

## YANREY URANIUM PROJECT

# SECOND NEW DISCOVERY AT YANREY THIS YEAR AND FURTHER URANIUM MINERALISATION AT MANYINGEE SOUTH

### **Highlights**

- Uranium mineralisation has been intersected by wildcat drilling at the Cosgrove prospect; marking the second new uranium discovery at the Yanrey project this campaign.
- Cosgrove is Cauldron's third exploration "hole-in-one", being discovered with the very first hole drilled into it. Its discovery highlights the extraordinary potential within the Yanrey province. In fact, Cauldron has now achieved a hat-trick of hole-in-ones with each of Manyingee South, Manyingee North and Cosgrove being identified with the very first hole into each.
- The Cosgrove prospect is situated in between the Bennet Well and the Manyingee South deposits.
- The prospect was identified from airborne EM imagery as a potential north-trending palaeochannel delta system and targeted by a wildcat exploration hole (25YRAC069) and followed up by two further holes (25YRAC070 & 25YRAC071).
- The mineralised redox fronts identified in the 4 deposits in the immediate vicinity are typically 1-2 kms wide and several kms long.
- Drilling at Cosgrove has successfully intersected another mineralised redox front that is likely to extend over a similarly large area.
- Drilling at Cosgrove intersected mineralisation at multiple levels within carbonaceous clays and sands of the Nanutarra Formation and oxidised sands of the overlying Birdrong Sandstone. This mineralisation is stratigraphically equivalent to mineralisation at Manyingee / Manyingee South.
- Mineralisation was intersected in 2 of the 3 wildcat drillholes and currently extends for 350m in width and remains open to the north, south and laterally to the east.
- The most significant results from the first drilling at the prospect include:

#### Drill hole 25YRAC069;

0.48 m @ 295.7 ppm eU<sub>3</sub>O<sub>8</sub> from 49.04 m,

0.67 m @ 518.1 ppm eU<sub>3</sub>O<sub>8</sub> from 73.04 m,

0.97 m @ 333.7 ppm eU<sub>3</sub>O<sub>8</sub> from 77.17 m.

### Drill hole 25YRAC070;

0.57 m @ 456.8 ppm eU<sub>3</sub>O<sub>8</sub> from 50.09 m,

1.19 m @ 365.5 ppm eU<sub>3</sub>O<sub>8</sub> from 63.55 m,

0.41 m @ 312.1 ppm eU<sub>3</sub>O<sub>8</sub> from 68.14 m.



- Further results have also been received for another 12 drillholes (25YRAC057 to 25YRAC068) completed at the Manyingee South deposit and have been successful in extending the mineralisation to the south, south-east and south-west.
- The most significant results from the recent drilling at Manyingee South include:
   Drill hole 25YRAC063;

1.22 m @ 510.4 ppm eU<sub>3</sub>O<sub>8</sub> from 39.09 m,

1.33 m @ 382.2 ppm eU<sub>3</sub>O<sub>8</sub> from 41.76 m.

Drill hole 25YRAC065;

1.08 m @ 255.8 ppm eU<sub>3</sub>O<sub>8</sub> from 55.02 m.

Drill hole 25YRAC060;

0.59 m @ 308.2 ppm eU<sub>3</sub>O<sub>8</sub> from 42.84 m,

0.62 m @ 335.7 ppm eU<sub>3</sub>O<sub>8</sub> from 44.37 m,

Drill hole 25YRAC062;

1.19 m @ 255.2 ppm eU<sub>3</sub>O<sub>8</sub> from 64.3 m.

- This drilling concludes what has been a highly successful 2025 exploration drilling campaign for Cauldron.
- The Company will now commence work on an updated Mineral Resource Estimate (MRE) for Manyingee South and a maiden MRE for Manyingee North, for release during the first quarter of the CY2026.
- Planning is already underway for a 2026 drill campaign to build on the success and scale of this year's new discoveries and to test a number of our other high priority targets for additional new discoveries.

#### **Cauldron CEO Jonathan Fisher commented:**

"The quality of the work done by the Cauldron technical team is evident with this amazing track record of discoveries, which now amounts to three new discoveries in just two drilling campaigns. As we refine our geological understanding and exploration model, we are increasingly confident that our mineral resource inventory will continue to grow substantially. The final holes reported this year from Manyingee South demonstrate further expansion of the mineralisation, with the deposit still open to the southeast, southwest and west.

The new Cosgrove Discovery is the perfect way to end this year's programme and provides exciting opportunities for follow up programmes given these initial holes have just scratched the surface we think. With such good news we would have loved to keep drilling, but the required heritage and works approvals mean the follow up will have to wait until next year!

The location of Cosgrove – placed about halfway between Bennet Well and Manyingee South, perfectly demonstrates the prolific nature of the mineralisation at Yanrey and that there is substantial opportunity for further discoveries in the many as yet unexplored paleochannels.

As we work tirelessly to ensure the value of the uranium industry to Western Australia is recognised, our strategy aims to build a world scale amount of uranium on the balance sheet which will transform Cauldron into a future uranium powerhouse.

I encourage investors, local communities, government officials and all other stakeholders to follow us on our journey and please engage with the Company if you have any questions."

### **Cauldron Exploration Manager John Higgins commented:**

"Cauldron's third uranium discovery in eighteen months upholds our exploration methodology and our understanding of the potential of the Yanrey Uranium Province. Mineralisation within the Yanrey region now occurs at five locations extending over a 22km length of the Early Cretaceous coastline. Cauldron holds over 80km of this coastline.

Individually, each new discovery by Cauldron (at Manyingee South, Manyingee North and Cosgrove) was an exploration "hole-in-one", being made with the very first hole drilled into each. Cauldron has now achieved a hat-trick of hole-in-ones and this highlights the prolific mineralised nature of the Yanrey Uranium Province and the robustness of the exploration methodology being used to target areas of potential uranium mineralisation.

We have over a dozen prospects lined up for work in 2026 and I am confident we will continue to make more discoveries and add to our uranium resources."

\_\_\_\_\_\_

#### **BACKGROUND**

Cauldron Energy Limited's (Cauldron or "the Company") fully owned Yanrey Uranium Project is located approximately 100 km south of Onslow and covers an area of ~1,340km<sup>2</sup> (Figure 1) covering over 80 kms of ancient, Early Cretaceous coastline.

The highly prospective *Yanrey Uranium Province* stretches from the Carley Bore Uranium Deposit in the south to the Spinifex Well Uranium prospect and beyond in the north and hosts multiple prospective palaeochannel systems sourced from uranium-bearing granitoid uplands (Figure 1).

Cauldron has recently discovered uranium mineralisation at Manyingee North, located ~2.5 kilometres northeast of Paladin's (ASX: PDN) Manyingee Deposit (which contains an estimated 25.9Mlbs of uranium-oxide (13.8Mt at 850ppm eU₃O<sub>8</sub> at 250ppm cut-off – ASX: PDN "Fy2025 Annual Report").

The Manyingee North prospect is located in its own separate palaeochannel approximately 8km northeast of the Manyingee South deposit and 2.5km northeast of Paladin's Manyingee Deposit (Figure 2).

Newly discovered mineralisation at the Cosgrove Prospect in a separate palaeochannel located about halfway between the Bennet Well and Manyingee South deposits.

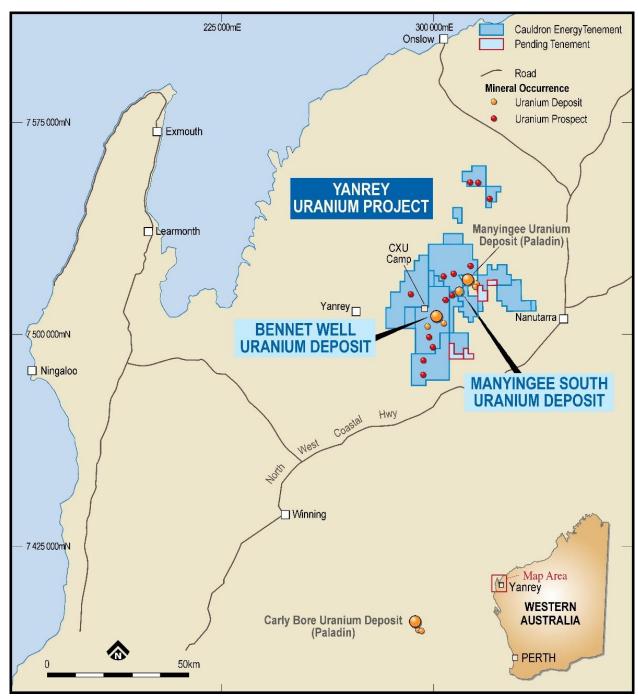



Figure 1. Yanrey Uranium Project Location Map.

Cauldron has defined in excess of 40Mlbs of uranium oxide in Mineral Resources at its Yanrey Uranium Project area. Cauldron's flagship Bennet Well deposit, contains 30.9 Mlb of uranium-oxide (38.9Mt at 360ppm eU<sub>3</sub>O<sub>8</sub> [at 150ppm cut-off], refer Appendix C), whilst the Manyingee South Uranium Deposit (discovered in 2024) contains 11.1 Mlb of uranium-oxide (15.5 Mt at 325 ppm eU<sub>3</sub>O<sub>8</sub> [at 100 ppm cut-off], refer Appendix D). The Manyingee South deposit and surrounding regions are currently the subject of further exploration drilling to expand the company's defined uranium resources.

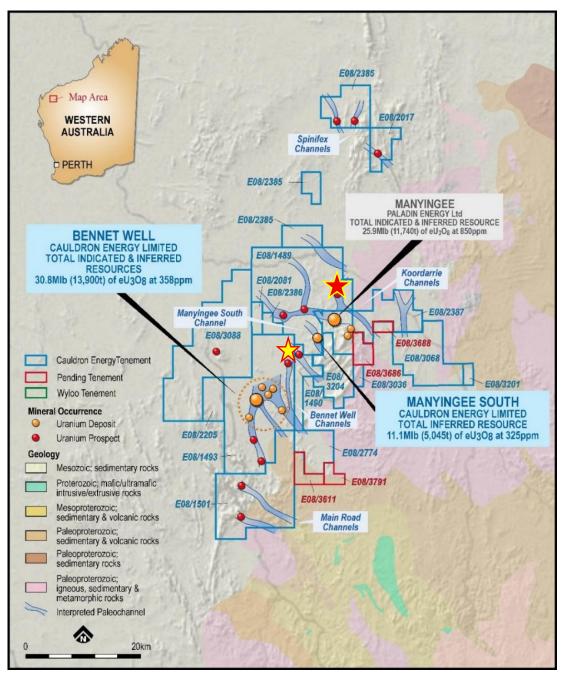



Figure 2. Yanrey Uranium Project highlighting local geology and prospective palaeochannels. The yellow star marks the location of the newly discovered Cosgrove prospect whilst the red star marks the location of Cauldron's other discovery at Manyingee North.

#### **2025 Exploration Background**

Cauldron Energy Limited (ASX: CXU) ("Cauldron or the Company") is pleased to announce that its 2025 aircore drilling program has been completed. A total of 71 holes (holes 25YRAC001-071) were drilled for a total of 6,891m (see Appendix A). Drillholes are detailed in Table 1 and significant intersections in Table 2.

Over 20 palaeochannels have been historically identified within Cauldron's tenement holdings. Uranium mineralisation has now been defined in 5 palaeochannels along a 22km stretch of the Early Cretaceous coastal plain. The palaeochannel system is very complex with ongoing exploration work continuing to define more complexity as channels bifurcate, amalgamate and coalesce. Each channel is considered highly likely to host uranium mineralisation and requiring future drill testing.

Cauldron's drilling in 2024 at Manyingee South indicated that continuous mineralisation extended north-south for at least 3 kilometres and over channel widths of greater than 1,100 metres, with two distinctly higher-grade zones being delineated.

Mineralisation at Manyingee South is developed at stacked redox boundaries interpreted to represent roll-front-style uranium mineralisation similar in character to the adjacent Manyingee uranium deposit (owned by Paladin). These redox boundaries occur where bright yellow sands are juxtaposed against black to dark brown carbonaceous muds and sands. Early indications at Cosgrove and Manyingee North suggest that mineralisation is similar in character, but further drilling is required.

Passive seismic surveying was undertaken in September 2025 to better define the edges of the Manyingee North palaeochannel to allowing Cauldron to undertake targeted drilling within the centre of the Manyingee North palaeochannel.

Cauldron's 2025 exploration program has been extremely successful discovering two new uranium prospects whilst expanding the extent of mineralisation at Manyingee South to over 2,000m in width and a further 1,400m back upstream.

The Manyingee North prospect is located in its own separate palaeochannel approximately 8km northeast of the Manyingee South deposit and 2.5km northeast of Paladin's Manyingee Deposit (Figure 2). For more information on this prospect see Cauldron's ASX announcements on 25Nov25, 01Dec25 and 11Dec25.

#### **Cosgrove Prospect Geology**

The Cosgrove prospect is located between the Bennet Well and Manyingee South deposits (Figure 4). Passive seismic surveying was not undertaken over the Cosgrove prospect, and the target was instead identified from airborne EM imagery (Figure 5) as a potential north-trending palaeochannel delta system.

No historical mineralisation was known of in the area with the two historical drillholes YRH151 & YRH152 located 2,500m apart both intersecting shallow granitic bedrock. However, the area was considered to have similarities with Manyingee South where the narrow (<1km wide) Manyingee South palaeochannel incises through granitic bedrock.

The area was targeted by a wildcat exploration hole (25YRAC069) which intersected mineralisation at the contact between bright yellow sands, classic indicators of uranium roll-front movement, juxtaposed against black to dark brown carbonaceous muds and sands (Figure 3). Hole's 25YRAC070 and 25YRAC071 were then drilled 200m north and south along the access track respectively.

At the conclusion of the drilling program a total of 3 holes had been completed at Cosgrove for 288m. Drillhole details are contained within Table 1 and significant intersections in Table 2.

Drilling at Cosgrove has intersected mineralisation at multiple levels within dark grey carbonaceous clays and sands of the Nanutarra Formation and oxidised sands of the overlying Birdrong Sandstone (Figure 7). This mineralisation is stratigraphically equivalent to mineralisation at Manyingee / Manyingee South.



Figure 3. Discovery hole 25YRAC069 (photo taken whilst drilling was still underway at 78m; EOH at 96m). The chip tray marks the middle point in every row of 20 cuttings samples. Note the bright yellow sands associated with mineralisation at 54-56m and 68-72m, overlying black carbonaceous clays at 72-75m and carbonaceous sands from 75m onwards. Refer to Figure 7 for this hole in cross-section.

Mineralisation occurs at two levels; around 50m at a redox contact developed at the base of the Muderong Shale and below 65m where it is stratigraphically equivalent to mineralisation at Manyingee South (B Roll & A-Roll).

Mineralisation was intersected in 2 of 3 wildcat drillholes and currently extends for 350m in width and remains open to the north, south and laterally to the east.

