Moho Resources Ltd ABN 81 156 217 971 168 Stirling Hwy Nedlands WA 6009 P. +61 8 9481 0389
E. admin@mohoresources.com.au
mohoresources.com.au
ASX MOH

ASX RELEASE | 15 December 2025

Bush Chook drilling complete while new tenement acquisitions deliver drill-ready targets.

Highlights

- Maiden drilling program completed at Bush Chook Project's Swan Prospect, with two key alteration mineral assemblages observed in all four holes, vertically below soils with high gold values¹:
 - o **Quartz-goethite alteration** often associated with oxide gold mineralisation.
 - Quartz-pyrite-chlorite alteration often associated with primary gold mineralisation.
- The acquisition of 15 neighbouring Prospecting Licences (PLs) from Codrus Minerals Limited (ASX:CDR) adds six drill-ready targets with trench sampling up to 9m at 1.86g/t Au and rock chips up to 13.6g/t Au.
- Twelve PLs lie outside native title claims and expand the Bush Chook Project footprint to 440km².

Moho Resources Ltd (ASX:MOH) has encountered two key alteration assemblages in all four holes beneath gold-anomalous soils following the completion of four drill holes across 540m at its Bush Chook Gold Project in Western Australia's Pilbara region. Samples will arrive in the lab this week and assays are expected in late January, 2026.

The maiden drilling program at Bush Chook's Swan Prospect was curtailed by rain with five holes deferred until March 2026 or earlier, subject to weather.

Meanwhile, the acquisition of 15 prospecting licences from Codrus Minerals Ltd (ASX: CDR) provide six drill-ready targets supported by strong soil anomalies and high-grade rock chips. In addition, trench sampling shows 9m at 1.86g/t Au. These targets will be drilled in 2026 as soon as weather and permitting allows.

Moho Resources Chairman, Mr Peter Christie said:

"Our initial drilling has confirmed alteration styles consistent with the area's known gold mineralisation systems, and we eagerly await the assay results in January. With the recent acquisition of additional tenure with exciting high-grade drill targets, we are well positioned to accelerate our exploration momentum in 2026."

¹ Visual mineral observations do not guarantee gold mineralisation. Lab assays are required to confirm the presence of gold.

Bush Chook Gold Project Swan Prospect 25BC0006 225BC0009 25BC0002 25BC0002 25BC0002 25BC0002 25BC0002

Drilling confirms key alteration minerals below gold anomalies

Figure 1: Collar plan for Swan Prospect

Drilling tested vertically below soil samples with elevated gold with all four holes intercepting two key alteration mineral assemblages which are commonly associated with gold mineralisation in the area¹.

- Quartz-goethite alteration formed by weathering of pyritic quartz veins and can be associated with oxide gold mineralisation.
- Quartz-pyrite-chlorite alteration formed by hydrothermal fluids and can be associated with primary gold mineralisation.

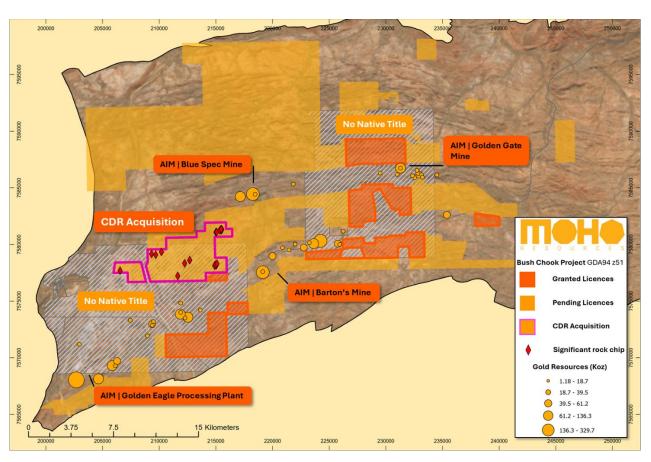
Figure 2: Quartz-goethite alteration in slate host-rock. 25BC006, 6m to 20m.

Figure 3: Quartz-pyrite-chlorite alteration in slate host-rock. 25BC002, 179m to 180m.

