522	CS
BIF0359	470371	6487740	122	133	99.75	101.25	1.50	318	477	S
					103.00	105.00	2.00	444	888	С
BIF0360	470379	6487775	122	133	105.50	106.75	1.25	624	780	С
					109.75	110.25	0.50	1,001	501	С
					94.25	94.75	0.50	288	144	CS
BIF0361	470352	6487756	122	134	96.50	97.75	1.25	267	334	S
					103.25	104.25	1.00	770	770	С
					97.00	97.50	0.50	1,435	718	SC
BIF0362	470557	6487777	121	133	98.25	99.75	1.50	652	978	SC
					102.00	103.00	1.00	769	769	CS
					108.25	109.00	0.75	1,287	965	CS
BIF0363	470572	6487795	121	133	106.50	107.00	0.50	573	287	CS
					109.00	110.00	1.00	1,759	1,759	SC
BIF0364	470307	6487750	122	134	104.00	104.75	0.75	763	572	С
BIF0365	470617	6487763	121	134	111.25	113.25	2.00	2,054	4,108	SC
					101.75	102.50	0.75	481	361	С
BIF0366 **	470619	6487715	121	133	110.50	113.00	2.50	683	1,708	SC
					115.50	116.00	0.50	1,380	690	SAP

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					93.00	93.50	0.50	289	145	SC
BIF0367	470373	6487862	122	134	102.75	103.25	0.50	534	267	С
					108.75	109.25	0.50	1,010	505	С
BIF0368	470632	6487692	121	133	103.00	103.50	0.50	277	139	С
					91.25	91.75	0.50	277	139	SC
BIF0369	470372	6487961	121	134	108.25	108.75	0.50	1,770	885	С
					120.25	120.75	0.50	382	191	cs
					89.75	90.25	0.50	918	459	С
BIF0370	470688	6487671	121	133	102.75	103.25	0.50	305	153	С
					112.00	112.50	0.50	345	173	CS
					98.75	99.25	0.50	477	239	S
					101.50	102.25	0.75	338	254	SC
BIF0371	470635	6487642	121	133	104.00	104.50	0.50	524	262	С
					111.50	114.00	2.50	803	2,008	S
DJ50272	470622	6407650	424	424	109.75	110.25	0.50	769	385	CS
BIF0372	470623	6487658	121	134	111.50	112.25	0.75	2,053	1,540	SC
BIF0373	470567	6487683	121	133	116.25	116.75	0.50	370	185	CS
ы 0373	470307	0467083	121	133	120.25	120.75	0.50	310	155	SC
BIF0374	470487	6488061	120	132	107.50	108.25	0.75	1,048	786	С
DII 0374	470407	0400001	120	132	114.75	115.25	0.50	669	335	S
BIF0375	470547	6487666	121	133	105.25	105.75	0.50	645	323	SC
BIF0376	470473	6488087	120	128	116.25	118.25	2.00	871	1,742	SC
BIF0377	470502	6487656	121	133	108.50	109.00	0.50	309	154	С
BIF0378	470505	6400142	120	127	113.25	115.25	2.00	460	920	CS
ЫГОЗ/8	470505	6488142	120	127	120.00	120.75	0.75	285	214	SAP
BIF0379	470630	6487782	121	133	109.00	109.75	0.75	898	674	С
DIFOSOO	470527	6400424	420	120	115.75	117.50	1.75	332	581	SC
BIF0380	470537	6488124	120	128	119.50	121.00	1.50	524	786	S
BIF0381	470620	6487807	121	133	109.00	110.50	1.50	250	375	CS
					106.25	106.75	0.50	491	246	S
BIF0382	470618	6487839	121	133	108.75	109.50	0.75	1,444	1,083	cs
BIF0383	470652	6487808	121	133	82.00	82.75	0.75	468	351	CS
					102.25	102.75	0.50	1,591	796	cs
BIF0384	470470	6487851	121	133	108.00	108.50	0.50	893	447	CS
					119.75	120.25	0.50	370	185	С
					83.00	83.50	0.50	306	153	С
BIF0385	470300	6487987	121	133	108.25	109.00	0.75	913	685	CS