**Table 1. Cosgrove Prospect Drillholes** 

| HoleID    | GDA2020_E | GDA2020_N | RL     | Zone | DIP | AZI | Top of<br>Bedrock | ЕОН |
|-----------|-----------|-----------|--------|------|-----|-----|-------------------|-----|
|           | (mE)      | (mN)      | (mASL) |      | (°) | (°) | (m)               | (m) |
| 25YRAC069 | 304786    | 7514366   | 47.77  | 50   | -90 | 0   | 94                | 96  |
| 25YRAC070 | 304996    | 7514648   | 48.36  | 50   | -90 | 0   | 94                | 108 |
| 25YRAC071 | 304602    | 7513971   | 48.81  | 50   | -90 | 0   | 78                | 84  |

**Table 2. Cosgrove Prospect - Significant Intersections** 

| HoleID     | From  | То         | Thickness      | eU₃O₅<br>Av. Grade | eU₃O₃<br>Max. | Grade x<br>Thickness | Cumulative<br>GT |
|------------|-------|------------|----------------|--------------------|---------------|----------------------|------------------|
|            |       |            |                |                    | Grade         | (GT)                 |                  |
|            | (m)   | (m)        | (m)            | ≥ 150ppm           |               | (ppm.m)              | (ppm.m)          |
|            | 49.04 | 49.52      | 0.48           | 295.7              | 492.0         | 141.9                |                  |
| 25YRAC069  | 73.04 | 73.71      | 0.67           | 518.1              | 1,028.0       | 347.1                | 812.8            |
|            | 77.17 | 78.14      | 0.97           | 333.7              | 508.0         | 323.7                |                  |
|            | 50.09 | 50.66      | 0.57           | 456.8              | 869.0         | 260.4                |                  |
| 25YRAC070  | 63.55 | 64.74      | 1.19           | 365.5              | 910.0         | 434.9                | 862.5            |
| 251 NACU7U | 65.56 | 65.76      | 0.20           | 196.0              | 220.0         | 39.20                | 002.5            |
|            | 68.14 | 68.55      | 0.41           | 312.1              | 485.0         | 128.0                |                  |
|            | Note  | e: Minimum | cut-off 150ppi | m eU₃O₃ and 0.2    | 2m minimum    | thickness.           |                  |

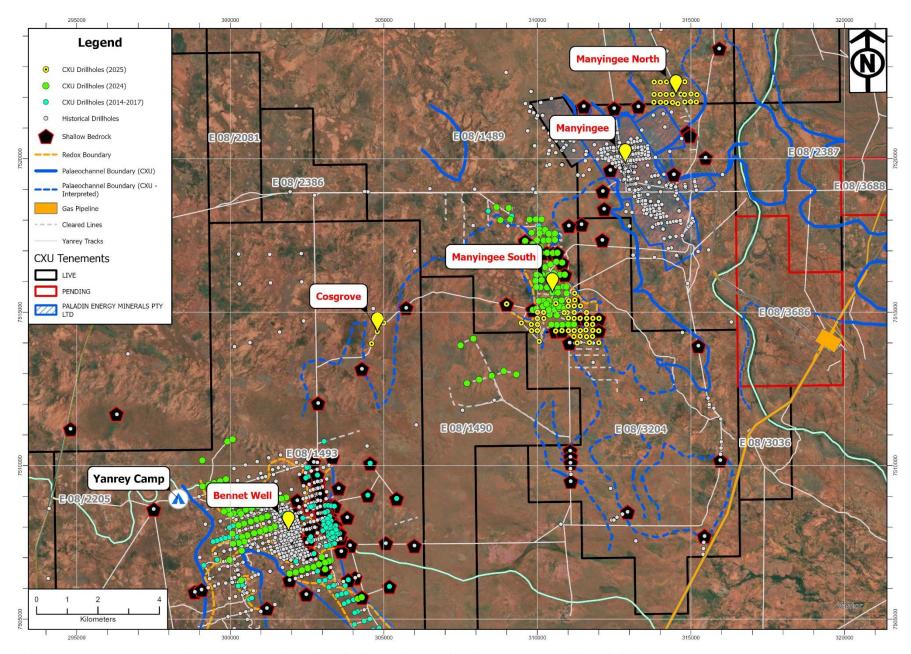



Figure 4. Map of the Yanrey region showing uranium mineralisation defined by historical and recent drilling within interpreted palaeochannels developed along the Early Cretaceous palaeo-coastline.

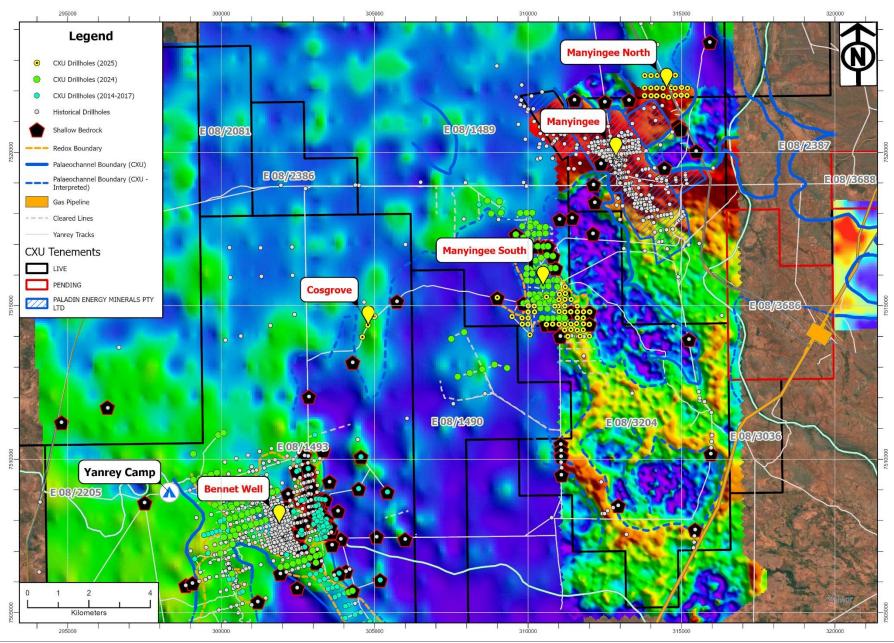



Figure 5. Composited airborne EM survey data over the Yanrey region highlighting the complex palaeodrainage network developed along the Early Cretaceous palaeo-coastline. The Cosgrove palaeochannel can be seen as a north-trending elongate indentation along the palaeo-coastline. Note the channel is flanked by two historical drillholes which intersected only shallow bedrock and failed to intersect palaeochannel sediments. The various EM surveys shown in this diagram have differing colour schemes.

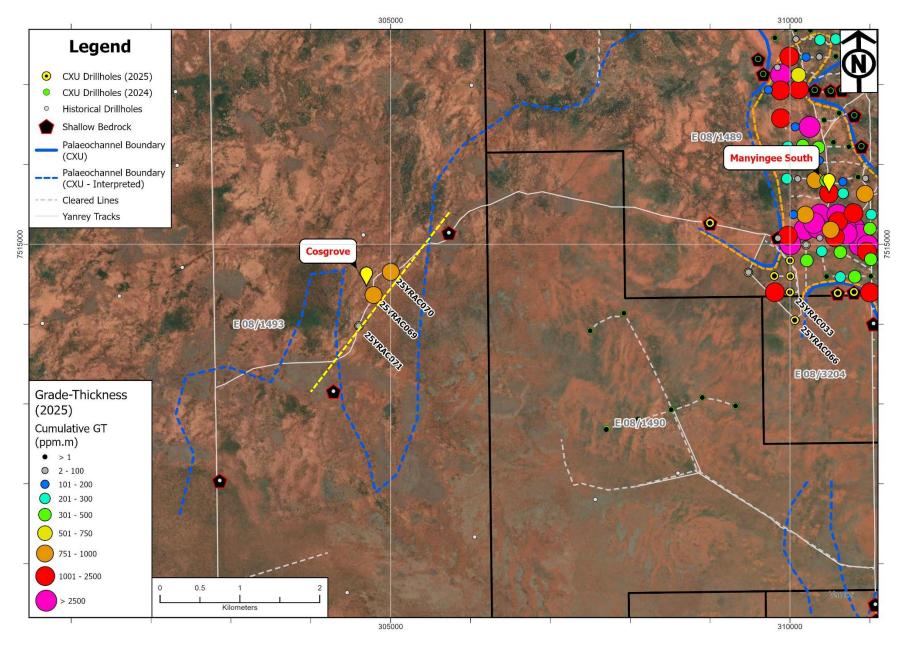



Figure 6. Cumulative grade-thickness data for preliminary drilling at the Cosgrove prospect. Dashed yellow line showing the location of the cross-section in Figure 7. Also note the westwards extension of the Manyingee South palaeochannel up to the limits of current drilling and beyond.

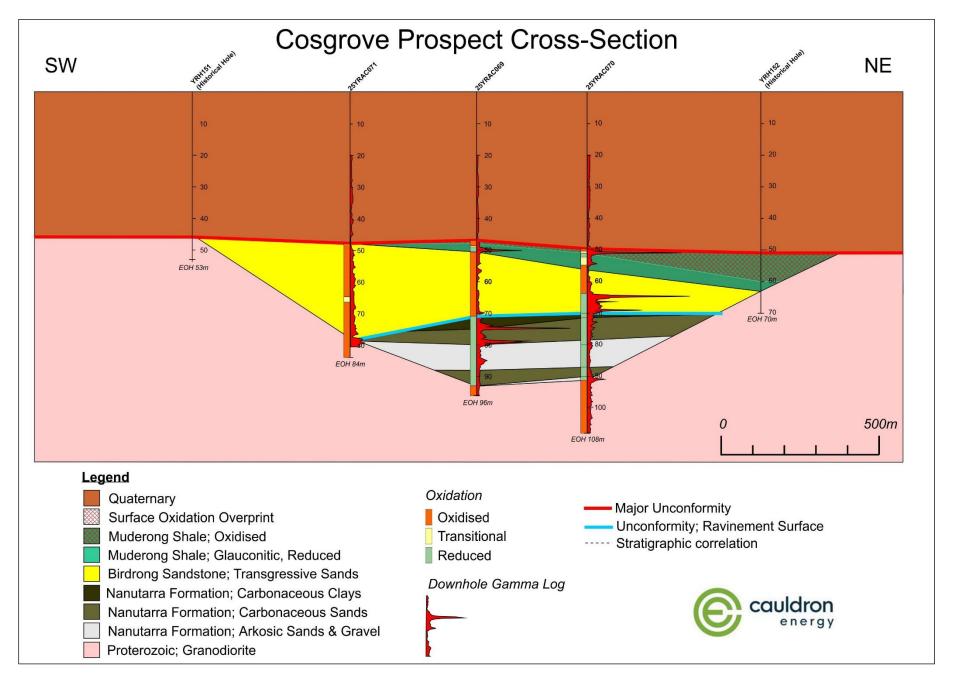



Figure 7. Cross-section through the Cosgrove Prospect.

### **Manyingee South**

Since the previous ASX announcement on 13 November 2025, Cauldron has returned to Manyingee South to undertake Phase 3 exploration drilling. This drilling has been designed to follow mineralisation back upstream and extend the current resource outline to the southeast and east onto E08/3204.

Since completing drilling at the Manyingee North prospect, Cauldron has completed a further 12 drillholes (25YRAC057 to 25YRAC068) for a total of 942 m at Manyingee South. Drillhole locations are shown in Figure 9 and detailed in Table 3. Significant intersections are contained in Table 4 whilst grade-thicknesses are displayed in Figure 10.

| HoleID          | GDA2020_E       | GDA2020_N      | RL         | Zone     | DIP | AZI | Top of<br>Bedrock | ЕОН  |
|-----------------|-----------------|----------------|------------|----------|-----|-----|-------------------|------|
|                 | (mE)            | (mN)           | (mASL)     |          | (°) | (°) | (m)               | (m)  |
| 25YRAC057       | 311,799         | 7,514,602      | 50.96      | 50       | -90 | 0   | 74                | 75   |
| 25YRAC058       | 311,395         | 7,514,219      | 51.14      | 50       | -90 | 0   | 79                | 81   |
| 25YRAC059       | 311,603         | 7,514,203      | 52.1       | 50       | -90 | 0   | 72                | 74   |
| 25YRAC060       | 311,796         | 7,514,212      | 52.4       | 50       | -90 | 0   | 89                | 90   |
| 25YRAC061       | 311,296         | 7,514,001      | 52.19      | 50       | -90 | 0   | 92                | 93   |
| 25YRAC062       | 311,696         | 7,514,010      | 51.63      | 50       | -90 | 0   | 71                | 72   |
| 25YRAC063       | 312,001         | 7,514,006      | 53.97      | 50       | -90 | 0   | 78                | 84   |
| 25YRAC064       | 311,190         | 7,514,210      | 52.71      | 50       | -90 | 0   | 104               | 105  |
| 25YRAC065       | 311,604         | 7,514,606      | 53.6       | 50       | -90 | 0   | 83                | 87   |
| 25YRAC066*      | 310,063         | 7,514,050      | 52.71      | 50       | -90 | 0   | N/A               | 42   |
| 25YRAC066A*     | 310,060         | 7,514,050      | 52.71      | 50       | -90 | 0   | N/A               | 41   |
| 25YRAC067       | 309,479         | 7,514,649      | 50.78      | 50       | -90 | 0   | 59                | 59.1 |
| 25YRAC068       | 308,999         | 7,515,268      | 48.65      | 50       | -90 | 0   | 33                | 39   |
| * Unable to pen | etrate Quaterna | ary Conglomera | ites. Hole | Abandone | ed. |     |                   |      |

Table 3. Manyingee South - Recent Drillholes.

Mineralisation has been now extended a further 1,000m upstream to the limits of drilling where it still remains open to the southeast. Mineralisation now extends for 4,400m along the full length of the main palaeochannel which is approximately 1,000m wide on the southernmost line of drilling to date.

In the southeast of the deposit, the main channel splits as it diverts around a bedrock island. Recent drilling has shown that the eastern arm is narrow and deeply incised into kaolinitic saprolite with mineralisation extending along its margins (Figure 10).

Along the southern edge of the E08/1489 tenement, the Manyingee South palaeochannel is 2,200m wide and remains open to the west where passive seismic surveying suggests that a separate 'Western Arm' channel is well-developed. Hole 25YRAC032 intersected high-grade mineralisation within this channel. Holes 25YRAC031 and 25YRAC066 attempted to better define this extension but were unable to penetrate thickly developed Quaternary cobble conglomerates. These will be redrilled at a later date.

Hole 25YRAC067 represents the westernmost drillhole to date (Figure 9). This hole, drilled on the flanks of a bedrock high, intersected a 7m thick succession of Cretaceous sediments above bedrock. Crucially these sediments comprised bright yellow Birdrong Sandstone (Figure 8), indicative of the movement of the mineralising redox front through this location, above oxidised carbonaceous clays of the Nanutarra Formation. The Western arm channel is considered very likely to contain additional mineralisation and will be a high priority for passive seismic surveying in early 2026.