Table 1: Collar Table

HoleID	Dip	Azimuth	Easting	Northing	Grid ID	Depth	Max Depth	Status
25BC0002	-60	0	229560	7587560	GDA20_Z51	180	180	Assays Pending
25BC0003	-60	0	229560	7587680	GDA20_Z51	180	180	Assays Pending
25BC0006	-60	0	228920	7587720	GDA20_Z51	180	120	Assays Pending
25BC0009	-60	0	228525	7587643	GDA20_Z51	180	60	Assays Pending

 Table 2: Geological logging of significant alteration intervals


Hole_ID	Depth From	Depth _To	Interval Length	Lith 1	Lith1_pct	Lith2	Lith2_pct	Lith3	Lith3_pct	Lith4	Lith4_pct
25BC002	84	92	8	Slate	70	Quartz vein	20	Chlorite	9	Pyrite	1
25BC002	99	102	3	Slate	80	Quartz vein	20	Chlorite	9	Pyrite	1
25BC003	16	17	1	Slate	70	Goethite	20	Quartz vein	10		
25BC003	23	24	1	Slate	80	Quartz vein	10	Goethite	10		
25BC003	179	186	7	Slate	70	Quartz vein	25	Chlorite	4	Pyrite	1
25BC006	6	20	14	Slate	50	Quartz vein	30	Goethite	20	-	
25BC006	30	34	4	Slate	60	Goethite	30	Quartz vein	10	-	
25BC009	9	11	2	Slate	80	Quartz vein	10	Goethite	10		
25BC009	15	27	12	Slate	60	Goethite	30	Quartz vein	10		
25BC009	32	36	4	Slate	85	Quartz vein	10	Goethite	5		
25BC009	95	97	2	Slate	80	Quartz vein	15	Chlorite	4	Pyrite	1

CDR tenement acquisition delivers six drill-ready targets

The new PLs acquired from Codrus Minerals (formerly the Middle Creek Project) have six drill-ready targets defined by high-grade rock chip samples, soil sampling and trench sampling, none of these areas have been drill tested.

The acquisition was done by a surrender/pick up agreement, providing Moho with new PLs with a four-year term with the possibility of a four-year extension. Twelve of the 15 licences lie outside native title claims which will expediate approvals and reduce drilling costs. Drilling will commence on these licences as soon as weather and permitting allows.

Figure 4: The new neighbouring acreage acquired from Codrus Minerals expands the Bush Chook Project landholding to 440km².

Acquisition Terms

Moho issued 15,000,000 fully paid ordinary shares to Codrus Minerals Limited as consideration for the acquisition of additional tenure within the area of the Company's Bush Chook Project and associated exploration data which has been incorporated into the Bush Chook Project through the Company making application for 15 new prospecting licences. The Acquisition was completed immediately upon execution of the binding heads of agreement between the parties that occurred 5 December 2025. Completion was unconditional, and the Agreement otherwise contains customary terms for a transaction of this nature.

The Consideration will be subject to voluntary escrow for a period of three months from the Completion Date.

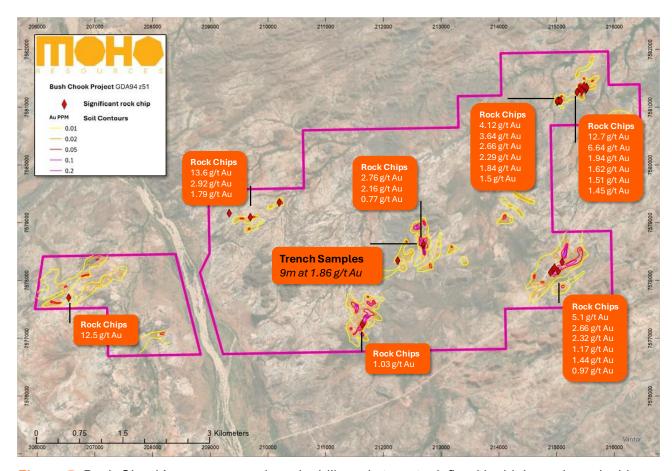


Figure 5: Bush Chook's new acreage has six drill-ready targets defined by high-grade rock chip samples, soil sampling and trench sampling,

Table 3: Significant rock chip assays from the Codrus Acquisition.

Sample	East_m	North_m	Grid	Stype	Au_ppm
AMNG118	209328	7579166	MGA Zone51 GDA94	float	13.6
SOMDC54	215476	7581372	MGA Zone51 GDA94	subcrop	12.7
SOMDC315	206549	7577705	MGA Zone51 GDA94	outcrop	12.5
AMNG105	215402	7581325	MGA Zone51 GDA94	outcrop	6.64
MDCR066	214962	7578222	MGA51 GDA94	outcrop	5.1
MDCR056	215067	7581115	MGA51 GDA94	outcrop	4.12
AMNG092A	215026	7581116	MGA Zone51 GDA94	outcrop	3.64
AMNG066	209694	7579098	MGA Zone51 GDA94	outcrop	2.95
MDCR037	212690	7578614	MGA51 GDA94	outcrop	2.76
AMNG094B	215014	7581104	MGA Zone51 GDA94	outcrop	2.66
RNMDC084	214961	7578227	MGA Zone51 GDA94	outcrop	2.66
MDCR069	214893	7578140	MGA51 GDA94	outcrop	2.32
AMNG093	215021	7581111	MGA Zone51 GDA94	outcrop	2.29
SOMDC15	212693	7578636	MGA Zone51 GDA94	outcrop	2.16
AMNG104A	215502	7581302	MGA Zone51 GDA94	subcrop	1.94
MDCR055	215012	7581109	MGA51 GDA94	outcrop	1.84
AMNG083	210195	7579354	MGA Zone51 GDA94	outcrop	1.79