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
BIF0386	470362	6488001	121	133	107.50	108.00	0.50	2,047	1,024	С
BIF0387	470375	6488020	121	133	101.25	102.00	0.75	1,261	946	С
DII 0307	470373	0488020	121	133	107.50	108.25	0.75	1,183	887	CS
BIF0388	470416	6488129	120	133	113.50	115.25	1.75	3,334	5,835	SC
DII 0300	470410	0488123	120	133	119.25	120.00	0.75	413	310	SAP
BIF0389	470818	6488139	120	134	101.00	102.25	1.25	295	369	SC
DII 0303	470010	0488133	120	134	110.00	110.50	0.50	933	467	S
BIF0390	470814	6488105	120	134	101.50	104.50	3.00	478	1,434	SC
Bii 0330	470014	0400103	120	134	108.50	109.00	0.50	991	496	С
					83.25	84.50	1.25	417	521	S
BIF0391	470818	6488004	121	134	85.75	86.25	0.50	503	252	CS
					102.00	102.50	0.50	819	410	SC
					114.75	115.25	0.50	1,390	695	CS
BIF0392	470433	6488156	120	133	117.00	117.75	0.75	1,515	1,136	CS
					119.25	120.25	1.00	523	523	SAP
BIF0393	470889	6487955	122	134	103.75	104.25	0.50	653	327	CS
BIF0394	470408	6487917	121	133	102.00	102.50	0.50	421	211	С
Bii 0334	470400	0407317	121	133	109.25	109.75	0.50	1,108	554	S
BIF0395	470933	6487979	122	134	85.25	85.75	0.50	374	187	С
Bii 0033	170333	0.07373	122	131	104.25	104.75	0.50	452	226	SC
					98.00	98.75	0.75	502	377	CS
BIF0396	470301	6487843	122	133	104.00	104.50	0.50	301	151	С
					110.50	111.00	0.50	1,339	670	CS
					83.50	85.75	2.25	323	727	SC
BIF0397	470888	6487986	121	134	99.00	99.75	0.75	382	287	S
Bii 0337	470000	0407300	121	154	102.00	102.50	0.50	1,009	505	С
					111.25	111.75	0.50	292	146	SAP
					102.75	103.25	0.50	571	286	С
BIF0398	470573	6487753	121	133	104.75	105.25	0.50	462	231	SC
					110.75	112.25	1.50	278	417	SC
					85.50	86.25	0.75	535	401	S
BIF0399	470864	6488004	121	134	86.75	87.25	0.50	797	399	С
Dil 0333	770004	0-100004	121	154	101.25	101.75	0.50	1,449	725	С
					107.50	108.25	0.75	754	566	S