Table 4. Manyingee South - Recent Significant Intersections.

| HoleID     | From  | То      | Thickness      | eU₃O₃<br>Av. Grade          | eU₃O₃<br>Max.<br>Grade | Grade x<br>Thickness<br>(GT) | Cumulative<br>GT |
|------------|-------|---------|----------------|-----------------------------|------------------------|------------------------------|------------------|
|            | (m)   | (m)     | (m)            | ≥ 150ppm                    |                        | (ppm.m)                      | (ppm.m)          |
| 25YRAC057  | 55.95 | 56.75   | 0.80           | 268.0                       | 385.0                  | 214.4                        | 214.4            |
| 25YRAC058  | 44.86 | 45.50   | 0.64           | 182.3                       | 222.0                  | 116.7                        | 116.7            |
| 25YRAC059  | 43.62 | 44.16   | 0.54           | 341.4                       | 640.0                  | 184.4                        | 184.4            |
| 25YRAC060  | 42.84 | 43.43   | 0.59           | 308.2                       | 518.0                  | 181.8                        |                  |
|            | 44.37 | 44.99   | 0.62           | 335.7                       | 596.0                  | 208.1                        | 552.7            |
|            | 57.46 | 57.77   | 0.31           | 193.5                       | 230.0                  | 60.0                         | 553.7            |
|            | 66.69 | 67.23   | 0.54           | 192.1                       | 247.0                  | 103.7                        |                  |
| 25YRAC061  | 48.84 | 49.64   | 0.80           | 399.9                       | 756.0                  | 319.9                        | 319.9            |
| 25YRAC062  | 43.70 | 44.00   | 0.30           | 168.7                       | 192.0                  | 50.6                         | 354.3            |
|            | 64.30 | 65.49   | 1.19           | 255.2                       | 391.0                  | 303.7                        | 304.3            |
| 25YRAC063  | 39.09 | 40.31   | 1.22           | 510.4                       | 1,478.0                | 622.7                        | 1,131.0          |
|            | 41.76 | 43.09   | 1.33           | 382.2                       | 1,417.0                | 508.3                        | 1,131.0          |
| 25YRAC064  | NSR   | -       | -              | -                           | -                      | -                            | -                |
| 25YRAC065  | 55.02 | 56.10   | 1.08           | 255.8                       | 387.0                  | 276.3                        | 276.3            |
| 25YRAC066  | NSR   | -       | =              | =                           | -                      | =                            | -                |
| 25YRAC066A | NSR   | -       | -              | -                           | -                      | -                            | -                |
| 25YRAC067  | NSR   | -       | =              | -                           | -                      | =                            | -                |
|            | Note: | Minimum | cut-off 150ppm | n eU₃O <sub>8</sub> and 0.2 | m minimum t            | hickness.                    |                  |



Figure 8. Yellow altered sands within 25YRAC067 (53-54m).

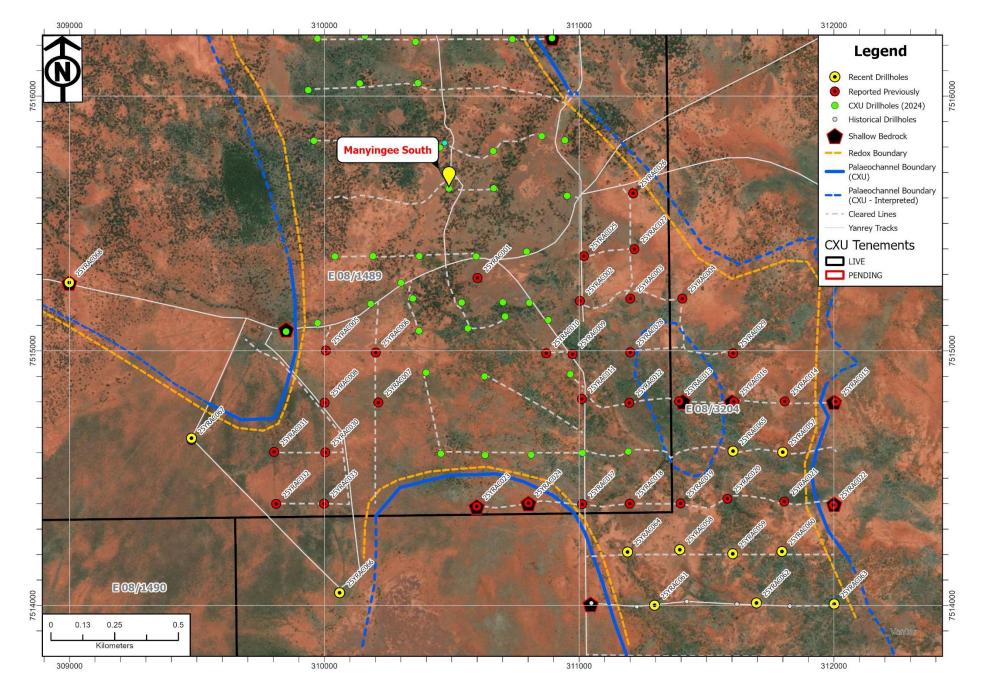



Figure 9. Manyingee South - Phase 3 drillhole locations in yellow.

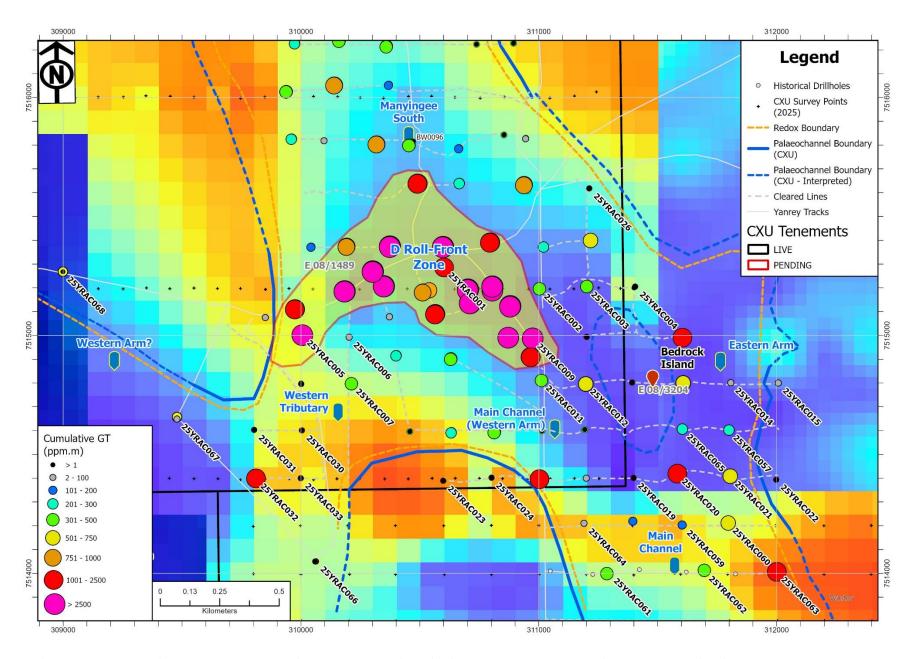



Figure 10. Manyingee South Grade-Thickness (GT) values superimposed over passive seismic survey results (note two different surveys with different colour schemes); warmer colours = shallower bedrock, cooler colours = deeper bedrock. Note the boomerang-shaped high-grade zone developed where the western tributary joins the main channel. Also note the continuation of mineralisation on either side of the bedrock island. Finally note the continuation of mineralisation southwest up the western tributary and likely into the western arm where 25YRAC067 intersected bright yellow sands.



Figure 11. Manyingee South Long-Section showing the interpreted palaeogeographic settings of the recent Cosgrove and Manyingee North discoveries.

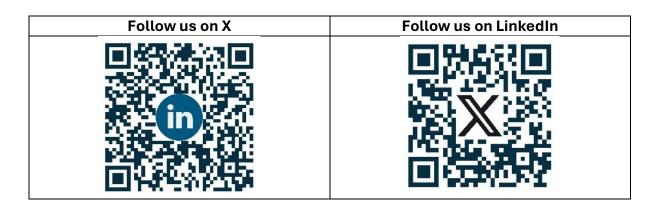


This announcement has been authorised for release to market by Ian Mulholland, Non-Executive Chairman of Cauldron Energy Limited.

#### **ENDS**

For further information, visit <u>www.cauldronenergy.com.au</u> or contact:

#### Jonathan Fisher


Chief Executive Officer Cauldron Energy Limited M: +61 407 981 867

jonathan.fisher@cauldronenergy.com.au

#### Michael Fry

Director and Company Secretary Cauldron Energy Limited M: +61 417 996 454

michael.fry@cauldronenergy.com.au



#### **About Cauldron**

Cauldron Energy Limited is an ASX-listed uranium-focused company, 100% owner of the Yanrey Uranium Project, covering an area of ~1,340km², located approximately 85 km south of Onslow and within a highly prospective, mineral-rich region containing multiple uranium deposit. The Yanrey Project covers a prospective northeast-southwest trending Cretaceous-age coastal plain developed along the western margin of the Pilbara block. This prospective trend extends for at least 140km in length, of which Cauldron holds ~80km under granted tenement.

#### **Disclaimer**

This market update has been prepared by Cauldron Energy Limited ("Company"). The material contained in this market update is for information purposes only. This market update is not an offer or invitation for subscription or purchase of, or a recommendation in relation to, securities in the Company and neither this market update nor anything contained in it shall form the basis of any contract or commitment.

This market update may contain forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Cauldron Energy Limited's business plans, intentions, opportunities, expectations, capabilities, and other statements that are not historical facts. Forward-looking statements include those containing such words as could-plantarget-estimate-forecast-anticipate-indicate-expect-intend-may-potential-should or similar expressions. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, and which could cause actual results to differ from those expressed in this market update. Because actual results might differ materially to the information in this market update, the Company does not make, and this report should not be relied upon as, any representation or warranty as to the accuracy, or reasonableness, of the underlying assumptions and uncertainties. Investors are cautioned to view all forward-looking statements with caution and to not place undue reliance on such statements.



#### **Competent Person Statements**

#### **Exploration Results - Yanrey Uranium Project**

The information in this report that relates to deconvolved  $eU_3O_8$  results for the Yanrey Uranium Project, is based on information compiled by Mr David Wilson BSc., MSc., who is a member of the Australasian Institute of Geoscientists. Mr Wilson is a consultant to Cauldron Energy Ltd and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Wilson consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Exploration Results for the Yanrey Uranium Project, is based on information compiled by Mr. John Higgins, B.Sc. (Hons), GCPG&G, who is a member of the Australian Institute of Geoscientists. Mr. Higgins is a full-time employee of Cauldron Energy Ltd and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Higgins consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

This report also contains information that relates to exploration results extracted from company announcements released to the Australian Securities Exchange (ASX) listed in the table below and which are available to view at <a href="http://www.cauldronenergy.com.au">http://www.cauldronenergy.com.au</a> and for which the Competent Persons' consents were obtained. Unless otherwise stated, where reference is made to previous releases of exploration results in this announcement, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements and all material assumptions and technical parameters underpinning the exploration results included in those announcements continue to apply and have not materially changed.

#### Mineral Resource Estimate - Bennet Well Deposit

The information in this report that relates to Mineral Resources for the Bennet Well Deposit is extracted from a report released to the Australian Securities Exchange (ASX) on 17 December 2015 titled "Substantial Increase in Tonnes and Grade Confirms Bennet Well as Globally Significant ISR Project" and available to view at www.cauldronenergy.com.au and for which Competent Persons' consents were obtained. Each Competent Person's consent remains in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent.

The Company confirms that is not aware of any new information or data that materially affects the information included in the original ASX announcement released on 17 December 2015 and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the original ASX announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original ASX announcement.

| Date of Release | Title                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------|
| 02-11-2015      | CXU Cauldron Identifies Mineralisation South of Manyingee                                            |
| 17-12-2015      | Substantial Increase in Mineral Resource at Bennet Well                                              |
| 24-01-2024      | Yanrey Uranium Project Exploration Target                                                            |
| 08-08-2024      | First Drill Results Confirm and Extend Known Uranium Mineralisation at Bennet Well Deposit           |
| 27-08-2024      | Further Drilling Adds to Uranium Mineralisation at Bennet Well Deposit                               |
| 11-09-2024      | First Holes at Manyingee South Confirm Significant Discovery                                         |
| 18-09-2024      | More Outstanding Results Grow Manyingee South                                                        |
| 11-10-2024      | Further Excellent Results Expand Manyingee South                                                     |
| 05-11-2024      | Further Excellent Drilling Results at Manyingee South                                                |
| 25-11-2024      | Further Excellent Drilling Results Demonstrate Size and Potential Of Manyingee South Uranium Deposit |
| 06-11-2025      | Manyingee South 2025 Drilling Program Commences                                                      |
| 13-11-2025      | Outstanding High-Grade Results Extend Uranium Mineralisation                                         |
| 25-11-2025      | New Discovery at Manyingee North Prospect                                                            |
| 01-12-2025      | Manyingee North Further Results                                                                      |
| 11-12-2025      | Manyingee North Drilling Completed                                                                   |

#### Mineral Resource Estimate - Manyingee South Deposit

The information in this report that relates to Mineral Resources for the Bennet Well Deposit is extracted from a report released to the Australian Securities Exchange (ASX) on 3 April 2025 titled "Maiden MRE of 11.1Mlbs  $eU_3O_8$  at Manyingee South Adds to Cauldron's Inventory at Yanrey" and available to view at www.cauldronenergy.com.au and for which Competent Persons' consents were obtained. Each Competent Person's consent remains in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent.

The Company confirms that is not aware of any new information or data that materially affects the information included in the original ASX announcement released on 3 April 2025 and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the original ASX announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original ASX announcement.