MDCR058	215518	7581350	MGA51 GDA94	outcrop	1.62
SOMDC52	215522	7581344	MGA Zone51 GDA94	outcrop	1.51
MDCR054	215010	7581096	MGA51 GDA94	outcrop	1.5
AMNG108	215437	7581282	MGA Zone51 GDA94	outcrop	1.45
SOMDC368	215095	7578322	MGA Zone51 GDA94	outcrop	1.44
AMNG094A	215014	7581104	MGA Zone51 GDA94	outcrop	1.27
MCHT184	215027	7578164	MGA Zone51 GDA94	outcrop	1.17
AMNG096	215050	7581116	MGA Zone51 GDA94	outcrop	1.09
SOMDC03	211634	7577240	MGA Zone51 GDA94	subcrop	1.03
MDCR068	214921	7578177	MGA51 GDA94	outcrop	0.97
RNMDC201	212247	7578345	MGA Zone51 GDA94	outcrop	0.77
AMNG092B	215026	7581116	MGA Zone51 GDA94	outcrop	0.73
AMNG106	215520	7581329	MGA Zone51 GDA94	outcrop	0.63
MDCR060	215352	7581261	MGA51 GDA94	outcrop	0.6

Table 4: Trench sample assays

Trench Id	From_m	To m	Interval_m	Sample	Au_FAppm	E MGA51GDA94	N MGA51GDA94	RLm AHD
MCTR001	0	4	4	MT1001	0.01	217508.91	7580198.68	366.99
MCTR001	4	8	4	MT1002	-0.01	217506.73	7580202.03	367
MCTR001	8	12	4	MT1003	-0.01	217504.55	7580205.39	367
MCTR001	12	16	4	MT1004	-0.01	217502.38	7580208.74	367
MCTR001	16	20	4	MT1005	0.01	217500.2	7580212.1	367
MCTR001	20	24	4	MT1006	0.01	217498.02	7580215.45	367
MCTR001	24	28	4	MT1007	0.02	217495.84	7580218.81	367
MCTR001	28	32	4	MT1008	0.27	217493.66	7580222.16	366.94
MCTR001	32	36	4	MT1009	0.01	217491.48	7580225.51	366.83
MCTR001	36	40	4	MT1010	0.01	217489.3	7580228.87	366.72
MCTR001	40	44	4	MT1011	0.01	217487.13	7580232.22	366.6
MCTR001	44	48	4	MT1012	0.01	217484.95	7580235.58	366.49
MCTR001	48	52	4	MT1013	0.01	217482.77	7580238.93	366.37
MCTR001	52	56	4	MT1014	0.01	217480.59	7580242.29	366.26
MCTR001	56	60	4	MT1015	0.01	217478.41	7580245.64	366.12
MCTR001	60	64	4	MT1016	0.01	217476.23	7580249	365.94
MCTR001	64	68	4	MT1017	0.04	217474.05	7580252.35	365.76
MCTR001	68	72	4	MT1018	0.04	217471.88	7580255.71	365.58
MCTR001	72	76	4	MT1019	0.44	217469.7	7580259.06	365.4
MCTR001	76	80	4	MT1020	0.03	217467.52	7580262.42	365.22
MCTR001	80	84	4	MT1021	0.02	217465.34	7580265.77	365.04
MCTR001	84	88	4	MT1022	0.02	217463.16	7580269.13	364.86
MCTR001	88	92	4	MT1023	0.02	217460.98	7580272.48	364.68
MCTR001	92	96	4	MT1024	0.01	217458.8	7580275.84	364.5
MCTR001	96	100	4	MT1025	0.02	217456.63	7580279.19	364.32
MCTR001	100	104	4	MT1026	0.02	217454.45	7580282.54	364.19
MCTR001	104	108	4	MT1027	0.03	217452.27	7580285.9	364.11
MCTR001	108	112	4	MT1028	0.01	217450.09	7580289.25	364.04