	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
Hole ID	MGA	94, z54	(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	lith
					103.50	104.00	0.50	699	350	С
					105.50	106.00	0.50	582	291	С
BIF0400	470588	6487705	121	133	110.75	111.25	0.50	383	192	С
					112.00	112.75	0.75	1,126	845	S
					115.25	115.75	0.50	771	386	CS
					98.25	98.75	0.50	377	189	С
BIF0401 **	470839	6488028	121	132	100.75	101.75	1.00	1,266	1,266	С
BIF0401	470639	0488028	121	132	103.50	104.00	0.50	279	140	С
					109.00	109.75	0.75	1,061	796	CS
BIF0402 **	470652	6487710	121	133	101.75	102.50	0.75	416	312	С
BIF0402	470032	0487710	121	133	112.00	112.50	0.50	283	142	CS
					80.00	80.50	0.50	334	167	CS
BIF0403	471210	6488414	118	134	-	-	-	-	-	-
					-	-	-	-	-	-
5150101	4=0600	6.40=6.40	122	133	108.25	110.75	2.50	694	1,735	SC
BIF0404	470630	6487619	118	134			significant into	1		-
BIF0405	471214	6488436	110	154	110.25	110.75	0.50	966	483	CS
BIF0406	470417	6488100	120	133	114.25	114.75	0.50	1,135	568	S SAP
					117.50	118.50	1.00	836	836	SAP
BIF0407	471249	6488525	118	134	116 50	117.25	- 0.75		384	SC
511 0 107	1,1213	0.100323	110	131	116.50 123.00	117.25 123.50	0.75 0.50	512 846	423	SAP
								924	462	S
BIF0408	471248	6488486	118	134	104.50 107.25	105.00 109.25	0.50			CS
DII 0400	471240	0400400	110	154	110.75	111.50	2.00 0.75	407 741	814 556	C
DIE0400	470202	6400142	120	133	110.75	1		1	550	C
BIF0409	470393	6488143	120	133	114.00		significant into	1	252	5.0
BIF0410	470406	6488166	120	133	114.00	114.50	0.50	504	252	SC
BIF0411	471307	6488185	121	133	100.25	102.00	1 75	374	655	- S
5 0 +11	., 230,	0.00100				102.00	1.75			
					110.75	111.50	0.75	641	481	S
BIF0412	471275	6488482	121	134	99.50	100.00	0.50	280	140	CS
					109.75	110.50	0.75	610	458	CS
BIF0413	471340	6488166	121	127	105.00	105.50	0.50	838	419	SC S
50413	171340	0.00100	121	12,	107.25	107.75	0.50	297	149	
BIF0414	471235	6488448	212	134	110.00 110.75	110.75 111.25	0.75 0.50	469 896	352 448	SC C
BIF0415	471366	6488158	121	127	107.25	110.50	3.25	385	1,251	S

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA	\94, z54	(m)	(m)	(m)	(m) (m) (m) (ppm) (m.ppm)				lith
BIF0416	471396	6488152	121	127	105.25	108.50	3.25	683	2,220	SC
BIF0417	471596	6488462	120	128	99.50	100.75	1.25	404	505	SC
					83.75	84.50	0.75	341	256	SC
BIF0418	471424	6488138	120	127	107.75	109.00	1.25	1,260	1,575	S
BIF0419	471621	6488489	120	128		No sig	nificant int	ercepts		-
BIF0420	471456	6488123	120	127			nificant int	-		-
BIF0421	471603	6488514	120	128	91.00	91.50	0.50	570	285	SC
BIF0422	471504	6488103	120	127		No sig	nificant int	ercepts		-
	.=		100	100	103.50	106.50	3.00	2,072	6,216	S
BIF0423	471365	6488186	120	128	109.75	110.50	0.75	2,178	1,634	SC
BIF0424	471550	6488084	119	127	98.75	99.25	0.50	315	158	S
DIE0425 **	474204	6400470	120	430	102.25	104.75	2.50	915	2,288	S
BIF0425 **	471391	6488179	120	128	107.25	109.75	2.50	500	1,250	SC
					100.00	100.50	0.50	1,128	564	S
DIFO436	474267	6400240	420	427	103.75	104.50	0.75	847	635	SC
BIF0426	471367	6488248	120	0 127	106.75	108.50	1.75	376	658	SC
					109.75	110.25	0.50	508	254	CS
					102.75	103.50	0.75	440	330	SC
BIF0427 **	471390	6488205	120	128	107.25	108.00	0.75	333	250	S
					110.25	110.75	0.50	448	224	SC
DIF0430	474202	C40022C	120	427	85.50	86.00	0.50	352	176	S
BIF0428	471392	6488236	120	127	105.00	106.50	1.50	311	467	С
DIE0430	474 424	C400272	120	420	83.75	84.25	0.50	294	147	С
BIF0429	471431	6488272	120	128	105.50	106.00	0.50	1,142	571	CS
BIF0430	471450	6488300	120	128	98.50	99.00	0.50	385	193	S
ыго430	471430	0400300	120	128	101.75	102.50	0.75	1,836	1,377	CS
BIF0431	471414	6488223	120	128	109.95	110.51	0.56	359	201	CS
BIF0432	471483	6488237	120	128		No sig	nificant int	ercepts		ı
BIF0433	471477	6488310	120	128		No sig	nificant int	ercepts		ı
BIF0434	471446	6488162	120	127	83.75	85.00	1.25	328	410	SC
BIF0434	471446	6488162	120	127	83.75	85.00	1.25	328	410	SC
DIFU434	4/1440	0400102	120	127	107.50	110.25	2.75	2,555	7,026	S
					91.25	93.25	2.00	453	906	S
BIF0435	471495	6488431	120	134	98.00	98.75	0.75	1,072	804	SC
DIF0433	4/1433	0400431	120	134	100.25	100.75	0.50	986	493	CS
					123.50	124.25	0.75	367	275	SAP