# Appendix A: Manyingee Region Drillhole Locations

| HoleID     | GDA2020 | GDA2020   | RL     | Zone | DIP | AZI | Top of  | EOH |
|------------|---------|-----------|--------|------|-----|-----|---------|-----|
|            | Easting | Northing  |        |      |     |     | Bedrock |     |
|            | (mE)    | (mN)      | (mASL) |      | (°) | (°) | (m)     | (m) |
| 24YRAC048  | 310,596 | 7,515,370 | 51.49  | 50   | -90 | 0   | 97      | 98  |
| 24YRAC049  | 310,453 | 7,515,798 | 50.63  | 50   | -90 | 0   | 91      | 93  |
| 24YRAC050  | 310,358 | 7,516,213 | 48.51  | 50   | -90 | 0   | 74      | 81  |
| 24YRAC051  | 310,247 | 7,516,470 | 51.79  | 50   | -90 | 0   | 76      | 77  |
| 24YRAC052  | 310,113 | 7,516,940 | 50.56  | 50   | -90 | 0   | 79      | 81  |
| 24YRAC053  | 310,202 | 7,517,343 | 53.46  | 50   | -90 | 0   | 80      | 84  |
| 24YRAC054  | 310,070 | 7,517,688 | 52.16  | 50   | -90 | 0   | 89      | 90  |
| 24YRAC055  | 309,953 | 7,518,023 | 51.33  | 50   | -90 | 0   | 90      | 92  |
| 24YRAC056  | 309,888 | 7,516,577 | 51.99  | 50   | -90 | 0   | 79      | 84  |
| 24YRAC057  | 310,794 | 7,515,389 | 49.96  | 50   | -90 | 0   | 113     | 114 |
| 24YRAC058  | 310,373 | 7,515,372 | 50.78  | 50   | -90 | 0   | 95      | 96  |
| 24YRAC059  | 310,191 | 7,515,372 | 53.20  | 50   | -90 | 0   | 90      | 90  |
| 24YRAC060  | 310,317 | 7,515,802 | 50.14  | 50   | -90 | 0   | 83      | 84  |
| 24YRAC061  | 310,064 | 7,516,472 | 50.83  | 50   | -90 | 0   | 74      | 90  |
| 24YRAC062  | 310,426 | 7,516,557 | 50.31  | 50   | -90 | 0   | 68      | 69  |
| 24YRAC063  | 310,614 | 7,516,642 | 50.42  | 50   | -90 | 0   | 40      | 66  |
| 24YRAC064  | 310,805 | 7,516,618 | 50.80  | 50   | -90 | 0   | 50      | 66  |
| 24YRAC065  | 309,882 | 7,516,928 | 49.32  | 50   | -90 | 0   | 74      | 90  |
| 24YRAC066  | 309,729 | 7,516,934 | 50.64  | 50   | -90 | 0   | 71      | 75  |
| 24YRAC067  | 310,629 | 7,514,900 | 49.87  | 50   | -90 | 0   | 98      | 108 |
| 24YRAC068  | 310,812 | 7,514,592 | 51.44  | 50   | -90 | 0   | 81      | 83  |
| 24YRAC069  | 311,013 | 7,514,599 | 52.55  | 50   | -90 | 0   | 84      | 90  |
| 24YRAC070  | 311,193 | 7,514,604 | 52.05  | 50   | -90 | 0   | 85      | 87  |
| 24YRAC071  | 310,631 | 7,514,590 | 51.08  | 50   | -90 | 0   | 89      | 90  |
| 24YRAC072  | 310,458 | 7,514,596 | 51.34  | 50   | -90 | 0   | 83      | 84  |
| 24YRAC073  | 310,399 | 7,514,914 | 51.51  | 50   | -90 | 0   | 88      | 89  |
| 24YRAC074  | 310,097 | 7,515,818 | 49.96  | 50   | -90 | 0   | 98      | 99  |
| 24YRAC075  | 309,973 | 7,516,226 | 51.09  | 50   | -90 | 0   | 85      | 86  |
| 24YRAC076  | 310,159 | 7,516,236 | 49.67  | 50   | -90 | 0   | 82      | 83  |
| 24YRAC077  | 309,602 | 7,517,321 | 49.83  | 50   | -90 | 0   | 57      | 60  |
| 24YRAC078  | 309,991 | 7,517,351 | 48.55  | 50   | -90 | 0   | 83      | 84  |
| 24YRAC079  | 309,741 | 7,518,019 | 48.24  | 50   | -90 | 0   | 72      | 75  |
| 24YRAC080  | 310,311 | 7,516,933 | 51.34  | 50   | -90 | 0   | 53      | 78  |
| 24YRAC081  | 310,508 | 7,516,926 | 49.47  | 50   | -90 | 0   | 68      | 69  |
| 24YRAC082  | 310,652 | 7,516,937 | 49.52  | 50   | -90 | 0   | 48      | 60  |
| 24YRAC083  | 309,810 | 7,517,587 | 46.87  | 50   | -90 | 0   | 80.5    | 81  |
| 24YRAC084  | 310,367 | 7,517,346 | 50.32  | 50   | -90 | 0   | 71      | 78  |
| 24YRAC085  | 310,573 | 7,517,353 | 51.94  | 50   | -90 | 0   | 58      | 60  |
| 24YRAC086  | 310,257 | 7,517,682 | 49.03  | 50   | -90 | 0   | 74      | 75  |
| 24YRAC087  | 310,141 | 7,518,023 | 48.96  | 50   | -90 | 0   | 99      | 102 |
| 24YRAC088  | 309,112 | 7,518,023 | 49.71  | 50   | -90 | 0   | 96      | 102 |
| 24YRAC089  | 308,796 | 7,518,003 | 47.53  | 50   | -90 | 0   | 59      | 63  |
| 24YRAC090  | 309,064 | 7,518,395 | 49.30  | 50   | -90 | 0   | 122     | 126 |
| 24YRAC091  | 308,675 | 7,518,423 | 48.46  | 50   | -90 | 0   | 76      | 78  |
| 24YRAC092  | 310,042 | 7,515,370 | 50.82  | 50   | -90 | 0   | 89      | 90  |
| 24YRAC093  | 310,544 | 7,516,277 | 51.61  | 50   | -90 | 0   | 86      | 87  |
| 24YRAC094  | 310,738 | 7,516,223 | 50.70  | 50   | -90 | 0   | 89      | 90  |
| 24YRAC095  | 310,894 | 7,516,228 | 51.74  | 50   | -90 | 0   | 63      | 66  |
| 24YRAC096  | 310,663 | 7,510,220 | 53.50  | 50   | -90 | 0   | 98      | 99  |
| 2711/AU000 | 0.0,000 | 7,010,704 | J3.50  | 50   | 50  |     | 50      | 55  |



| HoleID                 | GDA2020 | GDA2020                | RL     | Zone     | DIP  | AZI | Top of  | EOH      |
|------------------------|---------|------------------------|--------|----------|------|-----|---------|----------|
| HotelD                 | Easting | Northing               | NL.    | Zone     | DIF  | ALI | Bedrock | LOH      |
|                        | (mE)    | (mN)                   | (mASL) |          | (°)  | (°) | (m)     | (m)      |
| 24YRAC097              | 310,853 | 7,515,843              | 53.09  | 50       | -90  | 0   | 77      | 78       |
| 24YRAC098              | 310,953 | 7,515,609              | 50.68  | 50       | -90  | 0   | 77      | 78       |
| 24YRAC099              | 310,965 | 7,514,908              | 52.34  | 50       | -90  | 0   | 83      | 84       |
| 24YRAC100              | 310,489 | 7,515,637              | 51.60  | 50       | -90  | 0   | 95      | 96       |
| 24YRAC101              | 310,665 | 7,515,638              | 52.01  | 50       | -90  | 0   | 95      | 96       |
| 24YRAC102              | 310,511 | 7,515,180              | 51.14  | 50       | -90  | 0   | 80      | 81       |
| 24YRAC103              | 310,347 | 7,515,205              | 50.69  | 50       | -90  | 0   | 87      | 88       |
| 24YRAC104              | 310,182 | 7,515,184              | 51.47  | 50       | -90  | 0   | 89      | 90       |
| 24YRAC105              | 309,850 | 7,515,075              | 50.55  | 50       | -90  | 0   | 60      | 78       |
| 24YRAC106              | 309,974 | 7,515,109              | 49.85  | 50       | -90  | 0   | 74      | 87       |
| 24YRAC107              | 310,073 | 7,517,571              | 50.66  | 50       | -90  | 0   | 72      | 76       |
| 24YRAC108              | 310,375 | 7,517,571              | 52.95  | 50       | -90  | 0   | 68      | 69       |
| 24YRAC109              | 309,937 | 7,517,501              | 50.99  | 50       | -90  | 0   | 52      | 99       |
| 24YRAC110              | 310,139 | 7,516,050              | 50.46  | 50       | -90  | 0   | 86      | 87       |
| 24YRAC111              | 310,368 | 7,516,050              | 50.28  | 50       | -90  | 0   | 95      | 96       |
| 24YRAC111              | 310,300 | 7,516,031              | 51.22  | 50       | -90  | 0   | 88      | 89       |
| 24YRAC112              | 310,572 | 7,513,078              | 50.17  | 50       | -90  | 0   | 59      | 60       |
| 24YRAC113              | 310,563 | 7,517,309              | 53.27  | 50       | -90  | 0   | 85      | 86       |
| 241RAC114<br>24YRAC115 | 310,363 |                        | 52.50  | 50       | -90  | 0   | 91      | 96       |
| 24YRAC115              | 310,709 | 7,515,134<br>7,515,188 | 52.03  | 50       | -90  | 0   | 98      | 99       |
|                        | 1       | , ,                    |        |          |      | 0   | 90      |          |
| 24YRAC117              | 309,959 | 7,515,824              | 50.26  | 50<br>50 | -90  | 0   |         | 93<br>54 |
| 24YRAC118              | 309,666 | 7,517,135              | 47.45  |          | -90  | _   | N/A     |          |
| 24YRAC119              | 309,886 | 7,517,124              | 51.66  | 50       | -90  | 0   | 79      | 80       |
| 24YRAC120              | 310,106 | 7,517,123              | 48.72  | 50       | -90  | 0   | 88      | 89       |
| 24YRAC121              | 309,842 | 7,517,216              | 49.67  | 50       | -90  | 0   | 71      | 72       |
| 24YRAC122              | 310,944 | 7,515,827              | 50.39  | 50       | -90  | 0   | 56      | 57       |
| 24YRAC123              | 310,701 | 7,515,191              | 51.63  | 50       | -90  | 0   | 89      | 90       |
| 24YRAC124              | 310,879 | 7,515,121              | 49.57  | 50       | -90  | 0   | 89      | 90       |
| 24YRAC143              | 310,304 | 7,515,269              | 50.67  | 50       | -90  | 0   | 95      | 96       |
| 2025 Drillho           | 1       | 1                      |        |          | - 00 |     |         |          |
| 25YRAC001              | 310,601 | 7,515,286              | 51.1   | 50       | -90  | 0   | 92      | 96       |
| 25YRAC002              | 311,003 | 7,515,196              | 48.9   | 50       | -90  | 0   | 83.5    | 87       |
| 25YRAC003              | 311,201 | 7,515,205              | 52.0   | 50       | -90  | 0   | 89      | 90       |
| 25YRAC004              | 311,405 | 7,515,205              | 50.9   | 50       | -90  | 0   | 63      | 66       |
| 25YRAC005              | 310,006 | 7,515,001              | 52.7   | 50       | -90  | 0   | N/A     | 78       |
| 25YRAC006              | 310,202 | 7,514,993              | 50.6   | 50       | -90  | 0   | 95.5    | 96       |
| 25YRAC007              | 310,212 | 7,514,797              | 50.7   | 50       | -90  | 0   | 71      | 81       |
| 25YRAC008              | 310,001 | 7,514,796              | 50.3   | 50       | -90  | 0   | 99.5    | 100      |
| 25YRAC009              | 310,974 | 7,514,987              | 49.9   | 50       | -90  | 0   | 101     | 102      |
| 25YRAC010              | 310,871 | 7,514,990              | 49.0   | 50       | -90  | 0   | 94.5    | 96       |
| 25YRAC011              | 311,011 | 7,514,811              | 52.9   | 50       | -90  | 0   | 98.5    | 99       |
| 25YRAC012              | 311,197 | 7,514,796              | 50     | 50       | -90  | 0   | 86      | 87       |
| 25YRAC013              | 311,392 | 7,514,802              | 52.2   | 50       | -90  | 0   | 42      | 57       |
| 25YRAC014              | 311,807 | 7,514,801              | 47.6   | 50       | -90  | 0   | 83.5    | 86       |
| 25YRAC015              | 312,007 | 7,514,800              | 52.1   | 50       | -90  | 0   | 38      | 84       |
| 25YRAC016              | 311,607 | 7,514,800              | 52.2   | 50       | -90  | 0   | 44.5    | 75       |
| 25YRAC017              | 311,012 | 7,514,398              | 52.1   | 50       | -90  | 0   | 60      | 84       |
| 25YRAC018              | 311,199 | 7,514,400              | 51.0   | 50       | -90  | 0   | 76      | 78       |
| 25YRAC019              | 311,398 | 7,514,401              | 50.1   | 50       | -90  | 0   | 68      | 69       |
| 25YRAC020              | 311,582 | 7,514,419              | 52.1   | 50       | -90  | 0   | 78      | 84       |
| 25YRAC021              | 311,805 | 7,514,408              | 53.2   | 50       | -90  | 0   | 40      | 84       |



| HoleID  2025 Drillhole 25YRAC022 25YRAC023 25YRAC024 | GDA2020<br>Easting<br>(mE) | GDA2020<br>Northing<br>(mN) | RL       | Zone     | DIP        | AZI | Top of         | EOH   |
|------------------------------------------------------|----------------------------|-----------------------------|----------|----------|------------|-----|----------------|-------|
| 25YRAC022<br>25YRAC023                               | (mE)                       |                             |          |          |            |     |                |       |
| 25YRAC022<br>25YRAC023                               | , ,                        |                             | (mASL)   |          | (°)        | (°) | Bedrock<br>(m) | (m)   |
| 25YRAC022<br>25YRAC023                               |                            | • •                         |          | ed)      | ( )        | ( ) | (111)          | (111) |
| 25YRAC023                                            | 311,998                    | 7,514,394                   | 52.3     | 50       | -90        | 0   | 41             | 63    |
|                                                      | 310,598                    | 7,514,389                   | 54.1     | 50       | -90        | 0   | 28             | 51    |
|                                                      | 310,891                    | 7,514,369                   | 52.0     | 50       | -90        | 0   | 32             | 72    |
|                                                      |                            |                             | 54.5     | 50       |            |     | 41             | 87    |
| 25YRAC025                                            | 311,019                    | 7,515,372                   | 52.1     |          | -90        | 0   | 59             | 93    |
| 25YRAC026                                            | 311,212                    | 7,515,618                   | 53.4     | 50       | -90        |     | 50             |       |
| 25YRAC027                                            | 311,217                    | 7,515,399                   | 52.9     | 50<br>50 | -90        | 0   | 70             | 84    |
| 25YRAC028                                            | 311,201                    | 7,514,994                   |          |          | -90<br>-90 | 0   | 51             | 73    |
| 25YRAC029                                            | 311,604                    | 7,514,990                   | 50.5     | 50       | -90<br>-90 | 0   | 71             | 73    |
| 25YRAC030                                            | 310,004                    | 7,514,601                   | 49.3     | 50       |            |     |                |       |
| 25YRAC031                                            | 309,803                    | 7,514,603                   | 50.0     | 50       | -90        | 0   | N/A            | 78*   |
| 25YRAC032                                            | 309,811                    | 7,514,399                   | 48.1     | 50       | -90        | 0   | 100            | 108   |
| 25YRAC033                                            | 309,999                    | 7,514,400                   | 53.03    | 50       | -90        | 0   | 59             | 63    |
| * Hole terminated                                    |                            |                             | iastone. |          |            |     |                |       |
| 2025 Drillhole                                       |                            |                             |          |          |            |     |                |       |
| 25YRAC034                                            | 313,800                    | 7,522,095                   | 50.78    | 50       | -90        | 0   | 121            | 126   |
| 25YRAC035                                            | 314,000                    | 7,522,096                   | 49.58    | 50       | -90        | 0   | 136            | 138   |
| 25YRAC036                                            | 314,193                    | 7,522,094                   | 49.19    | 50       | -90        | 0   | 130            | 132   |
| 25YRAC037                                            | 314,398                    | 7,522,091                   | 50.79    | 50       | -90        | 0   | 121            | 123   |
| 25YRAC038                                            | 313,795                    | 7,521,844                   | 49.51    | 50       | -90        | 0   | 134            | 135   |
| 25YRAC039                                            | 314,008                    | 7,521,843                   | 48.46    | 50       | -90        | 0   | 137            | 138   |
| 25YRAC040                                            | 314,190                    | 7,521,838                   | 50.58    | 50       | -90        | 0   | 123            | 132   |
| 25YRAC041                                            | 314,404                    | 7,521,838                   | 49.88    | 50       | -90        | 0   | 120            | 122   |
| 25YRAC042                                            | 314,577                    | 7,521,794                   | 51.01    | 50       | -90        | 0   | 139            | 141   |
| 25YRAC043                                            | 314,210                    | 7,522,503                   | 49.23    | 50       | -90        | 0   | 115            | 117   |
| 25YRAC044                                            | 313,802                    | 7,522,498                   | 49.99    | 50       | -90        | 0   | 106            | 111   |
| 25YRAC045                                            | 314,005                    | 7,522,497                   | 49.33    | 50       | -90        | 0   | 110            | 115   |
| 25YRAC046                                            | 314,438                    | 7,522,511                   | 47.70    | 50       | -90        | 0   | 117            | 119   |
| 25YRAC047A                                           | 314,610                    | 7,522,496                   | 48.40    | 50       | -90        | 0   | N/A            | 80⁺   |
| 25YRAC047                                            | 314,603                    | 7,522,497                   | 48.40    | 50       | -90        | 0   | 116            | 117   |
| 25YRAC048                                            | 314,800                    | 7,522,508                   | 51.69    | 50       | -90        | 0   | 126            | 132   |
| 25YRAC049                                            | 314,538                    | 7,522,299                   | 50.70    | 50       | -90        | 0   | 116            | 117   |
| 25YRAC050                                            | 314,671                    | 7,522,101                   | 50.44    | 50       | -90        | 0   | 125            | 126   |
| 25YRAC051                                            | 314,792                    | 7,522,089                   | 50.53    | 50       | -90        | 0   | 116            | 117   |
| 25YRAC052                                            | 315,003                    | 7,522,111                   | 51.26    | 50       | -90        | 0   | 115            | 117   |
| 25YRAC053                                            | 315,196                    | 7,522,088                   | 52.56    | 50       | -90        | 0   | 109            | 111   |
| 25YRAC054                                            | 314,990                    | 7,521,859                   | 50.78    | 50       | -90        | 0   | 121            | 123   |
| 25YRAC055                                            | 315,177                    | 7,521,850                   | 51.30    | 50       | -90        | 0   | 104            | 117   |
| 25YRAC056                                            | 314,800                    | 7,521,852                   | 50.69    | 50       | -90        | 0   | 141            | 147   |
| 25YRAC057                                            | 311,799                    | 7,514,602                   | 50.96    | 50       | -90        | 0   | 74             | 75    |
| 25YRAC058                                            | 311,395                    | 7,514,219                   | 51.14    | 50       | -90        | 0   | 79             | 81    |
| 25YRAC059                                            | 311,603                    | 7,514,203                   | 52.1     | 50       | -90        | 0   | 72             | 74    |
| 25YRAC060                                            | 311,796                    | 7,514,212                   | 52.4     | 50       | -90        | 0   | 89             | 90    |
| 25YRAC061                                            | 311,296                    | 7,514,001                   | 52.19    | 50       | -90        | 0   | 92             | 93    |
| 25YRAC062                                            | 311,696                    | 7,514,010                   | 51.63    | 50       | -90        | 0   | 71             | 72    |
| 25YRAC063                                            | 312,001                    | 7,514,006                   | 53.97    | 50       | -90        | 0   | 78             | 84    |
| 25YRAC064                                            | 311,190                    | 7,514,210                   | 52.71    | 50       | -90        | 0   | 104            | 105   |
| 25YRAC065                                            | 311,604                    | 7,514,606                   | 53.6     | 50       | -90        | 0   | 83             | 87    |
| 25YRAC066+                                           | 310,063                    | 7,514,050                   | 52.71    | 50       | -90        | 0   | N/A            | 42    |
| 25YRAC066A+                                          | 310,060                    | 7,514,050                   | 52.71    | 50       | -90        | 0   | N/A            | 41    |
| 25YRAC067                                            | 309,479                    | 7,514,649                   | 50.78    | 50       | -90        | 0   | 59             | 59.1  |
|                                                      | 308,999                    | 7,515,268                   | 48.65    | 50       | -90        | 0   | 33             | 39.0  |