MCTR001	112	116	4	MT1029	0.01	217447.91	7580292.61	364.04
MCTR001	116	120	4	MT1030	0.02	217445.73	7580295.96	364.11
MCTR001	120	124	4	MT1031	0.02	217443.55	7580299.32	364.19
MCTR001	124	128	4	MT1032	0.01	217441.38	7580302.67	364.26
MCTR001	128	132	4	MT1033	0.01	217439.2	7580306.03	364.34
MCTR001	132	136	4	MT1034	0.03	217437.02	7580309.38	364.41
MCTR001	136	140	4	MT1035	0.01	217434.84	7580312.74	364.53
MCTR001	140	144	4	MT1036	0.01	217432.66	7580316.09	364.71
MCTR001	144	148	4	MT1037	0.01	217430.48	7580319.45	364.89
MCTR001	148	153	5	MT1038	0.01	217428.03	7580323.22	365.09
MCTR002	0	4	4	MT1039	0.01	215398.78	7581408.16	356.87
MCTR002	4	5	1	MT1040	0.01	215399.76	7581405.86	356.91
MCTR002	5	6	1	MT1041	0.01	215400.15	7581404.94	356.93
MCTR002	6	7	1	MT1042	0.01	215400.54	7581404.02	356.95
MCTR002	7	8	1	MT1043	0.02	215400.93	7581403.1	356.97
MCTR002	8	9	1	MT1044	0.05	215401.32	7581402.18	356.98
MCTR002	9	10	1	MT1045	0.02	215401.71	7581401.26	357
MCTR002	10	14	4	MT1046	0.01	215402.69	7581398.95	357.05
MCTR002	14	18	4	MT1047	-0.01	215404.25	7581395.27	357.12
MCTR002	18	22	4	MT1048	0.01	215405.81	7581391.59	357.19
MCTR002	22	26	4	MT1049	0.01	215407.38	7581387.91	357.26
MCTR002	26	30	4	MT1050	-0.01	215408.94	7581384.23	357.33
MCTR002	30	34	4	MT1051	0.01	215410.5	7581380.54	357.5
MCTR002	34	38	4	MT1052	-0.01	215412.07	7581376.86	357.68
MCTR002	38	39	1	MT1053	0.02	215413.04	7581374.56	357.8
MCTR002	39	40	1	MT1054	0.02	215413.43	7581373.64	357.85
MCTR002	40	44	4	MT1055	0.01	215414.41	7581371.34	357.96
MCTR002	44	48	4	MT1056	0.01	215415.97	7581367.66	358.15
MCTR002	48	52	4	MT1057	0.05	215417.54	7581363.97	358.34
MCTR002	52	56	4	MT1058	0.01	215419.1	7581360.29	358.52
MCTR002	56	60	4	MT1059	0.01	215420.66	7581356.61	358.64
MCTR002	60	64	4	MT1060	0.01	215422.23	7581352.93	359
MCTR002	64	68	4	MT1061	0.01	215423.79	7581349.25	359.24
MCTR002	68	72	4	MT1062	0.03	215425.35	7581345.56	359.48
MCTR002	72	76	4	MT1063	-0.01	215426.91	7581341.88	359.72
MCTR002	76	80	4	MT1064	-0.01	215428.48	7581338.2	359.95
MCTR002	80	84	4	MT1065	0.01	215430.04	7581334.52	360.19
MCTR002	84	88	4	MT1066	0.01	215431.6	7581330.84	360.71
MCTR002	88	92.6	4.6	MT1067	0.01	215433.28	7581326.88	361.33
MCTR003	0	4	4	MT1068	0.01	215168	7578501.14	373.01
MCTR003	4	8	4	MT1069	0.02	215164.01	7578501.42	373.01
MCTR003	8	9	1	MT1070	0.01	215161.52	7578501.59	372.99
MCTR003	9	10	1	MT1071	0.01	215160.52	7578501.66	372.99
MCTR003	10	11	1	MT1072	0.01	215159.53	7578501.73	372.99
MCTR003	11	12	1	MT1073	0.01	215158.53	7578501.8	372.98
MCTR003	12	16	4	MT1074	0.02	215156.03	7578501.98	372.97