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp
	MGA		(m)	(m) (m)		(m) (m) (m) (ppm) (m.ppm)				lith
BIF0436	471401	6488117	120	128	105.50	109.25	3.75	2,721	10,204	SC
BIF0437	471537	6488432	120	122	95.00	95.50	0.50	271	136	S
DII 0437	471337	0400432	120	122	104.25	107.75	3.50	4,470	15,645	S
BIF0438	471377	6488095	121	122	108.50	109.75	1.25	5,061	6,326	S
BIF0439	471572	6488422	120	117	99.44	100.80	1.36	449	611	SC
BIF0440	471729	6488628	119	116	99.62	100.75	1.13	2,117	2,393	SC
					78.00	79.00	1.00	587	587	CS
BIF0441	471303	6488321	119	128	83.00	84.00	1.00	511	511	С
2	., 2000	0.00011			100.25	101.75	1.50	479	719	CS
					110.50	111.00	0.50	371	186	CS
BIF0442	471764	6488632	118	110		No sigr	nificant int	ercepts		-
BIF0443	471782	6488609	119	110		No sigr	nificant int	ercepts	T	-
BIF0444	471746	6488661	118	122	109.50	111.00	1.50	293	440	S
BIF0445	471748	6488611	119	110		-				
BIF0446	471810	6488651	119	110	85.50	88.25	2.75	335	921	SC
		0.0000			100.50	101.25	0.75	2,563	1,922	S
BIF0447	471808	6488710	118	122	109.25	111.75	2.50	537	1,343	SC
					88.75	90.00	1.25	524	655	SC
BIF0448	471794	6488632	119	110	90.75	91.50	0.75	457	343	CS
					99.00	100.25	1.25	1,014	1,268	S
BIF0449	471764	6488632	118	122	111.25	114.00	2.75	2,587	7,114	S
					108.50	109.00	0.50	881	441	CS
BIF0450	470821	6488205	120	133	122.75	123.25	0.50	1,181	591	S
					124.75	125.25	0.50	973	487	S
BIF0451	471840	6488712	119	116	102.00	102.75	0.75	743	557	С
					109.50	110.25	0.75	396	297	CS
BIF0452	471265	6488557		134	112.00	113.00	1.00	832	832	CS
			118		117.50	118.00	0.50	1,533	767	CS
BIF0453	470837	6488243	120	127	108.25	109.00	0.75	1,258	944	SC
BIF0454	471345	6488137	121	122	91.75	92.25	0.50	522	261	С
					108.75	111.00	2.25	940	2,115	S
					100.75	101.50	0.75	412	309	С
BIF0455	470884	6488222	120	133	108.50	109.25	0.75	883	662	С
					115.50	116.00	0.50	1,232	616	С
BIF0456	471329	6488094	121	122	108.75	110.25	1.50	346	519	С