<sup>&</sup>lt;sup>+</sup> Hole abandoned at 80m after rods detached.

<sup>+ =</sup> hole abandoned as unable to penetrate Quaternary conglomerates;



| HoleID                     | GDA2020_E | GDA2020_N | RL     | Zone | DIP | AZI | Top of<br>Bedrock | ЕОН |  |  |
|----------------------------|-----------|-----------|--------|------|-----|-----|-------------------|-----|--|--|
|                            | (mE)      | (mN)      | (mASL) |      | (°) | (°) | (m)               | (m) |  |  |
| 2025 Drillholes – Cosgrove |           |           |        |      |     |     |                   |     |  |  |
| 25YRAC069                  | 304,786   | 7,514,366 | 47.77  | 50   | -90 | 0   | 94                | 96  |  |  |
| 25YRAC070                  | 304,996   | 7,514,648 | 48.36  | 50   | -90 | 0   | 94                | 108 |  |  |
| 25YRAC071                  | 304,602   | 7,513,971 | 48.81  | 50   | -90 | 0   | 78                | 84  |  |  |



# **Appendix B: Manyingee Significant Intersections**

| Drillhole ID | From  | То    | Width | eU₃O <sub>8</sub> | Grade x        | Cumulative |
|--------------|-------|-------|-------|-------------------|----------------|------------|
|              |       |       |       | Av. Grade         | Thickness (GT) | GT         |
| 22245        | (m)   | (m)   | (m)   | ≥ 150ppm          | (ppm.m)        | (ppm.m)    |
| 2024 Drillho | les   |       |       | ı                 |                |            |
|              | 51.06 | 51.84 | 0.78  | 400               | 312            |            |
|              | 59.30 | 60.24 | 0.94  | 228               | 215            |            |
| 24YRAC048    | 60.54 | 61.18 | 0.64  | 236               | 151            | 2,962      |
|              | 69.02 | 69.40 | 0.38  | 201               | 76             |            |
|              | 73.76 | 79.66 | 5.90  | 374               | 2,208          |            |
|              | 51.52 | 52.02 | 0.50  | 356               | 178            |            |
| 24YRAC049    | 53.16 | 53.38 | 0.22  | 162               | 36             | 369        |
|              | 56.04 | 56.62 | 0.58  | 268               | 155            |            |
| 24YRAC050    | 69.76 | 70.86 | 1.10  | 328               | 360            | 360.4      |
| 24YRAC051    | 61.48 | 65.60 | 4.12  | 622               | 2,562          | 2,561.5    |
|              | 61.50 | 62.22 | 0.72  | 475               | 342            |            |
| 24YRAC052    | 63.22 | 63.94 | 0.72  | 563               | 406            | 1,176      |
|              | 70.46 | 71.90 | 1.44  | 297               | 423            |            |
| 24YRAC053    | 54.16 | 54.50 | 0.34  | 250               | 85             | 136        |
|              | 62.24 | 62.52 | 0.28  | 184               | 51             |            |
|              | 45.68 | 46.16 | 0.48  | 183               | 88             |            |
|              | 50.54 | 50.90 | 0.36  | 198               | 71             |            |
| 24YRAC056    | 52.74 | 53.24 | 0.50  | 264               | 132            | 1,452      |
|              | 55.78 | 57.16 | 1.38  | 673               | 929            |            |
|              | 57.70 | 58.56 | 0.86  | 270               | 233            |            |
|              | 48.08 | 49.32 | 1.24  | 464               | 576            |            |
| 24YRAC057    | 50.26 | 51.06 | 0.80  | 306               | 245            | 1,103      |
| 2411010007   | 51.32 | 51.70 | 0.38  | 250               | 95             | 1,100      |
|              | 72.54 | 73.08 | 0.54  | 348               | 188            |            |
|              | 55.82 | 56.22 | 0.40  | 200               | 80             |            |
|              | 57.18 | 59.64 | 2.46  | 407               | 1,002          |            |
| 24YRAC058    | 59.98 | 60.34 | 0.36  | 212               | 76             | 5,051      |
| 2411/40000   | 60.58 | 61.24 | 0.66  | 339               | 224            | 0,001      |
|              | 67.30 | 69.98 | 2.68  | 384               | 1,029.9        |            |
|              | 75.40 | 78.40 | 3.00  | 880               | 2,639          |            |
|              | 49.56 | 50.30 | 0.74  | 489               | 362            |            |
| 24YRAC059    | 52.42 | 52.96 | 0.54  | 226               | 122            | 910        |
| 2-11A0033    | 65.98 | 66.60 | 0.62  | 204               | 127            | 010        |
|              | 69.00 | 70.44 | 1.44  | 208               | 300            |            |
|              | 49.42 | 50.42 | 1.00  | 384               | 384            |            |
| 24YRAC060    | 51.66 | 52.46 | 0.80  | 402               | 322            | 932        |
| 2-11A0000    | 55.98 | 56.42 | 0.44  | 282               | 124            | 302        |
|              | 69.22 | 69.62 | 0.40  | 256               | 102            |            |
| 24YRAC061    | 51.28 | 51.90 | 0.62  | 254               | 157            | 158        |
| 24YRAC065    | 54.84 | 57.76 | 2.92  | 669               | 1,953          | 2,364      |
| 241 NAC000   | 61.02 | 61.74 | 0.72  | 570               | 410            | 2,004      |
| 24YRAC066    | 57.82 | 58.14 | 0.32  | 235               | 75             | 189        |
| 241 NACU00   | 59.28 | 59.80 | 0.52  | 219               | 114            | 103        |
|              | 50.06 | 50.56 | 0.50  | 200               | 100            |            |
| 24YRAC067    | 52.48 | 53.22 | 0.74  | 295               | 219            | 362        |
|              | 83.84 | 84.10 | 0.26  | 166               | 43             |            |



| Drillhole ID | From  | То             | Width | eU₃O₅<br>Av. Grade | Grade x<br>Thickness (GT) | Cumulative<br>GT |
|--------------|-------|----------------|-------|--------------------|---------------------------|------------------|
|              | (m)   | (m)            | (m)   | ≥ 150ppm           | (ppm.m)                   | (ppm.m)          |
| 2024 Drillho | . ,   | _ ` ′          |       | - 10000            | (()                       | (PP)             |
|              | 47.56 | 48.18          | 0.62  | 292                | 181                       |                  |
| 24YRAC068    | 71.16 | 71.82          | 0.66  | 183                | 121                       | 302              |
| 24YRAC071    | 48.34 | 49.04          | 0.70  | 345                | 241                       | 241              |
| 2411010071   | 71.04 | 71.68          | 0.64  | 216                | 138                       | 2-11             |
| 24YRAC073    | 72.96 | 73.40          | 0.44  | 154                | 68                        | 206              |
|              | 52.22 | 52.94          | 0.72  | 177                | 127                       |                  |
| 24YRAC075    | 59.08 | 59.40          | 0.32  | 212                | 68                        | 290              |
| 2411/A0073   | 71.56 | 71.94          | 0.38  | 250                | 95                        | 200              |
|              | 56.18 | 56.50          | 0.32  | 181                | 58                        |                  |
| 24YRAC076    | 71.78 | 72.86          | 1.08  | 310                | 335                       | 393              |
|              | 61.22 | 61.80          | 0.58  | 324                | 188                       |                  |
|              | 63.60 | 64.34          | 0.74  | 375                | 278                       |                  |
| 24YRAC078    | 65.56 |                | 1.46  | 290                |                           | 1,015            |
| 241 NACU/8   | 68.94 | 67.02<br>69.34 | 0.40  | 180                | 423<br>72                 | 1,010            |
|              | 73.90 | 74.20          | 0.40  | 182                | 72<br>55                  |                  |
| 24YRAC084    |       | 60.62          | 0.30  | 154                | 31                        | 31               |
|              | 60.42 | 48.72          | 0.58  |                    |                           |                  |
| 24YRAC089    | 48.14 |                |       | 186                | 108                       | 108              |
| 24YRAC091    | 67.26 | 68.92          | 1.66  | 308                | 511                       | 510              |
| 24YRAC092    | 47.70 | 48.20          | 0.50  | 313                | 156                       | 156              |
| 24YRAC096    | 74.76 | 75.56          | 0.80  | 250                | 200                       | 200              |
| 24YRAC098    | 59.58 | 61.60          | 2.02  | 487                | 983                       | 983              |
|              | 53.16 | 53.68          | 0.52  | 163                | 85                        |                  |
| 24YRAC099    | 74.86 | 75.64          | 0.78  | 363                | 283                       | 1,464            |
|              | 76.04 | 77.82          | 1.78  | 616                | 1,096                     |                  |
| 24YRAC100    | 52.30 | 52.78          | 0.48  | 326                | 157                       | 1,457            |
|              | 56.86 | 60.06          | 3.20  | 406                | 1,300                     |                  |
| 24YRAC101    | 52.22 | 53.22          | 1.00  | 298                | 298                       | 389              |
|              | 55.32 | 55.74          | 0.42  | 216                | 91                        |                  |
|              | 49.94 | 50.20          | 0.26  | 177                | 46                        |                  |
| 24YRAC102    | 50.98 | 53.14          | 2.16  | 345                | 746                       | 1,038            |
|              | 53.68 | 54.32          | 0.64  | 384                | 246                       |                  |
| 24YRAC103    | 61.66 | 66.00          | 4.34  | 1,021              | 4,433                     | 4,433            |
|              | 63.50 | 65.78          | 2.28  | 954                | 2,176                     |                  |
|              | 67.40 | 67.78          | 0.38  | 189                | 72                        |                  |
| 24YRAC104    | 68.00 | 68.50          | 0.50  | 184                | 92                        | 9,623            |
|              | 72.04 | 73.28          | 1.24  | 1,359              | 1,685                     |                  |
|              | 74.16 | 75.54          | 1.38  | 165                | 228                       |                  |
| 24YRAC106    | 67.78 | 69.42          | 1.64  | 538                | 883                       | 1,053            |
|              | 69.98 | 70.72          | 0.74  | 230                | 170                       | -                |
| 24YRAC107    | 49.94 | 50.18          | 0.24  | 208                | 50                        | 50               |
| 24YRAC108    | 62.42 | 62.94          | 0.52  | 170                | 89                        | 313              |
|              | 63.40 | 64.72          | 1.32  | 170                | 224                       |                  |
| 24YRAC109    | 53.88 | 54.40          | 0.52  | 260                | 135                       | 331              |
|              | 60.88 | 61.58          | 0.70  | 280                | 196                       |                  |
| 24YRAC110    | 58.02 | 58.68          | 0.66  | 286                | 189                       | 872              |