MCTR003	16	20	4	MT1075	0.02	215152.04	7578502.26	372.95
MCTR003	20	24	4	MT1076	1.29	215148.05	7578502.53	372.92
MCTR003	24	25	1	MT1077	0.32	215145.56	7578502.71	372.9
MCTR003	25	26	1	MT1078	0.62	215144.56	7578502.78	372.9
MCTR003	26	27	1	MT1079	0.95	215143.56	7578502.85	372.89
MCTR003	27	28	1	MT1080	0.42	215142.57	7578502.92	372.88
MCTR003	28	32	4	MT1081	0.03	215140.07	7578503.09	372.87
MCTR003	32	36	4	MT1082	0.03	215136.08	7578503.37	372.84
MCTR003	36	40	4	MT1083	0.01	215132.09	7578503.65	372.81
MCTR003	40	44	4	MT1084	0.01	215128.1	7578503.93	372.79
MCTR003	44	48	4	MT1085	0.01	215124.11	7578504.21	372.76
MCTR003	48	52	4	MT1086	0.02	215120.12	7578504.49	372.74
MCTR003	52	54.8	2.8	MT1087	0.02	215116.73	7578504.72	372.73
MCTR004	0	4	4	MT1088	0.01	215038.51	7578154.34	373.78
MCTR004	4	8	4	MT1089	0.01	215035.54	7578157.01	373.67
MCTR004	8	12	4	MT1090	0.01	215032.57	7578159.69	373.57
MCTR004	12	13	1	MT1091	0.01	215030.71	7578161.36	373.51
MCTR004	13	14	1	MT1092	0.01	215029.97	7578162.03	373.48
MCTR004	14	15	1	MT1093	0.04	215029.22	7578162.7	373.46
MCTR004	15	16	1	MT1094	0.11	215028.48	7578163.37	373.43
MCTR004	16	17	1	MT1095	0.11	215027.74	7578164.04	373.4
MCTR004	17	18	1	MT1096	1.03	215026.99	7578164.71	373.38
MCTR004	18	19	1	MT1097	0.28	215026.25	7578165.38	373.35
MCTR004	19	20	1	MT1098	0.54	215025.51	7578166.05	373.33
MCTR004	20	24	4	MT1099	0.75	215023.65	7578167.72	373.26
MCTR004	24	25	1	MT1100	0.54	215021.79	7578169.39	373.2
MCTR004	25	26	1	MT1101	0.99	215021.05	7578170.06	373.17
MCTR004	26	27	1	MT1102	0.61	215020.31	7578170.73	373.15
MCTR004	27	28	1	MT1103	0.29	215019.56	7578171.4	373.12
MCTR004	28	32	4	MT1104	0.05	215017.71	7578173.07	373.06
MCTR004	32	36	4	MT1105	0.02	215014.73	7578175.75	373.06
MCTR004	36	40	4	MT1106	0.02	215011.76	7578178.43	373.17
MCTR004	40	44	4	MT1107	0.01	215008.79	7578181.1	373.28
MCTR004	44	48	4	MT1108	0.01	215005.82	7578183.78	373.39
MCTR004	48	52	4	MT1109	0.05	215002.84	7578186.46	373.5
MCTR004	52	56	4	MT1110	0.01	214999.87	7578189.13	373.61
MCTR004	56	60	4	MT1111	0.01	214996.9	7578191.81	373.72
MCTR004	60	64	4	MT1112	0.01	214993.93	7578194.49	373.82
MCTR004	64	68	4	MT1113	0.01	214990.95	7578197.16	373.93
MCTR004	68	72	4	MT1114	0.01	214987.98	7578199.84	374.04
MCTR004	72	76	4	MT1115	0.01	214985.01	7578202.52	374.19
MCTR004	76	80	4	MT1116	0.01	214982.03	7578205.19	374.27
MCTR004	80	84.5	4.5	MT1117	0.03	214978.88	7578208.04	374.31
MCTR005	0	4	4	MT1118	0.02	212676	7578529.03	373.12
MCTR005	4	8	4	MT1119	0.48	212680	7578529.1	373.12
MCTR005	8	12	4	MT1120	0.56	212684	7578529.17	372.99