Hole ID	Easting	Northing	RL	ЕОН	From	То	Width	U3O8	Grade Thickness	Interp lith							
	MGA94, z54		(m)	(m)	(m)	(m)	(m)	(ppm)	(m.ppm)	IICII							
					83.00	85.75	2.75	1,117	3,072	S							
BIF0457	470840	C400055	C4000FF	121	127	96.00	96.75	0.75	627	470	SC						
ыго437	470640	6488055	121	127	101.50	102.50	1.00	1,928	1,928	С							
												108.50	109.75	1.25	698	873	CS
BIF0458	471301	6488038	121	116		No sig	gnificant int	ercepts		-							
DIE04E0	470016	470016	470016	470046	6400074	120			427	96.04	96.60	0.56	633	354	S		
BIF0459	470816	6488071	120	127	102.70	103.40	0.70	416	291	SC							
BIF0460	471353	6488075	121	122	109.25	110.25	1.00	591	591	SC							
DIFO4C1	471256	C40011F	121	122	87.00	87.50	0.50	399	200	S							
BIF0461	471356	6488115	121	122	92.25	92.75	0.50	456	228	С							

Values are reported above the nominal 250ppm pU_3O_8 cutoff grade, 0.5m minimum interval thickness and maximum 1m internal dilution. Results below 250ppm are considered unreliable and this cut-off value is used for calculating uranium intersections. All results reported as PFN-derived pU_3O_8 in the above table unless otherwise indicated.

All holes were drilled vertically (-90° inclination and 0° azimuth).

^{**} Denotes intercept calculated using uranium equivalent eU₃O₈

JORC Code, 2012 Edition – Table 1 Section 1 – Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 In-situ uranium grades were estimated from downhole geophysical logging of rotary mud drillholes using Prompt Fission Neutron (PFN) and natural gamma tools. The depth of investigation of the PFN tools at up to 40 cm from the drillhole annulus, and of gamma at up to 1 m mean that these tools sample much larger volumes of rock than would be the case with chip samples and conventional geochemistry. Hence are much more representative of the mineralisation than chip sampling. Tool calibration is discussed below under the section dealing with <i>Quality of assay data</i>.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Delineation drill holes (BIF series) utilise the mud rotary method and hole diameter of 5 5/8" (143 mm). Production wells (BEW series) also utilised the mud rotary method and were cased with PVC. These holes have a nominal hole diameter of 9" (230 mm).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill chips were collected every metre for geological logging purposes only. Recovery was not recorded, and no measures were taken to maximise recovery given that grade estimation is by wireline logging. Rotary mud chips are considered to be unreliable for grade estimation owing to significant contamination.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Quantitative geological information was derived from borehole magnetic resonance (BMR) logging. Qualitative logging of chip samples from rotary mud drilling is used as a check.
	Whether logging is qualitative or quantitative in nature. Core (or	BMR (and PFN) tools are only run through the mineralised Eyre Formation

Criteria	JORC Code explanation	Commentary					
	costean, channel, etc) photography.						
	 The total length and percentage of the relevant intersections logged. 						
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material 	Sub-sampling of utilised for uraniu	_		dertaken as	wireline log	
Quality of assay data and laboratory tests	 being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, 	 Grade estimation is primarily based on Prompt Fission Neutron (PF logging, considered to be a total analysis. The PFN tool is run at a logging speed of ~0.5 m/minute as the too withdrawn from the hole. Data are collected at 1 cm intervals. Four PFN (Prompt Fission Neutron) tools were used throughout t program (serial numbers 02, 08, 27 and 32). Calibrations were conduct at a facility managed by the Department of Water, Land and Biodivers Conservation in Adelaide, summarised below. 					
	duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Calibration Date	PFN02	PFN08	PFN27	PFN32	
		May-23		Х		Х	
		Feb-24	Х	Х		Х	
		Jul-24			Х	Х	
		Nov-24		Х	Х	Х	
		Sep-25			Х		
		Oct-25	Х				
		Nov-25	Х		Х		

ASX: BOE OTCQX: BQSSF www.bossenergy.com \time{\chi}@Boss_Energy

to monitor and correct for instrument drift.