| Drillhole ID   | From       | To          | Width      | eU₃O <sub>8</sub> | Grade x        | Cumulative |
|----------------|------------|-------------|------------|-------------------|----------------|------------|
| Diffulote ID   | 110111     | 10          | wiatii     | Av. Grade         | Thickness (GT) | GT         |
|                | (m)        | (m)         | (m)        | ≥ 150ppm          | (ppm.m)        | (ppm.m)    |
| 2024 Drillho   | les (cor   | tinued)     |            |                   |                |            |
| 0.4\/D.4.04.44 | 49.62      | 50.16       | 0.54       | 275               | 148            | 000        |
| 24YRAC111      | 51.82      | 52.14       | 0.32       | 190               | 61             | 209        |
| 24YRAC112      | 73.52      | 73.92       | 0.40       | 168               | 67             | 67         |
|                | 46.04      | 46.56       | 0.52       | 337               | 175            |            |
| 24YRAC113      | 49.64      | 50.10       | 0.46       | 201               | 92             | 304        |
|                | 50.80      | 51.02       | 0.22       | 167               | 37             |            |
|                | 49.64      | 51.40       | 1.76       | 359               | 632            |            |
| 24YRAC114      | 54.16      | 54.74       | 0.58       | 183               | 106            | 1,211      |
|                | 56.94      | 58.32       | 1.38       | 343               | 473            |            |
|                | 52.04      | 53.02       | 0.98       | 307               | 301            |            |
| 24YRAC115      | 57.88      | 58.76       | 0.88       | 239               | 210            | 2,380      |
|                | 75.24      | 78.60       | 3.36       | 556               | 1,868          |            |
|                | 50.64      | 51.20       | 0.56       | 256               | 143            |            |
|                | 52.00      | 52.60       | 0.60       | 348               | 209            |            |
|                | 57.08      | 58.08       | 1.00       | 435               | 435            |            |
| 24YRAC116      | 73.86      | 74.70       | 0.84       | 433               | 364            | 6,986      |
|                | 75.42      | 77.52       | 2.10       | 655               | 1,376          |            |
|                | 78.96      | 83.76       | 4.80       | 929               | 4,459          |            |
|                | 55.04      | 55.44       | 0.40       | 255               | 102            |            |
| 24YRAC117      | 58.22      | 58.96       | 0.74       | 388               | 287            | 389        |
| 24YRAC119      | 58.72      | 60.80       | 2.08       | 1,755             | 3,650          | 3,650      |
|                | 61.40      | 62.10       | 0.70       | 291               | 204            |            |
| 24YRAC120      | 63.50      | 63.74       | 0.24       | 193               | 46             | 690        |
|                | 66.12      | 66.96       | 0.84       | 523               | 439            |            |
| 24YRAC121      | 61.30      | 61.70       | 0.40       | 164               | 66             | 66         |
|                | 51.44      | 51.98       | 0.54       | 302               | 163            |            |
|                | 53.72      | 54.28       | 0.56       | 388               | 218            |            |
| 24YRAC123      | 54.76      | 55.56       | 0.80       | 345               | 276            | 2,884      |
|                | 57.68      | 58.42       | 0.74       | 509               | 377            | , ,        |
|                | 71.84      | 75.42       | 3.58       | 517               | 1,850          |            |
|                | 54.34      | 54.90       | 0.56       | 261               | 146            |            |
|                | 55.74      | 57.58       | 1.84       | 779               | 1,433          |            |
| 24YRAC124      | 72.76      | 74.06       | 1.30       | 1,039             | 1,351          | 3,799      |
|                | 76.90      | 78.64       | 1.74       | 468               | 814            | -,         |
|                | 78.84      | 79.18       | 0.34       | 163               | 55             |            |
| Note: Minimum  | Cut-off 15 | 0 el lo0o e | and 0.2m m | inimum thickr     |                |            |



| Drillhole ID           | From           | То             | Width        | eU₃O₃          | eU₃O <sub>8</sub> | Grade x          | Cumulativ    |
|------------------------|----------------|----------------|--------------|----------------|-------------------|------------------|--------------|
|                        |                |                |              | Av. Grade      | Max. Grade        | Thickness (GT)   | GT           |
|                        | (m)            | (m)            | (m)          | ≥ 150ppm       |                   | (ppm.m)          | (ppm.m)      |
| 2025 Manyir            | igee So        | uth Dril       | lholes       |                |                   |                  |              |
|                        | 50.22          | 51.03          | 0.81         | 292.8          | 482.0             | 237              |              |
|                        | 55.43          | 56.69          | 1.26         | 423.4          | 776.0             | 533              |              |
| 25YRAC001              | 58.67          | 59.73          | 1.06         | 689.0          | 1,438.0           | 730              | 2,127        |
|                        | 66.34          | 67.59          | 1.25         | 351.5          | 591.0             | 439              |              |
|                        | 75.05          | 75.89          | 0.84         | 222.2          | 319.0             | 187              |              |
| 05)/04 0000            | 62.63          | 63.67          | 1.04         | 273.1          | 499.0             | 284              | 440          |
| 25YRAC002              | 81.65          | 82.31          | 0.66         | 193.7          | 228.0             | 128              | 412          |
| 25YRAC003              | 57.17          | 58.85          | 1.68         | 291.2          | 475.0             | 489              | 489          |
| 25YRAC004              |                | NSR            | -            | -              | -                 | -                | -            |
|                        | 65.69          | 67.21          | 1.52         | 2,766.8        | 7,165.0           | 4,206            |              |
| 25YRAC005              | 71.39          | 71.98          | 0.59         | 269.7          | 434.0             | 159              | 4,365        |
| 25YRAC006              | 68.80          | 69.03          | 0.23         | 218.1          | 265.0             | 50               | 50           |
| 25YRAC007              | 58.71          | 59.86          | 1.15         | 296.7          | 500.0             | 341              | 341          |
| 25YRAC008              |                | NSR            | <u>-</u>     | _              | -                 | _                | <del>-</del> |
|                        | 50.09          | 50.71          | 0.62         | 205.4          | 284               | 127              |              |
|                        | 53.04          | 53.77          | 0.73         | 356.4          | 711               | 260              |              |
| 25YRAC009              | 55.52          | 57.36          | 1.84         | 603.6          | 1068              | 1,111            | 2,972        |
| 2011010000             | 74.90          | 75.99          | 1.09         | 1258.9         | 3587              | 1,372            | 2,072        |
|                        | 85.10          | 85.67          | 0.57         | 178.5          | 211               | 102              |              |
|                        | 46.32          | 46.57          | 0.25         | 161.1          | 173               | 40               |              |
|                        | 72.77          |                |              | 170.4          | 190               | 53               | 4,314        |
| 25YRAC010              |                | 73.08          | 0.31<br>5.04 | 827.9          | 3926              |                  |              |
|                        | 75.46          | 80.50          |              |                | 1                 | 4,173            |              |
|                        | 81.15<br>53.15 | 81.44<br>53.90 | 0.29<br>0.75 | 166.3<br>299.9 | 185<br>420.0      | 48<br>224.9      |              |
| 25YRAC011              | 76.82          | 77.21          | 0.75         | 193.8          | 253.0             | 75.6             | 301          |
|                        | 47.21          | 47.71          | 0.50         | 320.7          | 483.0             | 160.4            |              |
| 25YRAC012              | 76.62          | 78.04          | 1.42         | 266.8          | 431.0             | 378.9            | 539          |
| 25YRAC013              |                | NSR            | -            | =              | -                 | -                | -            |
| 25YRAC014              | 84.38          | 84.76          | 0.38         | 245.5          | 311.0             | 93.3             | 93           |
| 25YRAC015              | 69.23          | 69.70          | 0.47         | 172.7          | 194.0             | 81.2             | 81           |
| 25YRAC016              | 53.08<br>45.02 | 54.53<br>45.60 | 1.45<br>0.58 | 381.6<br>407.4 | 775.0<br>452.0    | 553.3<br>236.3   | 553          |
| 25YRAC017              | 45.71          | 46.97          | 1.26         | 277.30         | 513.0             | 349.4            | 1,485        |
| 2011010017             | 48.47          | 49.91          | 1.44         | 624.3          | 1,421.0           | 899.0            | 1,400        |
| 25YRAC018              |                | NSR            | -            | -              | -                 | -                | -            |
| 25YRAC019              |                | NSR            | -            | -              | -                 | -                | -            |
|                        | 55.20          | 57.99          | 2.79         | 537.1          | 1,421.0           | 1,498.5          |              |
| 25YRAC020              | 63.76          | 64.99          | 1.23         | 324.90         | 522.0             | 399.6            | 1,986        |
|                        | 65.42<br>41.02 | 65.88<br>42.00 | 0.46         | 191.0<br>483.0 | 221.0<br>985.0    | 87.9<br>473.3    |              |
|                        | 59.23          | 61.29          | 2.06         | 428.30         | 872.0             | 882.3            | 1,621        |
| 25YRAC021              | 80.20          | 80.40          | 0.20         | 160.80         | 174.0             | 32.2             | .,02.        |
|                        | 80.41          | 81.43          | 1.02         | 228.7          | 323.0             | 233.3            |              |
| 25YRAC022              |                | NSR            | -            | -              | -                 | -                | -            |
| 25YRAC023              |                | NSR            | -            | -              | -                 | -                | -            |
| 25YRAC024              | 60.20          | NSR<br>61.00   | - 0.90       | -<br>251.7     | 401.0             | - 201.4          | - 201        |
| 25YRAC025<br>25YRAC026 | 60.20          | 61.00<br>NSR   | 0.80         | 251.7          | 401.0             | 201.4            | 201          |
|                        | 63.21          | 64.23          | 1.02         | 256.0          | 381.0             | 261.1            |              |
| 25YRAC027              | 64.29          | 64.61          | 0.32         | 162.10         | 185.0             | 51.9             | 521          |
|                        | 64.66          | 65.79          | 1.13         | 184.3          | 214.0             | 208.3            |              |
| 25YRAC028              |                | NSR            | -            | -              | -                 | -                | -            |
| 25YRAC029              | 49.86          | 54.03          | 4.17         | 313.6          | 1,018.0           | 1,307.7          | 1,308        |
| 25YRAC030              |                | NSR            | -            | -              | -                 | -                | -            |
| 25YRAC031              | 72.02          | NSR<br>73.81   | -<br>1 78    | -<br>750.8     | 3 062 0           | -<br>1 336 /     | -            |
| 25YRAC032              | 72.03<br>80.02 | 73.81<br>80.60 | 1.78<br>0.58 | 750.8<br>191.8 | 3,062.0<br>230.0  | 1,336.4<br>111.2 | 1,448        |
|                        |                |                |              |                |                   | 1 1 1 1 4 4      |              |



| HoleID      | From                    | То                     | Thickness           | eU₃O₅<br>Av. Grade    | eU₃O₅<br>Max.<br>Grade  | Grade x<br>Thickness<br>(GT) | Cumulative<br>GT |
|-------------|-------------------------|------------------------|---------------------|-----------------------|-------------------------|------------------------------|------------------|
|             | (m)                     | (m)                    | (m)                 | ≥ 150ppm              |                         | (ppm.m)                      | (ppm.m)          |
| 2025 Manyir | ngee Nort               | h Drillho              | les                 |                       |                         |                              |                  |
|             | 94.92                   | 95.25                  | 0.33                | 175.5                 | 195.0                   | 57.9                         |                  |
|             | 96.65                   | 97.42                  | 0.77                | 282.7                 | 541.0                   | 217.7                        |                  |
|             | 97.98                   | 98.26                  | 0.28                | 178.1                 | 199.0                   | 49.9                         |                  |
| 25YRAC034   | 100.30                  | 100.52                 | 0.22                | 170.3                 | 461.0                   | 37.5                         | 992.3            |
|             | 101.18                  | 101.49                 | 0.31                | 310.8                 | 461.0                   | 96.3                         |                  |
|             | 105.83                  | 106.77                 | 0.94                | 242.1                 | 327.0                   | 227.6                        |                  |
|             | 107.31                  | 108.60                 | 1.29                | 236.8                 | 324.0                   | 305.5                        |                  |
| 25YRAC035   | 97.59                   | 98.89                  | 1.30                | 448.7                 | 745.0                   | 583.3                        | 583.3            |
|             | 90.97                   | 91.80                  | 0.83                | 278.7                 | 521.0                   | 231.3                        |                  |
| 25YRAC036   | 92.33                   | 92.61                  | 0.28                | 168.7                 | 198.0                   | 47.2                         | 991.9            |
|             | 93.37                   | 94.29                  | 0.92                | 536.7                 | 1,108.0                 | 493.8                        |                  |
|             | 94.93                   | 95.54                  | 0.61                | 359.9                 | 625.0                   | 219.5                        |                  |
|             | 92.96                   | 95.16                  | 2.20                | 471.4                 | 1,194.0                 | 1,037.1                      | _                |
|             | 95.31<br>97.47          | 95.86                  | 0.55                | 236.2                 | 344.0                   | 129.9                        | -                |
|             | 98.99                   | 97.86<br>101.55        | 0.39<br>2.56        | 237.5<br>278.1        | 307.0<br>473.0          | 92.6<br>711.9                | -                |
| 25YRAC037   | 103.44                  | 101.55                 | 3.00                | 320.0                 | 623.0                   | 960.0                        | 3,374.2          |
|             | 106.50                  | 100.44                 | 0.75                | 324.1                 | 519.0                   | 243.1                        |                  |
|             | 108.77                  | 107.23                 | 0.45                | 240.3                 | 302.0                   | 108.1                        |                  |
|             | 114.11                  | 114.59                 | 0.48                | 190.5                 | 222.0                   | 91.4                         |                  |
|             | 96.92                   | 99.64                  | 2.72                | 887.2                 | 1,956.0                 | 2,413.2                      |                  |
| 25YRAC038   | 108.48                  | 108.74                 | 0.26                | 179.1                 | 208.0                   | 46.6                         | 2,459.8          |
|             | 92.86                   | 93.30                  | 0.44                | 218.5                 | 296.0                   | 96.1                         | 968.4            |
| 25YRAC039   | 93.88                   | 96.42                  | 2.54                | 343.4                 | 565.0                   | 872.2                        |                  |
|             | 88.89                   | 93.69                  | 4.80                | 1,016.5               | 4,487.0                 | 4,879.2                      |                  |
| 25YRAC040   | 97.36                   | 97.71                  | 0.35                | 184.70                | 224.0                   | 64.6                         | 4,981.0          |
|             | 115.45                  | 115.68                 | 0.23                | 161.7                 | 184.0                   | 37.2                         |                  |
|             | 93.68                   | 94.34                  | 0.66                | 252.9                 | 380.0                   | 166.9                        |                  |
|             | 94.83                   | 95.11                  | 0.28                | 186.4                 | 214.0                   | 52.2                         |                  |
| 25YRAC041   | 96.07                   | 98.47                  | 2.40                | 243.1                 | 462.0                   | 583.4                        | 2,835.2          |
|             | 98.74                   | 101.53                 | 2.79                | 710.9                 | 1,620.0                 | 1,983.4                      |                  |
|             | 101.67                  | 101.90                 | 0.23                | 214.3                 | 264.0                   | 49.3                         |                  |
| 25YRAC042   | 109.04                  | 109.38                 | 0.34                | 201.4                 | 252.0                   | 68.5                         | 68.5             |
|             | 94.67                   | 95.19                  | 0.52                | 281.0                 | 446.0                   | 146.1                        |                  |
|             | 95.56                   | 96.27                  | 0.71                | 308.8                 | 445.0                   | 219.2                        |                  |
| 25YRAC043   | 97.04                   | 97.76                  | 0.72                | 307.2                 | 388.0                   | 221.2                        | 1,345.1          |
| 2011010040  | 98.50                   | 99.08                  | 0.58                | 181.5                 | 214.0                   | 105.3                        | 1,040.1          |
|             | 103.89                  | 104.27                 | 0.38                | 231.2                 | 323.0                   | <i>87</i> .9                 |                  |
|             | 112.13                  | 113.55                 | 1.42                | 398.2                 | 979.0                   | 565.4                        |                  |
| 25YRAC044   | 100.81                  | 103.49                 | 2.68                | 371.9                 | 769.0                   | 996.7                        | 996.7            |
| 25YRAC045   | 101.28                  | 105.08                 | 3.80                | 285.9                 | 477.0                   | 1,086.4                      | 1,086.4          |
|             | 95.33                   | 96.18                  | 0.85                | 305.4                 | 444.0                   | 259.6                        |                  |
|             | 99.59                   | 103.92                 | 4.33                | 330.8                 | 827.0                   | 1,432.4                      |                  |
| 25YRAC046   | <b>104.15</b><br>111.46 | <b>107.81</b> 111.98   | <b>3.66</b> 0.52    | <b>368.4</b> 256.0    | 675.0                   | <b>1,348.3</b> <i>133.1</i>  | 3,350.2          |
|             | 113.79                  | 114.36                 | 0.52                | 234.6                 | 359.0<br>330.0          | 133.7                        | _                |
|             | -                       |                        |                     |                       |                         |                              |                  |
|             | 114.40<br><b>91.19</b>  | 114.66<br><b>92.76</b> | 0.26<br><b>1.57</b> | 165.5<br><b>547.9</b> | 181.0<br><b>1,786.0</b> | 43.0<br><b>860.2</b>         | +                |
|             | 92.85                   | 93.71                  | 0.86                | 295.8                 | 497.0                   | 254.4                        | 1                |
|             | 94.43                   | 94.97                  | 0.54                | 288.3                 | 508.0                   | 155.7                        | +                |
| 25YRAC047   | 97.95                   | 98.51                  | 0.56                | 231.8                 | 333.0                   | 129.8                        | 1,622.2          |
|             | 98.93                   | 99.60                  | 0.67                | 262.9                 | 481.0                   | 176.1                        | 1                |
|             | 100.26                  | 100.47                 | 0.07                | 219.1                 | 260.0                   | 46.0                         | 1                |
|             | 101.86                  | 103.40                 | 1.54                | 254.8                 | 444.0                   | 392.4                        | †                |
| 25YRAC048   | 103.50                  | 103.73                 | 0.23                | 174.3                 | 197.0                   | 40.1                         |                  |
| 23111/10040 |                         | . 50.70                | 0.61                | 235.0                 | 325.0                   | 143.4                        | ⊣ ~              |