MCTR005	12	13	1	MT1121	0.33	212686.5	7578529.22	372.82
MCTR005	13	14	1	MT1122	0.44	212687.5	7578529.24	372.75
MCTR005	14	15	1	MT1123	0.43	212688.5	7578529.25	372.68
MCTR005	15	16	1	MT1124	0.06	212689.5	7578529.27	372.61
MCTR005	16	20	4	MT1125	0.04	212692	7578529.31	372.44
MCTR005	20	21	1	MT1126	0.02	212694.5	7578529.36	372.26
MCTR005	21	22	1	MT1127	0.02	212695.5	7578529.38	372.19
MCTR005	22	23	1	MT1128	0.01	212696.5	7578529.39	372.12
MCTR005	23	24	1	MT1129	0.01	212697.5	7578529.41	372.05
MCTR005	24	25	1	MT1130	0.01	212698.5	7578529.43	371.99
MCTR005	25	26	1	MT1131	0.01	212699.5	7578529.45	371.92
MCTR005	26	27	1	MT1132	0.01	212700.5	7578529.46	371.85
MCTR005	27	28	1	MT1133	0.01	212701.5	7578529.48	371.78
MCTR005	28	29	1	MT1134	0.02	212702.5	7578529.5	371.71
MCTR005	29	30	1	MT1135	0.02	212703.5	7578529.51	371.64
MCTR005	30	31	1	MT1136	0.01	212704.5	7578529.53	371.57
MCTR005	31	32	1	MT1137	0.03	212705.5	7578529.55	371.5
MCTR005	32	36	4	MT1138	0.16	212707.99	7578529.59	371.33
MCTR005	36	37	1	MT1139	0.26	212710.49	7578529.64	371.33
MCTR005	37	38	1	MT1140	0.06	212711.49	7578529.65	371.31
MCTR005	38	39	1	MT1141	0.04	212712.49	7578529.67	371.28
MCTR006	0	4	4	MT1142	0.01	212676.99	7578634.17	369.79
MCTR006	4	8	4	MT1143	0.02	212680.98	7578634.52	370.07
MCTR006	8	12	4	MT1144	0.29	212684.96	7578634.87	370.34
MCTR006	12	16	4	MT1145	0.18	212688.95	7578635.22	370.62
MCTR006	16	20	4	MT1146	0.16	212692.93	7578635.57	370.89
MCTR006	20	24	4	MT1147	0.17	212696.92	7578635.92	371.17
MCTR006	24	25	1	MT1148	6.58	212699.41	7578636.14	371.34
MCTR006	25	26	1	MT1149	4.33	212700.4	7578636.22	371.41
MCTR006	26	27	1	MT1150	0.49	212701.4	7578636.31	371.48
MCTR006	27	28	1	MT1151	1.67	212702.4	7578636.4	371.54
MCTR006	28	29	1	MT1152	1.04	212703.39	7578636.48	371.61
MCTR006	29	30	1	MT1153	0.38	212704.39	7578636.57	371.68
MCTR006	30	31	1	MT1154	0.82	212705.38	7578636.66	371.75
MCTR006	31	32	1	MT1155	1.13	212706.38	7578636.75	371.82
MCTR006	32	33	1	MT1156	0.26	212707.38	7578636.83	371.89
MCTR006	33	37	4	MT1157	0.09	212709.87	7578637.05	372.06
MCTR006	37	41	4	MT1158	0.12	212713.85	7578637.4	372.33
MCTR007	0	4	4	MT1159	0.04	211730.38	7577363.18	381.21
MCTR007	4	5	1	MT1160	0.01	211728.36	7577364.65	381.47
MCTR007	5	6	1	MT1161	0.01	211727.55	7577365.23	381.57
MCTR007	6	7	1	MT1162	0.01	211726.74	7577365.82	381.66
MCTR007	7	8	1	MT1163	0.02	211725.93	7577366.41	381.71
MCTR007	8	12	4	MT1164	0.02	211723.91	7577367.88	381.83
MCTR007	12	16	4	MT1165	0.01	211720.67	7577370.23	382.02
MCTR007	16	20	4	MT1166	0.01	211717.44	7577372.58	382.21