Criteria	JORC Code explanation	Comr	mentary					
		 Several natural gamma sondes were also used during to calculate uranium equivalent eU₃O₈ grades. K-Factor a calibration factors were derived from the Adelaide calibra outlined in the below table. Daily checks were carried out gamma jigs. 						d dead time on facility as
		Calibration 4121 4149 6189					5141	3540
			Sep-22	Х		Х		
			Apr-23		Х			
			Jun-24				Х	
			Dec-24	Х	Х			Х
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Ptk ge th to U da Pf sp In m Gi in m Pt by in cc Pf (b	contributions from the cological time in the cological time in the separation of the cological time in the color in the cological time in the color in the	ion of decimal lead to cours, the or che uncertal ation (Source sed for graded and state of the uncertal ation (Source sed and state of the uncertal ation of the uncertal ation of the uncertainty's online adjusted ation factor	ay product o erroneous ore body is s inty of disect e: www.gect de estimatic able tool vo a being import PFN data are ny geologist calculated in tersections ny geologist plied in star rs and unde database. rage. to account - BHCF)	estimates as aid to be in quilibrium be instrument on if PFN date of the calculated ats. by the loggest are calculated ats. by the loggest are calculated ats. conditions and the calculated ats. for different different different different as a series as a series and a series and a series are calculated ats.	e source up of uranium of uranium of disequilibrity direct meatsinc.com/Pata were unaverified as the company within the orange contract of the company of th	ranium over grade. When ium. The PFN asurement of FN). Gamma available. being within y's database and ctor prior to database and dard) format during import tored on the

Criteria	JORC Code explanation	Commentary
.Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Locations of BIF series delineation holes and BEW series production wells were surveyed using a Trimble TDC600 DGPS (nominal horizontal accuracy of 0.1 m). RLs of current and historic holes are based on a 2022 LIDAR digital elevation model with vertical accuracy of ± 10 cm. Downhole surveys were not carried out as experience has shown that deviation of these vertical holes is minimal. The coordinate system is zone 54 of the MGA94 grid
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 A drill spacing of 40 x 20 m has been adopted for reporting of indicated resources with the larger spacing in the east-west direction. PFN and gamma-derived eU₃O₈ data (both new and historic) have been composited to 25cm intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All delineation and production holes were drilled vertically which provides an accurate intersection of the flat lying mineralised bodies.
Sample security	The measures taken to ensure sample security.	 As grade estimates are based on digital data there are no issues associated with the security of physical samples. A range of measures are in place to guarantee the security of the company's digital data.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 An external audit of data is in progress and results will be available in January 2026.

Section 2 – Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Boss Energy tenure currently comprises 1 granted Mining Lease, 12 granted Exploration Licenses, two Exploration Licence Applications, 3 Retention Leases and 2 Miscellaneous Purpose Licenses.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Honeymoon deposit and surrounding areas have been subject to exploration since the early 1970's. Work has included scoping level to bankable feasibility studies. Several mineral resource estimates were completed in the period 1998 to 2019.
Geology	Deposit type, geological setting and style of mineralisation.	 Honeymoon is considered to be a sandstone-hosted tabular uranium deposit hosted in Tertiary sediments occupying a palaeovalley incised into Proterozoic bedrock. Underlying basement faults reactivated sporadically, greatly influencing the shape and formation of the overlying fluvial system, creating uplifted ridges of basement and the meandering narrow palaeochannels. REDOX interfaces from the vertical and lateral movement of uraniferous (oxidised) fluids from south (granitic source rocks in the Olary Ranges) to north (towards Lake Frome). Organic/sulphide-rich horizons and possible hydrocarbon fluids, the latter seeping upwards along the basement faults. Organic- and sulphide-rich material formed within shallow channel embankments and ledges.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to attachments for drill collar and intersection information.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Mineralised intervals are based upon a 250 ppm U₃O₈ cutoff, minimum thickness of 0.50 m and a maximum of 1 m of internal dilution.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The uranium mineralisation at Honeymoon is overall flat-lying and tabular in form and therefore vertical drillholes return true widths of mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to the body of this announcement and attachments.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	This announcement presents comprehensive details of the exploration results.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Not applicable.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Detailed delineation drilling is scheduled to continue within the Honeymoon Mining lease covering the East Kalkaroo and Brooks Dam areas.

Criteria	JORC Code explanation	Commentary
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	See map in body of this announcement.