| HoleID        | From        | То         | Thickness     | eU₃O₅<br>Av. Grade | eU₃Oଃ<br>Max.<br>Grade | Grade x<br>Thickness<br>(GT) | Cumulative<br>GT |
|---------------|-------------|------------|---------------|--------------------|------------------------|------------------------------|------------------|
|               | (m)         | (m)        | (m)           | ≥ 150ppm           |                        | (ppm.m)                      | (ppm.m)          |
| 2025 Manyir   | ngee Nort   | th Drillho | les (Contin   | ued)               |                        |                              |                  |
|               | 95.40       | 99.93      | 4.53          | 1,280.2            | 4,667.0                | 5,799.3                      |                  |
|               | 103.67      | 103.97     | 0.30          | 171.6              | 199.0                  | 51.5                         |                  |
|               | 105.50      | 105.81     | 0.31          | 261.4              | 366.0                  | 81.0                         | 6,063.3          |
|               | 109.21      | 109.43     | 0.22          | 179.9              | 195.0                  | 39.6                         |                  |
| 25YRAC049     | 113.29      | 113.76     | 0.47          | 195.5              | 251.0                  | 91.9                         |                  |
| 25YRAC050     | 106.57      | 107.18     | 0.61          | 174.0              | 196.0                  | 106.1                        | 106.1            |
| 25YRAC051     | 102.66      | 104.39     | 1.73          | 422.5              | 632.0                  | 730.9                        | 730.9            |
| 25YRAC052     | 97.06       | 99.50      | 2.44          | 386.0              | 943.0                  | 941.8                        | 941.8            |
|               | 89.08       | 89.88      | 0.80          | 248.0              | 328.0                  | 198.4                        |                  |
| 25YRAC053     | 90.23       | 90.74      | 0.51          | 177.5              | 204.0                  | 90.5                         | 326.5            |
|               | 90.81       | 91.04      | 0.23          | 163.3              | 177.0                  | 37.6                         |                  |
|               | 93.51       | 93.82      | 0.31          | 158.7              | 166.0                  | 49.2                         |                  |
| 25YRAC054     | 94.11       | 94.97      | 0.86          | 269.8              | 334.0                  | 232.0                        | 368.3            |
|               | 95.57       | 96.05      | 0.48          | 181.5              | 208.0                  | 87.1                         |                  |
|               | 82.55       | 82.94      | 0.39          | 166.5              | 188.0                  | 64.9                         |                  |
|               | 82.96       | 83.66      | 0.70          | 223.0              | 293.0                  | 156.1                        |                  |
| 25YRAC055     | 83.86       | 86.03      | 2.17          | 251.9              | 359.0                  | 546.6                        | 853.4            |
|               | 113.31      | 113.56     | 0.25          | 172.1              | 206.0                  | 43.0                         |                  |
|               | 114.62      | 114.87     | 0.25          | 171.0              | 191.0                  | 42.8                         |                  |
| 25YRAC056     | 101.79      | 102.82     | 1.03          | 272.5              | 401.0                  | 280.7                        | 280.7            |
| Note: Minimum | cut-off 150 | ) ppm eU₃O | 8and 0.2m min | imum thicknes      | s.                     |                              |                  |

| HoleID                                                                     | From      | То    | Thickness | eU₃O₅<br>Av. Grade | eU₃O₅<br>Max.<br>Grade | Grade x<br>Thickness<br>(GT) | Cumulative<br>GT |
|----------------------------------------------------------------------------|-----------|-------|-----------|--------------------|------------------------|------------------------------|------------------|
|                                                                            | (m)       | (m)   | (m)       | ≥ 150ppm           |                        | (ppm.m)                      | (ppm.m)          |
| 2025 Cosgro                                                                | ve Drillh | oles  |           |                    |                        |                              |                  |
|                                                                            | 49.04     | 49.52 | 0.48      | 295.7              | 492.0                  | 141.9                        |                  |
| 25YRAC069                                                                  | 73.04     | 73.71 | 0.67      | 518.1              | 1,028.0                | 347.1                        | 812.8            |
|                                                                            | 77.17     | 78.14 | 0.97      | 333.7              | 508.0                  | 323.7                        |                  |
|                                                                            | 50.09     | 50.66 | 0.57      | 456.8              | 869.0                  | 260.4                        |                  |
| 25YRAC070                                                                  | 63.55     | 64.74 | 1.19      | 365.5              | 910.0                  | 434.9                        | 862.5            |
| 251KAC0/0                                                                  | 65.56     | 65.76 | 0.20      | 196.0              | 220.0                  | 39.20                        | 002.5            |
|                                                                            | 68.14     | 68.55 | 0.41      | 312.1              | 485.0                  | 128.0                        |                  |
| Note: Minimum cut-off 150ppm eU₃O <sub>8</sub> and 0.2m minimum thickness. |           |       |           |                    |                        |                              |                  |



### **Appendix C: Bennet Well Mineral Resource Estimate**

A Mineral Resource Estimate (JORC 2012) for the mineralisation at Bennet Well was completed by Ravensgate Mining Industry Consultants (Ravensgate) in 2015 and is based on information compiled by Mr Jess Oram, Executive Director of Cauldron Energy at that time and Mr Stephen Hyland, who was a Principal Consultant of Ravensgate. Mr Oram is a Member of the Australasian Institute of Geoscientists and Mr Hyland is a Fellow of the Australasian Institute of Mining and Metallurgy.

The mineralisation at Bennet Well is a shallow accumulation of uranium hosted in unconsolidated sands close to surface (less than 100 m downhole depth) in Cretaceous sedimentary units of the Ashburton Embayment.

The Bennet Well deposit is comprised of four spatially separate deposits; namely Bennet Well East, Bennet Well Central, Bennet Well South and Bennet Well Channel.

The Mineral Resource (JORC 2012) estimate is:

- Inferred Resource: 16.9 Mt at 335 ppm  $eU_3O_8$  for total contained uranium-oxide of 12.5 Mlb (5,670 t) at 150 ppm cut-off;
- Indicated Resource: 21.9 Mt at 375 ppm  $eU_3O_8$  for total contained uranium-oxide of 18.1 Mlb (8,230 t) at 150 ppm cut-off;
- total combined Mineral Resource: 38.9 Mt at 360 ppm  $eU_3O_8$ , for total contained uranium-oxide of 30.9 Mlb (13,990 t) at 150 ppm cut-off.

Table: Mineral Resource (JORC 2012) at various cut-off

| Deposit           | Cutoff<br>(ppm eU₃O₃) | Deposit Mass (t) | Deposit Grade<br>(ppm eU₃O₅) | Mass U₃O₃ (kg) | Mass U <sub>3</sub> O <sub>8</sub> (lbs) |
|-------------------|-----------------------|------------------|------------------------------|----------------|------------------------------------------|
| Bennet Well_Total | 125                   | 39,207,000       | 355                          | 13,920,000     | 30,700,000                               |
| Bennet Well_Total | 150                   | 38,871,000       | 360                          | 13,990,000     | 30,900,000                               |
| Bennet Well_Total | 175                   | 36,205,000       | 375                          | 13,580,000     | 29,900,000                               |
| Bennet Well_Total | 200                   | 34,205,000       | 385                          | 13,170,000     | 29,000,000                               |
| Bennet Well_Total | 250                   | 26,484,000       | 430                          | 11,390,000     | 25,100,000                               |
| Bennet Well_Total | 300                   | 19,310,000       | 490                          | 9,460,000      | 20,900,000                               |
| Bennet Well_Total | 400                   | 10,157,000       | 620                          | 6,300,000      | 13,900,000                               |
| Bennet Well_Total | 500                   | 6,494,000        | 715                          | 4,640,000      | 10,200,000                               |
| Bennet Well_Total | 800                   | 1,206,000        | 1175                         | 1,420,000      | 3,100,000                                |

| Deposit           | Cutoff (ppm                     | Deposit Mass (t) | Deposit Grade (ppm | Mass U <sub>3</sub> O <sub>8</sub> (kg) | Mass U₃O <sub>8</sub> (lbs) |
|-------------------|---------------------------------|------------------|--------------------|-----------------------------------------|-----------------------------|
|                   | U <sub>3</sub> O <sub>8</sub> ) |                  | U₃O <sub>8</sub> ) |                                         |                             |
|                   |                                 |                  |                    |                                         |                             |
| BenWell_Indicated | 125                             | 22,028,000       | 375                | 8,260,000                               | 18,200,000                  |
| BenWell_Indicated | 150                             | 21,939,000       | 375                | 8,230,000                               | 18,100,000                  |
| BenWell_Indicated | 175                             | 21,732,000       | 380                | 8,260,000                               | 18,200,000                  |
| BenWell_Indicated | 200                             | 20,916,000       | 385                | 8,050,000                               | 17,800,000                  |
| BenWell_Indicated | 250                             | 17,404,000       | 415                | 7,220,000                               | 15,900,000                  |
| BenWell_Indicated | 300                             | 13,044,000       | 465                | 6,070,000                               | 13,400,000                  |
| BenWell_Indicated | 400                             | 7,421,000        | 560                | 4,160,000                               | 9,200,000                   |
| BenWell_Indicated | 500                             | 4,496,000        | 635                | 2,850,000                               | 6,300,000                   |
| BenWell_Indicated | 800                             | 353,000          | 910                | 320,000                                 | 700,000                     |

| Deposit          | Cutoff (ppm<br>U₃O <sub>8</sub> ) | Deposit Mass (t) | Deposit Grade<br>(ppm U₃O₃) | Mass U₃O <sub>8</sub> (kg) | Mass U₃O <sub>8</sub> (lbs) |
|------------------|-----------------------------------|------------------|-----------------------------|----------------------------|-----------------------------|
| BenWell_Inferred | 125                               | 17,179,000       | 335                         | 5,750,000                  | 12,700,000                  |
| BenWell_Inferred | 150                               | 16,932,000       | 335                         | 5,670,000                  | 12,500,000                  |
| BenWell_Inferred | 175                               | 14,474,000       | 365                         | 5,280,000                  | 11,600,000                  |
| BenWell_Inferred | 200                               | 13,288,000       | 380                         | 5,050,000                  | 11,100,000                  |
| BenWell_Inferred | 250                               | 9,080,000        | 455                         | 4,130,000                  | 9,100,000                   |
| BenWell_Inferred | 300                               | 6,266,000        | 535                         | 3,350,000                  | 7,400,000                   |
| BenWell_Inferred | 400                               | 2,736,000        | 780                         | 2,130,000                  | 4,700,000                   |
| BenWell_Inferred | 500                               | 1,998,000        | 900                         | 1,800,000                  | 4,000,000                   |
| BenWell_Inferred | 800                               | 853,000          | 1285                        | 1,100,000                  | 2,400,000                   |

Note 1: table shows rounded numbers therefore units may not convert nor sum exactly Note 2: preferred 150 ppm cut-off shown in bold.



### **Appendix D: Manyingee South Resource Estimate**

A Mineral Resource Estimate for the mineralisation at Manyingee South was completed by AMC Consultants Pty Ltd (AMC) in 2025.

The Mineral Resources were reported in accordance with the JORC (2012) Code. The MRE was completed by Mr Dmitry Pertel, Principal Geologist of AMC. Geological information and Quality Assurance and Quality Control (QAQC) analysis was completed by Cauldron's Exploration Manager, Mr John Higgins and assisted by Mr Robert Annett, consulting geologist engaged by Cauldron. The conversion of downhole gamma grades to estimated  $eU_3O_8$  grades was undertaken by Mr David Wilson, Principal Geoscientist with 3D Exploration. Dmitry assumes Competent Person status for the reported Mineral Resources, John and Robert assume Competent Person status for the Geological information and QAQC analysis, and David assumes Competent Person status for the reported  $eU_3O_8$  grades.

The mineralisation at Manyingee South is a shallow accumulation of uranium hosted in unconsolidated sands close to surface (less than 100 m downhole depth) developed within a palaeochannel of Early Cretaceous age.

The Mineral Resource (JORC 2012) estimate is:

Inferred Resource: 15.5 Mt at 325 ppm eU₃O<sub>8</sub> for total contained uranium-oxide of 11.1 Mlbs (5,045 t) at 100 ppm eU₃O<sub>8</sub> cut-off.

Table B: Manyingee South Deposit Mineral Resource (JORC 2012) at various cut-off grades.

| Deposit                  | Cutoff                   | Tonnes | e           | U₃O <sub>8</sub> |
|--------------------------|--------------------------|--------|-------------|------------------|
|                          | (ppm eU₃O <sub>8</sub> ) | (Mt)   | Grade (ppm) | Metal (Mlbs)     |
| Manyingee South Inferred | 0                        | 15.48  | 324         | 11.07            |
| Manyingee South Inferred | 100                      | 15.47  | 325         | 11.07            |
| Manyingee South Inferred | 125                      | 15.42  | 325         | 11.06            |
| Manyingee South Inferred | 150                      | 14.92  | 331         | 10.9             |
| Manyingee South Inferred | 175                      | 14.19  | 340         | 10.64            |
| Manyingee South Inferred | 200                      | 13.12  | 352         | 10.19            |
| Manyingee South Inferred | 250                      | 9.71   | 396         | 8.48             |
| Manyingee South Inferred | 300                      | 7.09   | 443         | 6.92             |
| Manyingee South Inferred | 400                      | 4.4    | 500         | 4.84             |
| Manyingee South Inferred | 500                      | 1.5    | 622         | 2.05             |
| Manyingee South Inferred | 800                      | 0.07   | 1056        | 0.16             |

Manyingee South grade tonnage report with cut-off grades between 0 and 800ppm eU<sub>3</sub>O<sub>8</sub> applied to Uranium oxide grades. The Mineral Resource classification applies to the 100ppm cut-off grade.