MCTR007	20	24	4	MT1167	0.01	211714.2	7577374.93	382.4
MCTR007	24	28	4	MT1168	0.03	211710.97	7577377.28	382.55
MCTR007	28	32	4	MT1169	0.28	211707.73	7577379.63	382.66
MCTR007	32	36	4	MT1170	0.01	211704.49	7577381.98	382.77
MCTR007	36	37	1	MT1171	0.16	211702.47	7577383.45	382.84
MCTR007	37	38	1	MT1172	0.57	211701.66	7577384.04	382.86
MCTR007	38	39	1	MT1173	1.11	211700.85	7577384.63	382.89
MCTR007	39	40	1	MT1174	0.34	211700.04	7577385.22	382.92
MCTR007	40	44	4	MT1175	0.08	211698.02	7577386.69	382.99
MCTR007	44	48	4	MT1176	0.08	211694.79	7577389.04	382.9
MCTR007	48	49	1	MT1177	0.05	211692.76	7577390.51	382.84
MCTR007	49	50	1	MT1178	0.12	211691.95	7577391.1	382.81
MCTR007	50	51	1	MT1179	0.46	211691.14	7577391.68	382.78
MCTR008	0	4	4	MT1180	0.07	211686.45	7577254.26	382.99
MCTR008	4	8	4	MT1181	0.21	211683.34	7577256.78	383.28
MCTR008	8	12	4	MT1182	0.03	211680.23	7577259.29	383.57
MCTR008	12	16	4	MT1183	0.04	211677.12	7577261.81	383.87
MCTR008	16	20	4	MT1184	0.01	211674.01	7577264.33	384.16
MCTR008	20	24	4	MT1185	0.01	211670.9	7577266.85	384.45
MCTR008	24	28	4	MT1186	-0.01	211667.79	7577269.36	384.74
MCTR008	28	32	4	MT1187	0.01	211664.69	7577271.88	385.03
MCTR008	32	36	4	MT1188	0.01	211661.58	7577274.4	385.3
MCTR008	36	40	4	MT1189	0.01	211658.47	7577276.91	385.4
MCTR008	40	44	4	MT1190	0.01	211655.36	7577279.43	385.51
MCTR008	44	48	4	MT1191	0.13	211652.25	7577281.95	385.61
MCTR008	48	52	4	MT1192	0.13	211649.14	7577284.47	385.67
MCTR008	52	54	2	MT1193	0.02	211646.81	7577286.35	385.69
MCTR008	54	55	1	MT1194	0.02	211645.65	7577287.3	385.7
MCTR008	55	56	1	MT1195	0.02	211644.87	7577287.93	385.68
MCTR008	56	57	1	MT1196	0.07	211644.09	7577288.56	385.64
MCTR008	57	58	1	MT1197	0.02	211643.31	7577289.19	385.6
MCTR008	58	62	4	MT1198	0.06	211641.37	7577290.76	385.5
MCTR008	62	64	2	MT1199	0.33	211639.04	7577292.65	385.37
MCTR009	0	4	4	MT1200	0.01	210204.85	7579406.19	374.17
MCTR009	4	8	4	MT1201	0.01	210206.54	7579402.56	373.94
MCTR009	8	12	4	MT1202	0.01	210208.23	7579398.94	373.71
MCTR009	12	16	4	MT1203	0.01	210209.92	7579395.31	373.46
MCTR009	16	20	4	MT1204	-0.01	210211.61	7579391.69	373.05
MCTR009	20	24	4	MT1205	-0.01	210213.3	7579388.06	372.63
MCTR009	24	28	4	MT1206	0.01	210214.99	7579384.44	372.22
MCTR009	28	32	4	MT1207	0.01	210216.68	7579380.81	371.83
MCTR009	32	36	4	MT1208	0.01	210218.37	7579377.19	371.54
MCTR009	36	40	4	MT1209	0.01	210220.06	7579373.56	371.25
MCTR009	40	44	4	MT1210	-0.01	210221.75	7579369.94	370.96
MCTR009	44	48	4	MT1211	0.01	210223.44	7579366.31	370.67
MCTR009	48	52	4	MT1212	0.01	210225.13	7579362.68	370.39

MCTR009	52	56	4	MT1213	0.01	210226.82	7579359.06	370.22
MCTR009	56	60	4	MT1214	-0.01	210228.51	7579355.43	370.04
MCTR009	60	64	4	MT1215	-0.01	210230.2	7579351.81	369.87
MCTR009	64	68	4	MT1216	-0.01	210231.89	7579348.18	369.76
MCTR009	68	72	4	MT1217	-0.01	210233.58	7579344.56	369.71
MCTR009	72	76	4	MT1218	0.01	210235.27	7579340.93	369.66
MCTR009	76	80	4	MT1219	-0.01	210236.96	7579337.31	369.6
MCTR009	80	84	4	MT1220	-0.01	210238.65	7579333.68	369.55
MCTR009	84	88	4	MT1221	-0.01	210240.35	7579330.06	369.49
MCTR009	88	92	4	MT1222	0.01	210242.04	7579326.43	369.44
MCTR009	92	96	4	MT1223	-0.01	210243.73	7579322.81	369.39
MCTR009	96	100	4	MT1224	0.01	210245.42	7579319.18	369.33
MCTR009	100	102	2	MT1225	-0.01	210246.68	7579316.46	369.29

Table 5: Schedule of tenements acquired from Codrus.

TENID	TYPE	SURVSTATUS	TENSTATUS	HOLDERCNT	HOLDER1
P 4602339	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602340	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602341	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602342	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602343	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602344	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602345	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602346	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602347	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602348	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602349	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602350	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602351	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602352	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED
P 4602353	PROSPECTING LICENCE	UNSURVEYED	PENDING	1	MOHO RESOURCES LIMITED

This ASX announcement has been authorised for release by the Board of Moho Resources Limited.

For further information, please contact:

Mr Peter Christie Chairman Moho Resources Limited admin@mohoresources.com.au Gareth Quinn Investor Relations gareth@republicir.com.au 0417 711 108

Competent Persons Statements

The information in this report that relates to Exploration Results and Exploration Targets is based on information compiled by Mr. Graeme Hardwick. Mr. Hardwick is a Member of Australian Institute of Geoscientists (MAIG) and Moho Resource's Exploration Manager and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Hardwick consents to the inclusion in the report of the matters based on his information in the form and context in which it appears Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Moho Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Moho believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration activities will result in the actual values, results or events expressed or implied in this document.

About Moho Resources

Moho Resources Ltd is an Australian natural resources company advancing early-stage gold and other metals projects in Western Australia through exploration towards development. Moho controls a 100% interest of its portfolio. The Bush Chook Gold Project in the Pilbara Craton is currently the company's priority focus area. Moho's Board is chaired by Mr Peter Christie, a qualified accountant and tax agent and highly successful businessman. He has served on the boards of several public companies in the resource sector since 2006 and is the current club president of WAFL club, the South Fremantle Bulldogs. Mr Christie is joined on the Board by Mr Bryce Gould and Ms Greta Purich. Mr Gould is an experienced corporate advisor who has a long track record of helping small-cap companies to meet their capital raising goals and engage and attract investors. Ms Purich is an experienced geologist and mining engineer bringing technical expertise to the company's direction and project development.

JORC Code, 2012 Edition – Table 1: Bush Chook Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Tench samples were collected from 9 different costean over areas of anomalous surface geochemistry trends. Samples were collected using a hand pick every few centimetres along the costean wall and composited into 1m to 5m composite samples. Samples were sent to ALS Perth for 50g fire assay method and four acid ICP-MS. Rock chip sample have had brief geological descriptions to provide geological context. They were sent to ALS Perth for 50g fire assay and four acid ICP-MS
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Reverse circulation drilling rig (Schramm 685) using a face sampling hammer.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC samples were collected on 1m intervals down hole. Samples were collected by a face sampling hammer and returned through a cyclone splitter, then into calico bags. Duplicate samples were collected at a rate of 4 per 100 metres drilled.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All trench, rock chip, and RC samples have a qualitative geological description.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Rock chip and trench samples were collected from in situ outcropping material. No field standards or duplicate where used. 1-3 kg of material was collected from each site over an approximate 10m area. All RC samples were split using a rigmounted cyclone splitter, 1-3kg of material was collected from each metre interval and collected in a calico bag.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Rock chip and trench samples were assayed in ALS Pert for 50g fire assay and four acid ICP-MS. RC duplicate samples were collected at a rate of 4 per 100 samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 A samples information was entered into Microsoft excel and stored in a Microsoft access database on the company server. Standard data entry temples were used to ensure consistent data entry.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample and collar locations were determined by hand held GPS with an error of ~2-5m. MGA94 Zone 51
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Tench samples were collected every few centimetres and composited in to 1m to 5m composit samples. RC holes were spaced at minimum 80m intervals and drilled at 60 degrees to the north.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Rock chip samples were taken along the strike of the outcropping quartz veins. Trench and RC samples were collected perpendicular to the strike of the anomalous quartz veins and surface geochemistry trends.
Sample security	The measures taken to ensure sample security.	Moho's geologist transported the samples to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Available data has been reviewed by company geologist.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section).

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Bush Chook Project encompassed part of the Bonney Downs Pastoral Lease, The Palyku and Palyku #2 and Nyamal Palyku Native Title groups, and some miscellaneous licences owned by AIM Mining. It is expected that agreements will be reached with these parties to enable the tenements to be granted and exploration work to occur. The twenty-six of the licences have been granted with no native title or pastoralist conditions. The remaining applications are still pending; land access and heritage agreements have not yet been finalised.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The project has predominantly been explored for gold mineralisation using a variety of surface techniques which have outlined several anomalous and mineralised zones within the project. Adequate drill testing of these areas has not taken place.
Geology	Deposit type, geological setting and style of mineralisation.	Turbidite-hosted orogenic gold and gold- antimony deposits are the principal target. These are hosted within the Mesoarchean Mosquito Creek basin of the Pilbara Craton. Examples of mineralisation in the region include the Blue Spec, Gold Spec, and Golden Eagle deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Collar and trench sample locations are provided in the tables within this document.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	The cut off for the significant trench intervals was done using >0.2ppm Au with no internal dilution.

Criteria	JORC Code explanation	Commentary
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Not applicable. No metal equivalents have been reported.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Not applicable. The quartz veins and surface geochemical anomalies which were targeted by RC drilling are sub-vertical, RC drilling was done at 60 degrees to intercept the veins at depth. Not applicable.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Plan-view maps are presented showing the location of the project, the sample locations and the gold results.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Not applicable
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	GSWA geological maps, magnetic and gravity data have been used to assist the interpretation of the target areas.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Follow up work will include first pass drilling, infill drilling to further define the depth extent of mineralisation observed at surface.