# Appendix E:

# **Section 1: Sampling Techniques and Data**

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.                                                                                                                                                    | The principal sampling method for all drilling conducted at the Manyingee South prospect and larger Yanrey project area has been by downhole geophysical gamma logging to determine uranium assay and <i>in-situ</i> formation density data. Data collected at 2 cm sample rate comprised gamma ray (Triple Gamma / Geiger Probe), single point resistivity and dual density. Downhole geophysical log data was collected by contractors, Borehole Wireline of Adelaide SA using Mount Sopris and GeoVista made downhole slim-line tools.                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All uranium grades are determined from the gamma (counts per second) logs using the (non dead-time corrected) calibrated gamma probe, the application of a smoothing filter on the raw data, HQ drill casing correction, hole-size correction, moisture correction, and a correction for secular disequilibrium. Drill hole formation density was estimated from the calibrated dual density probe (short spaced and long spaced measurements). These data were corrected for the high background gamma environment of the mineralised zone (by running the probe without the source in grades above 800 ppm eU <sub>3</sub> O <sub>8</sub> ) and for variations in hole-size by applying a hole-size correction model derived from the AMDEL calibration facility. |
|                        | Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.                                                                                                                                                                                                                                                                                                                                     | Downhole gamma logging was performed by Borehole Wireline using a Geovista 4322 total count gamma probe. Calibration of gamma probe was completed using non-dead-time corrected grade and hole-size correction models, and for the density sonde using a density model and a hole-size correction model. The probes were calibrated in Adelaide at the Department of Water facility in Regency Park.                                                                                                                                                                                                                                                                                                                                                                |
|                        | Aspects of the determination of mineralisation that are Material to the Public Report.                                                                                                                                                                                                                                                                                                                                                                                            | Data was collected at 2cm (0.02m) sample intervals down the length of the drillhole. Uranium assay grades were determined from gamma logs using a non dead-time corrected calibrated gamma probe, a smoothing filter on the raw data, hole-size correction, moisture correction, and a correction for secular disequilibrium. Downhole geophysical logging was undertaken by contractors, Borehole Wireline of Adelaide SA, using GeoVista made downhole slim-line tools.                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Secular disequilibrium was established for the uranium mineralisation at Yanrey during the previous exploration, by Cauldron Energy Ltd, in 2014. The equilibrium samples were from various mineralized intercepts at Yanrey and analysed by ANSTO in Sydney.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Drilling<br>techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Air-core drilling was undertaken during the period from November to December 2025 as a follow on to aircore drilling undertaken during July-November 2024.  Historical drilling within the Bennet Well – Yanrey project consists of various phases of rotary mud, aircore and diamond core drilling conducted between 1979 (historical) and 2014 (CXU). All holes were drilled vertically. The breakdown of programs is as follows:  ¬ pre-2013: historical drilling consisting mostly of aircore, comprising 285 holes for a total of 29,065 m and rotary mud, consisting of 95 holes for 8,993 m.  ¬ 2013: diamond core drilling comprising a total of 8 holes, consisting of 356 m rotary mud pre-collars and 257 m of HQ diamond core tails. The rotary mud pre-collars were drilled at a diameter of 5 ¼" while the diamond core tails were drilled with triple-tube PQ (diameter 83mm) in areas of hard drilling, and subsequently HQ (61mm) when the target zone of mineralisation was intersected.  ¬ 2014: approximately 90 % of the drill program was comprised of rotary mud (diameter for a total of 67 holes (5,785 m), while |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Drill sample recovery  | Method of recording and assessing core and chip sample recoveries and results                                                                                                                                                                                                           | 10% consisted of triple tube diamond-drilled PQ core for a total of 6 holes (534m). The bore wall was stabilised by bentonite muds and chemical polymers.  Cauldron geologists logged the drill holes and assessed the sample recovery during the process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ,                      | assessed.                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                        | Measures taken to maximise sample recovery and ensure representative nature of the samples.                                                                                                                                                                                             | Cauldron logged the drill holes and samples and used quality controls such as blanks, standards, and duplicates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                        | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.                                                                                                                        | Cauldron has not identified any relationship between sample recovery and the determination of uranium assay from gamma ray data. Variations in uranium grade caused by changing drillhole size is minimised through an accurate measurement of hole diameter using a calliper tool and application of a hole-size correction factor. Hole-size correction models have been determined by Borehole Wireline, using data collected at the Department of Water calibration facility at Regency Park in Adelaide; with a hole-size correction factor derived as a function of drillhole diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Logging                | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.                                                                                       | All air-core samples are collected in chip trays and geologically logged to assist in the interpretation of the resistivity and density profiles derived from the downhole geophysical probes. Uranium assay for a potential <i>in-situ</i> leach project requires mineralisation to be hosted in a porous sediments that are readily leachable. Porosity is estimated from the dual density data. No geotechnical data was collected due to the generally flat-lying geology and mostly unconsolidated sediments. Holes are first logged through the drill rods and then with a second set of logs run in the open hole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                        | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.                                                                                                                                                                                  | The geological logging completed was both qualitative (sediment/rock type, colour, degree of oxidation, etc.) and quantitative (recording of specific depths and various geophysical data). The samples were sieved and photographed wet (lightly sprayed with water) and dry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                        | The total length and percentage of the relevant intersections logged.                                                                                                                                                                                                                   | The gamma ray results were logged to the database and were used together with the geology and mineralogy information to establish U interceptions with are being reported in this announcement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

| Sub-sampling techniques and                      | If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                                                        | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| sample<br>preparation                            | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.                                                                                                                                    | Cuttings samples were not collected for conventional assay as previous experience has shown that the sampling method is inappropriate due to the samples being taken from a charged subsurface aquifer.                                                                                                                                                                                                                                        |  |  |
|                                                  |                                                                                                                                                                                                                                  | Gamma grades were calculated directly via deconvolution of downhole gamma logs.                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  | For all sample types, the nature, quality and appropriateness of the sample preparation technique.                                                                                                                               | Air-core drilling allows the use of downhole geophysical probes which can derive assay for uranium mineralisation. A check against assay and density derived from gamma and density probes, respectively, will be completed using physical sampling derived from core drilled during the 2014 program.                                                                                                                                         |  |  |
|                                                  | Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.                                                                                                                            | A reference drill hole (24YRAC143), containing uranium mineralisation, was established to provide a regular check or the repeatability of the gamma probe. This cross-check is also used to check if the correct calibration models are applied to the data, and to ascertain potential spurious results from a damaged probe or a probe that drifts out of calibration range Calibration runs are done weekly whilst drilling is in progress. |  |  |
|                                                  | Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.                                                         | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  | Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                                                                                            | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Quality of assay<br>data and<br>laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.                                                                                 | No assay results are being reported.                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                  | For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                  | Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.                 | No assay results are being reported.                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Verification of sampling and assaying            | The verification of significant intersections by either independent or alternative company personnel.                                                                                                                            | No assay results are being reported.                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                  | The use of twinned holes.                                                                                                                                                                                                        | Drilling at Manyingee South prospect is a new exploration area. To date no twinned holes have been completed.  Diamond drilling is planned for 2026 with the holes planned to twin high-grade drillholes from the 2024 & 2025 aircore drilling programs. Exact hole locations have not yet been selected as drilling is ongoing.                                                                                                               |  |  |
|                                                  | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.                                                                                                       | No assay results are being reported.                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

|                                                                  | Discuss any adjustment to assay data.                                                                                                                                                                                        | No assay results are being reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location of data points                                          | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.                                                  | Cauldron has surveyed the collar positions of the drill holes with handheld GPS, and the survey provided sufficient accuracy whilst drilling is underway Upon completion of the drilling program the holes will be surveyed by differential RTK GPS for very high precision. The quality of survey data is fit for the purpose of planning exploration programs, generating targets for investigation, and further resource definition. No new Mineral Resource or Ore Reserve has been estimated.                                                                                                                                                                                                                                                                                                    |
|                                                                  | Specification of the grid system used.                                                                                                                                                                                       | Cauldron utilised GDA2020 Zone 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                  | Quality and adequacy of topographic control.                                                                                                                                                                                 | The primary topographic control is from SRTM. This technique is adequate given the generally flat-lying nature of the sediments. The highly accurate RTK pickups of collars from the 2013-2015 drilling is for only a small portion of the total drilling of the deposit. Lidar DTM was used for topographic control over the 2015 drilling at Bennet Well resource. Outside the Bennet Well resource, the SRTM derived data provide the best means to mitigate against level-busts that would occur with RL derived from two different methods. Cauldron has surveyed the collar positions of the drill holes reported in this announcement with handheld GPS, and the survey provided good precision and accuracy. The holes will soon be surveyed by differential RTK GPS for very high precision. |
| Data spacing and distribution                                    | Data spacing for reporting of Exploration<br>Results.                                                                                                                                                                        | For the present drilling program, most air-core drill holes are spaced along lines at between 100 and 200m W-E. The drill lines are planned 200m to 800m apart, as shown in various Figures in this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                  |                                                                                                                                                                                                                              | Spacing of holes drilled historically is variable between 30 and 200m on individual fence lines, and 50m to 1,100m between fence lines along the strike.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                  |                                                                                                                                                                                                                              | Spacing of the core holes from the 2013 drilling program varied between 350m and 800m within individual prospects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                  |                                                                                                                                                                                                                              | The spacing of the drill holes from the 2014 program varied between 10 m and 800 m within individual prospects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                  |                                                                                                                                                                                                                              | The spacing of the drill holes from the 2015 program varied between 50m and 250m within individual prospect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                  | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | The area occupied by the deposit is very large and therefore drill spacing has always been variable. Drill spacings were sufficient to permit the calculation of a maiden Mineral Resource released on 02Apr2025.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                  | Whether sample compositing has been applied.                                                                                                                                                                                 | For the present AC drilling program, downhole geophysical data was collected at 2cm (0.02m) sample intervals. All downhole geophysical data was later composited to 0.10m increments for reporting the AC drilling results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Orientation of<br>data in relation to<br>geological<br>structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.                                                                   | All drill holes were drilled vertically since the sediments are mostly unconsolidated and generally flat-lying. All holes therefore, sample the true width of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.                   | No sampling bias is observed by the orientation of the drill holes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Sample security   | The measures taken to ensure sample security.                         | Chip trays collected from each aircore drill hole are stored securely in a locked sea-container at the Yanrey Exploration Camp. Chip trays and Diamond drill core from the 2008 and 2013 drill programs is also stored at a secure location on the project site, in lockable sea containers.  Cuttings samples were not collected for conventional assay as previous experience has shown that the sampling method is inappropriate due to the samples being taken from a charged subsurface aquifer. |
|-------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audits or reviews | The results of any audits or reviews of sampling techniques and data. | Cauldron's Competent Person has verified all sampling techniques and data collection is of high standard and no reviews are required at this stage.                                                                                                                                                                                                                                                                                                                                                   |

# **Section 2: Report of Exploration Results**

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.                                                                                                                                   | The Yanrey Uranium Project comprises 16 granted exploration tenements and 4 exploration licences under application (E08/1489, E08/1490, E08/1493, E08/1501, E08/2017, E08/2081, E08/2205, E08/2385, E08/2386, E08/2387, E08/2774, E08/3088, E08/3066, E08/3068, E08/3088, E08/3201, E08/3204, E08/3611, E08/3686, E08/3688 and E08/3791) in northwest Western Australia. covering a total area of 1,340 km².                                                                                                              |
|                                                  | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.                                                                                                                                                                                                                                                                       | All tenements are in good standing and Cauldron is unaware of any impediments to exploration of these licences.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Exploration<br>done by other<br>parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                  | An 80 km long regional redox front and several palaeochannels were identified by open hole drilling by CRA Exploration Pty Ltd (CRAE) during the 1970s and early 1980s. CRAE drilled over 200 holes in the greater Yanrey Project area, resulting in the discovery of the Manyingee Deposit and the identification of uranium mineralisation in the Bennet Well channel and the Spinifex Well Channel. Uranium mineralisation was also identified in the Ballards and Barradale Prospects.                                |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                  | At least 15 major palaeochannels have been identified in the greater Yanrey project area at the contact between the Cretaceous aged marine sediments of the Carnarvon Basin and the Proterozoic Yilgarn Block which lies along the granitic and metamorphic ancient coastline. These palaeochannels have incised the underlying Proterozoicaged granite and metamorphic rocks, which are subsequently filled and submerged by up to 150m of mostly unconsolidated sand and clay of Mesozoic, Tertiary and Quaternary age. |
| Drill hole<br>Information                        | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:  o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth hole length. | Refer to the tables above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  | If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.                                                                                                                                                                | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Data<br>aggregation<br>methods                   | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.                                                                                                                                                                                                         | Average reporting intervals are derived from applying a cut-off grade of 150 ppm $U_3O_8$ for a minimum thickness of 0.20m and maximum internal dilution of 0.20m. A maximum internal dilution of 0.20m was used to aggregate a less mineralised zone within bounding higher-grade material for thick intervals, as long as the grade-thickness of the interval was above cutoff (= 150 x 0.20m).                                                                                                                         |

|                                                                                 | Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.                                                                                                                                | The length of assay sample intervals varies for all results, therefore a weighted average on a 0.20m composite has been applied when calculating assay grades to take account of the size of each interval.  The higher-grade intervals quoted in Table 1 are derived by length averaging intervals greater than 0.20m width that have assays above 500ppm eU <sub>3</sub> O <sub>8</sub> ; sometimes these higher grade intervals appear inside a lower grade zone defined by the lower 150 ppm cutoff. A maximum internal dilution of 0.20m was used to aggregate a thin barren zone within bounding higher-grade material as long as the grade-thickness of the interval was above cutoff (= 500 x 0.20m). |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                           | No metal equivalents are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | These relationships are particularly important in the reporting of Exploration Results.                                                                                                                                                                                                                                                                                               | All drilling at Manyingee South is vertical.  The overall dip of the mineralisation at the Manyingee South prospect is presumed to be near-horizontal therefore, all mineralisation values could be considered the true width.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                 | If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.                                                                                                                                                                                                                                                                   | All drilling at Manyingee South is vertical.  The overall dip of the mineralisation at the Manyingee South prospect is presumed to be near-horizontal therefore, all mineralisation values could be considered the true width.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                 | If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').                                                                                                                                                                                                                     | All drilling at Manyingee South is vertical.  The overall dip of the mineralisation at the Manyingee South prospect is presumed to be near-horizontal therefore, all mineralisation values could be considered the true width.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Diagrams                                                                        | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                     | Included in the body of this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Balanced<br>reporting                                                           | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                             | All drill locations are shown in Table 2; intercepts that are greater than 150 ppm for at least 0.20m in thickness, are shown in Table 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Other<br>substantive<br>exploration data                                        | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Metallurgical sighter testing was completed by the Australian Nuclear Science and Technology Organisation (ANSTO) for the diamond core drilled in 2013, with further testing drilled in 2014 and 2015. Geochemical assaying was also completed for the diamond core from both 2013, 2014 and 2015.  Further testing is planned on core drillholes intended to be drilled in 2026.                                                                                                                                                                                                                                                                                                                             |
| Further work                                                                    | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).                                                                                                                                                                                                                                                | Further AC and Diamond Core drilling to increase the Mineral Resource of the Bennet Well deposit. Further passive seismicity surveys to further map palaeochannel(s) and exploration drilling is required to identify extensions to mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                 | Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.                                                                                                                                                                                     | Plans and sections have been included in this report as appropriate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |