

YANREY URANIUM PROJECT

FURTHER HIGH-GRADE URANIUM MINERALISATION INTERSECTED AT MANYINGEE NORTH

Highlights

- More outstanding drill results have been received from the final 11 drillholes (25YRAC046 to 25YRAC056) completed at Cauldron's Manyingee North prospect.
- Cauldron's new discovery at Manyingee North lies 2.5km to the northeast of Paladin's (ASX: PDN) Manyingee Deposit, 8kms northwest of Cauldron's Manyingee South Deposit and 19km from Cauldron's Bennet Well Deposit.
- A total of 23 drillholes have been completed at Manyingee North for a total of 2,953m.
- Mineralisation is hosted within a largely unexplored northeast trending branch of the Manyingee Palaeochannel.
- Uranium mineralisation above cutoff grade has been intersected in all 23 holes drilled at Manyingee North, extending over 1,400m in width (east-west), 700m along strike (north-south), and is still open in all directions.
- Cauldron's airborne geophysical survey data indicates that the Manyingee North palaeochannel continues northwards for a further ~7 kilometres within Cauldron's tenements. Future exploration drilling is being planned.
- Significant results from the recent drilling include:

Drill hole 25YRAC049;

4.53 m @ 1,280.2 ppm eU₃O₈ from 95.40 m.

Drill hole 25YRAC046;

4.33 m @ 330.8 ppm eU₃O₈ from 99.59 m,

3.66 m @ 368.42 ppm eU₃O₈ from 104.15 m.

Drill hole 25YRAC052;

2.44 m @ 386.0 ppm eU₃O₈ from 97.06 m.

Drill hole 25YRAC047;

1.57 m @ 547.9 ppm eU₃O₈ from 91.19 m.

Drill hole 25YRAC051;

1.73 m @ 422.5ppm eU₃O₈ from 102.66 m.

Drill hole 25YRAC055;

2.17 m @ 251.9 ppm eU₃O₈ from 83.86 m.

Cauldron CEO Jonathan Fisher commented:

"We are very excited by the results from Manyingee North, which have proven another new discovery at Yanrey. Interpretation of geophysical data suggests there is potential to extend mineralisation significantly, with mineralisation being open in all directions. More drilling is planned at Manyingee North in the next field season. Manyingee North is one of more than twenty high ranking targets our team has identified, so we're confident we'll continue to build our uranium mineral resource base at Yanrey, as we work towards policy change in WA."

Cauldren Energy Limited | ACN 102 012 792 | ASV: CVIII ways cauldren program com au

BACKGROUND

Cauldron Energy Limited's (Cauldron or "the Company") fully owned Yanrey Uranium Project is located approximately 100 km south of Onslow and covers an area of ~1,340km² (Figure 1) covering over 80 kms of ancient, Cretaceous-age sedimentary coastline prospective for sedimentary-hosted uranium deposits.

The highly prospective *Yanrey Uranium Province* stretches from the Carley Bore Uranium Deposit in the south to the Spinifex Well Uranium prospect and beyond in the north and hosts multiple prospective palaeochannel systems sourced from uranium-bearing granitoid uplands (Figure).

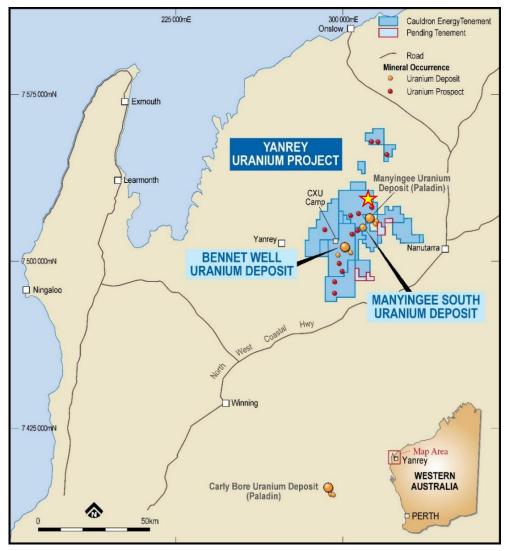


Figure 1. Yanrey Uranium Project Location Map (Western Australia). Yellow star highlighting the location of the new discovery at the Manyingee North prospect.

Cauldron has defined in excess of 40Mlbs of uranium oxide in Mineral Resources at its Yanrey Uranium Project area. Cauldron's flagship Bennet Well deposit, contains 30.9 Mlb of uranium-oxide (38.9Mt at 360ppm eU_3O_8 at 150ppm cut-off), refer Appendix C), whilst the Manyingee South Uranium Deposit, discovered in 2024, contains 11.1 Mlb of uranium-oxide (15.5 Mt at 325 ppm eU_3O_8 at 100 ppm cut-off), refer Appendix D). The Manyingee South deposit and surrounding regions are currently the subject of further exploration drilling to expand the company's defined uranium resources.

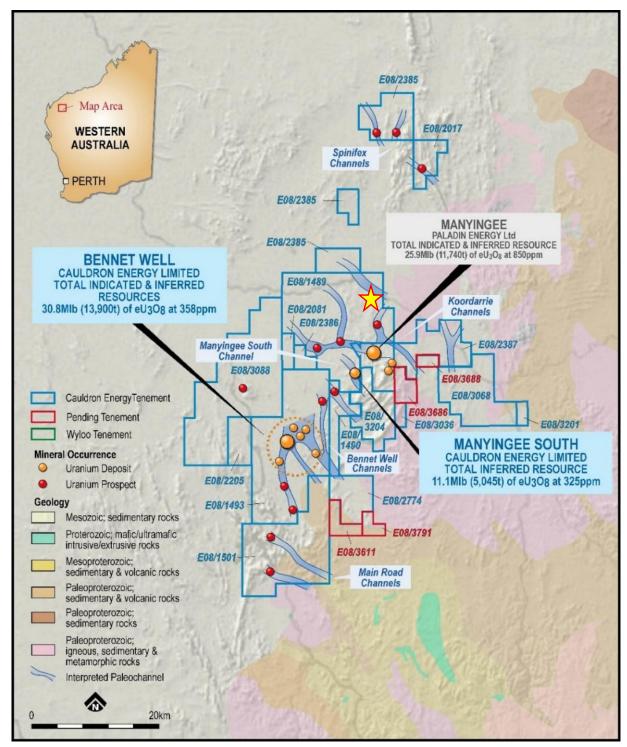


Figure 2. Yanrey Uranium Project highlighting local geology and prospective palaeochannels. Yellow star highlighting the location of the new discovery at the Manyingee North prospect.

Manyingee North lies approximately 2.5 kilometres northeast of Paladin's (ASX: PDN) Manyingee Deposit (containing an estimated 25.9Mlbs of uranium-oxide (13.8Mt at 850ppm eU_3O_8 at 250ppm cut-off – ASX: PDN "Fy2025 Annual Report").

2025 DRILLING PROGRAM

Cauldron Energy Limited (ASX: CXU) ("Cauldron" or "the Company") is pleased to announce that drilling is now completed on the western side of the prospect with a further 11 air-core drill-holes (25YRAC046-056) completed at Manyingee North (Tables 1 and 2). This brings the 2025 program total (holes 25YRAC001-056) to 4,237m (see Appendix A).

The Manyingee North prospect is located approximately 8km northeast of the Manyingee South deposit and 2.5km northeast of Paladin's Manyingee Deposit (Figure). It is located in a separate palaeochannel to the other deposits.

The Manyingee North palaeochannel is one of 20+ palaeochannels already identified in Cauldron's tenement area with each channel holding potential to host uranium mineralisation and requiring drill testing.

Cauldron's drilling in 2024 at Manyingee South discovered the first new uranium deposit in Australia in 15 years. This drilling identified that continuous mineralisation extended north-south for at least 3 kilometres and over channel widths of greater than 1,100 metres, with two distinctly higher-grade zones being delineated.

Mineralisation at Manyingee South is developed at stacked redox boundaries interpreted to represent roll-front-style uranium mineralisation similar in character to the adjacent Manyingee uranium deposit (owned by Paladin). Initial indications are that mineralisation at Manyingee North follows a similar pattern but further drilling is required.

Passive seismic surveying was undertaken in September 2025 to better define the edges of the Manyingee North palaeochannel allowing Cauldron to undertake targeted drilling within the centre of the Manyingee North palaeochannel.

Cauldron's 2025 drill program was initially planned to comprise approximately 4,000m of aircore drilling at Manyingee South and a further 1,000m at the untested Manyingee North prospect. Drilling at Manyingee North has expanded to encompass all planned holes.

Drilling has been undertaken on a 200m spacing along lines spaced 400m apart across the palaeochannel. The Dampier to Bunbury Natural Gas Pipeline (DBNGP) bisects the prospect subdividing it into a western and eastern half. Since the last ASX Announcement, Cauldron has completed a further 11 holes on 3 drill lines east of the DBNGP (Figure).

Mineralisation above the 150 ppm cutoff-grade has been intersected within all drillholes to date, extending for at least 1,400m in width (east-west) across the full width of the channel and 700m along strike (north to south). Drilling has yet to intersect the margins of the channel and mineralisation remains open in all directions with geophysics indicating the channel continues northwards for at least 7 kilometres towards Gaston Well.

Mineralisation is developed within carbonaceous coarse sand units of the lower Nanutarra Formation from depths of 90 m towards bedrock but unlike Manyingee South, does not display the brightyellow to orange colours typically seen within mineralised / oxidised sands. Manyingee North shows a strong marine influence with the mineralised Nanutarra Formation being unconformably overlain by glauconitic sands (Birdrong Sandstone; Mardie Greensand Member) and then strongly glauconitic clays of the Muderong Shale (see Figure 5).

Drillhole details are contained in Table 1 whilst the most significant results from the most recent drill holes at Manyingee North are detailed in Table 2:

Table 1. Manyingee North Drillholes

HoleID	GDA2020_E	GDA2020_N	RL	Zone	DIP	AZI	Top of Bedrock	ЕОН
	(mE)	(mN)	(mASL)		(°)	(°)	(m)	(m)
25YRAC046	314,438	7,522,511	47.70	50	-90	0	117	119
25YRAC047	314,603	7,522,497	48.40	50	-90	0	116	117
25YRAC048	314,800	7,522,508	51.69	50	-90	0	126	132
25YRAC049	314,538	7,522,299	50.70	50	-90	0	116	117
25YRAC050	314,671	7,522,101	50.44	50	-90	0	125	126
25YRAC051	314,792	7,522,089	50.53	50	-90	0	116	117
25YRAC052	315,003	7,522,111	51.26	50	-90	0	115	117
25YRAC053	315,196	7,522,088	52.56	50	-90	0	109	111
25YRAC054	314,990	7,521,859	50.78	50	-90	0	121	123
25YRAC055	315,177	7,521,850	51.30	50	-90	0	104	117
25YRAC056	314,800	7,521,852	50.69	50	-90	0	141	147

Table 2. Manyingee North - Recent Significant Intersections.

HoleID	From	То	Thickness	eU₃O₃ Av. Grade	eU₃O₃ Max. Grade	Grade x Thickness (GT)	Cumulative GT	
	(m)	(m)	(m)	≥ 150ppm		(ppm.m)	(ppm.m)	
	95.33	96.18	0.85	305.4	444.0	259.6		
	99.59	103.92	4.33	330.8	827.0	1,432.4		
0EVDA 0040	104.15	107.81	3.66	368.4	675.0	1,348.3	2.250.2	
25YRAC046	111.46	111.98	0.52	256.0	359.0	133.1	3,350.2	
	113.79	114.36	0.57	234.6	330.0	133.7		
	114.40	114.66	0.26	165.5	181.0	43.0		
	91.19	92.76	1.57	547.9	1,786.0	860.2		
	92.85	93.71	0.86	295.8	497.0	254.4		
25VBAC047	94.43	94.97	0.54	288.3	508.0	155.7	1 600 0	
25YRAC047	97.95	98.51	0.56	231.8	333.0	129.8	1,622.2	
	98.93	99.60	0.67	262.9	481.0	176.1		
	100.26	100.47	0.21	219.1	260.0	46.0		
	101.86	103.40	1.54	254.8	444.0	392.4		
25YRAC048	103.50	103.73	0.23	174.3	197.0	40.1	575.8	
	104.00	104.61	0.61	235.0	325.0	143.4		
	95.40	99.93	4.53	1,280.2	4,667.0	5,799.3		
	103.67	103.97	0.30	171.6	199.0	51.5		
	105.50	105.81	0.31	261.4	366.0	81.0	6,063.3	
	109.21	109.43	0.22	179.9	195.0	39.6		
25YRAC049	113.29	113.76	0.47	195.5	251.0	91.9		
25YRAC050	106.57	107.18	0.61	174.0	196.0	106.1	106.1	
25YRAC051	102.66	104.39	1.73	422.5	632.0	730.9	730.9	
25YRAC052	97.06	99.50	2.44	386.0	943.0	941.8	941.8	
	89.08	89.88	0.80	248.0	328.0	198.4		
25YRAC053	90.23	90.74	0.51	177.5	204.0	90.5	326.5	
	90.81	91.04	0.23	163.3	177.0	37.6		
	93.51	93.82	0.31	158.7	166.0	49.2		
25YRAC054	94.11	94.97	0.86	269.8	334.0	232.0	368.3	
	95.57	96.05	0.48	181.5	208.0	87.1		
	82.55	82.94	0.39	166.5	188.0	64.9		
	82.96	83.66	0.70	223.0	293.0	156.1		
25YRAC055	83.86	86.03	2.17	251.9	359.0	546.6	853.4	
	113.31	113.56	0.25	172.1	206.0	43.0		
	114.62	114.87	0.25	171.0	191.0	42.8		
25YRAC056	101.79	102.82	1.03	272.5	401.0	280.7	280.7	
Note: Minimum	cut-off 150	ppm eU₂O	and 0.2m min	nimum thicknes	s.			

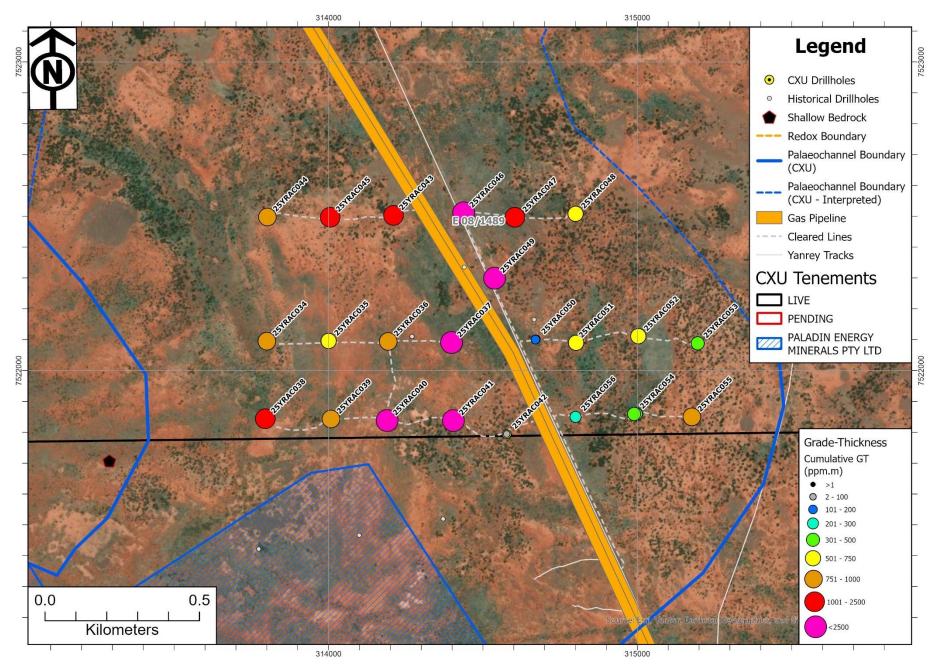


Figure 3. Manyingee North drilling showing cumulative Grade-Thickness (GT) distribution.

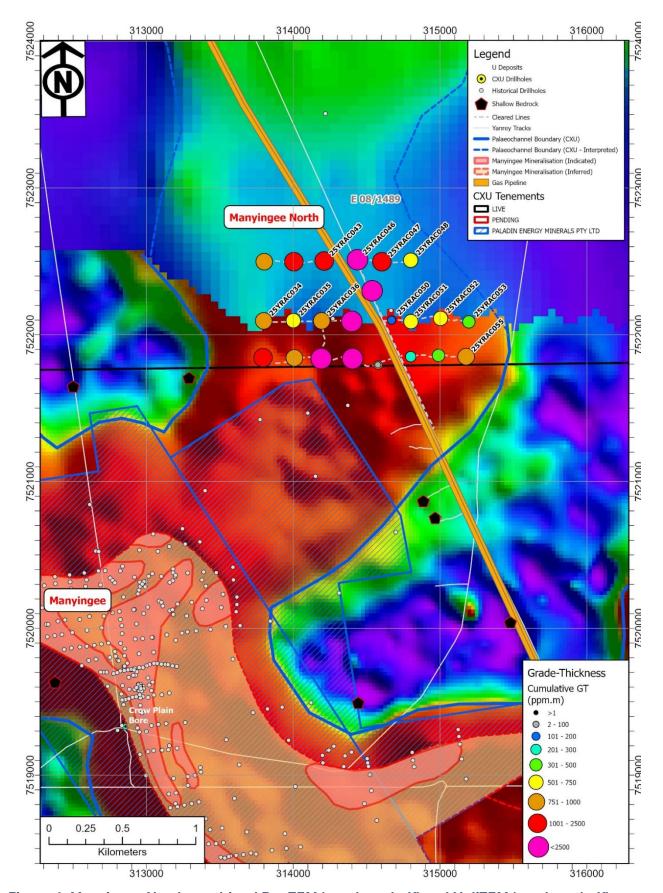


Figure 4. Manyingee North combined RepTEM (southern half) and HeliTEM (northern half) geophysical imagery showing the location of the Manyingee North palaeochannel in relation to mineralisation defined at Manyingee. Note that the two TEM surveys have different colour schemes.

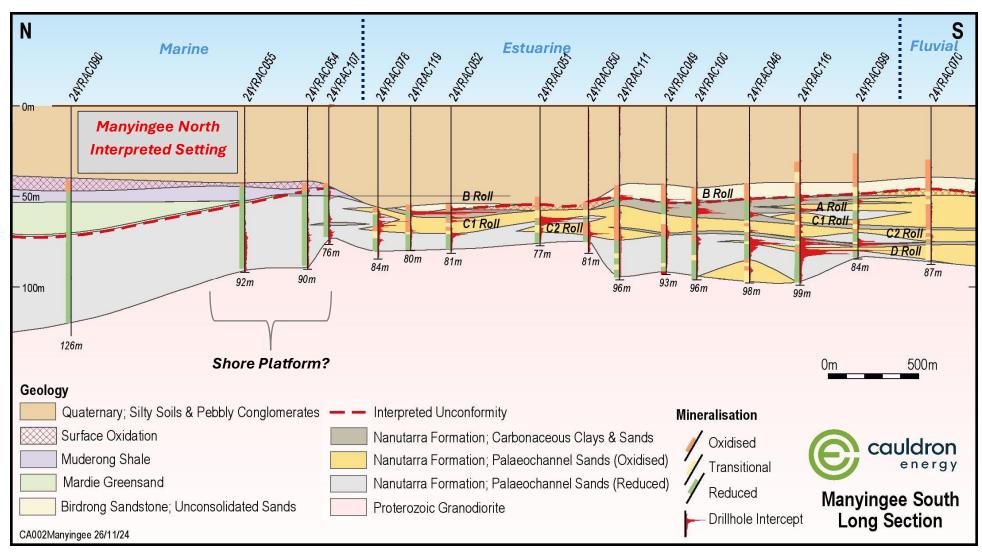


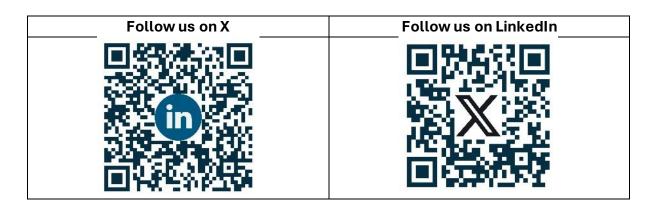
Figure 5. Manyingee South Long-Section showing interpreted palaeogeographic setting of Manyingee North.

This announcement has been authorised for release to market by Ian Mulholland, Non-Executive Chairman of Cauldron Energy Limited.

ENDS

For further information, visit www.cauldronenergy.com.au or contact:

Jonathan Fisher


Chief Executive Officer
Cauldron Energy Limited
M: +61 407 981 867

jonathan.fisher@cauldronenergy.com.au

Michael Fry

Director and Company Secretary Cauldron Energy Limited M: +61 417 996 454

michael.fry@cauldronenergy.com.au

About Cauldron

Cauldron Energy Limited is an ASX-listed uranium-focused company, 100% owner of the Yanrey Uranium Project, covering an area of ~1,340km², located approximately 85 km south of Onslow and within a highly prospective, mineral-rich region containing multiple uranium deposit. The Yanrey Project covers a prospective northeast-southwest trending Cretaceous-age coastal plain developed along the western margin of the Pilbara block. This prospective trend extends for at least 140km in length, of which Cauldron holds ~80km under granted tenement.

Disclaimer

This market update has been prepared by Cauldron Energy Limited ("Company"). The material contained in this market update is for information purposes only. This market update is not an offer or invitation for subscription or purchase of, or a recommendation in relation to, securities in the Company and neither this market update nor anything contained in it shall form the basis of any contract or commitment.

This market update may contain forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Cauldron Energy Limited's business plans, intentions, opportunities, expectations, capabilities, and other statements that are not historical facts. Forward-looking statements include those containing such words as could-plantarget-estimate-forecast-anticipate-indicate-expect-intend-may-potential-should or similar expressions. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, and which could cause actual results to differ from those expressed in this market update. Because actual results might differ materially to the information in this market update, the Company does not make, and this report should not be relied upon as, any representation or warranty as to the accuracy, or reasonableness, of the underlying assumptions and uncertainties. Investors are cautioned to view all forward-looking statements with caution and to not place undue reliance on such statements.

Competent Person Statements

Exploration Results - Yanrey Uranium Project

The information in this report that relates to deconvolved eU_3O_8 results for the Yanrey Uranium Project, is based on information compiled by Mr David Wilson BSc., MSc., who is a member of the Australasian Institute of Geoscientists. Mr Wilson is a consultant to Cauldron Energy Ltd and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Wilson consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Exploration Results for the Yanrey Uranium Project, is based on information compiled by Mr. John Higgins, B.Sc. (Hons), GCPG&G, who is a member of the Australian Institute of Geoscientists. Mr. Higgins is a full-time employee of Cauldron Energy Ltd and has sufficient experience relevant to the style of mineralisation and type of depositunder consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edit ion of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Higgins consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

This report also contains information that relates to exploration results extracted from company announcements released to the Australian Securities Exchange (ASX) listed in the table below and which are available to view at www.cauldroneneergy.com.au and for which the Competent Persons' consents were obtained. Unless otherwise stated, where reference is made to previous releases of exploration results in this announcement, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements and all material assumptions and technical parameters underpinning the exploration results included in those announcements continue to apply and have not materially changed.

Mineral Resource Estimate - Bennet Well Deposit

The information in this report that relates to Mineral Resources for the Bennet Well Deposit is extracted from a report released to the Australian Securities Exchange (ASX) on 17 December 2015 titled "Substantial Increase in Tonnes and Grade Confirms Bennet Well as Globally Significant ISR Project" and available to view at www.cauldronenergy.com.au and for which Competent Persons' consents were obtained. Each Competent Person's consent remains in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent.

The Company confirms that is not aware of any new information or data that materially affects the information included in the original ASX announcement released on 17 December 2015 and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the original ASX announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original ASX announcement.

Table 2: Historical Exploration Results Announcements

Date of Release	Title
02-11-2015	CXU Cauldron Identifies Mineralisation South of Manyingee
17-12-2015	Substantial Increase in Mineral Resource at Bennet Well
24-01-2024	Yanrey Uranium Project Exploration Target
08-08-2024	First Drill Results Confirm and Extend Known Uranium Mineralisation at Bennet Well Deposit
27-08-2024	Further Drilling Adds to Uranium Mineralisation at Bennet Well Deposit
11-09-2024	First Holes at Manyingee South Confirm Significant Discovery
18-09-2024	More Outstanding Results Grow Manyingee South
11-10-2024	Further Excellent Results Expand Manyingee South
05-11-2024	Further Excellent Drilling Results at Manyingee South
25-11-2024	Further Excellent Drilling Results Demonstrate Size and Potential Of Manyingee South Uranium Deposit
06-11-2025	Manyingee South 2025 Drilling Program Commences
13-11-2025	Outstanding High-Grade Results Extend Uranium Mineralisation
25-11-2025	New Discovery at Manyingee North Prospect
01-12-2025	Further High-Grade Uranium Mineralisation Intersected At Manyingee North Prospect.

Mineral Resource Estimate - Manyingee South Deposit

The information in this report that relates to Mineral Resources for the Bennet Well Deposit is extracted from a report released to the Australian Securities Exchange (ASX) on 3 April 2025 titled "Maiden MRE of 11.1Mlbs eU_3O_8 at Manyingee South Adds to Cauldron's Inventory at Yanrey" and available to view at www.cauldronenergy.com.au and for which Competent Persons' consents were obtained. Each Competent Person's consent remains in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent.

The Company confirms that is not aware of any new information or data that materially affects the information included in the original ASX announcement released on 3 April 2025 and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the original ASX announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original ASX announcement.

Appendix A: Manyingee North & South Drillhole Locations

HoleID	GDA2020 Easting	GDA2020 Northing	RL	Zone	DIP	AZI	Top of Bedrock	EOH
	(mE)	(mN)	(mASL)		(°)	(°)	(m)	(m)
2024 Drillh	oles – Many	yingee Sou	th					
24YRAC048	310,596	7,515,370	51.49	50	-90	0	97	98
24YRAC049	310,453	7,515,798	50.63	50	-90	0	91	93
24YRAC050	310,358	7,516,213	48.51	50	-90	0	74	81
24YRAC051	310,247	7,516,470	51.79	50	-90	0	76	77
24YRAC052	310,113	7,516,940	50.56	50	-90	0	79	81
24YRAC053	310,202	7,517,343	53.46	50	-90	0	80	84
24YRAC054	310,070	7,517,688	52.16	50	-90	0	89	90
24YRAC055	309,953	7,517,003	51.33	50	-90	0	90	92
24YRAC056	309,888	7,516,577	51.99	50	-90	0	79	84
24YRAC057	310,794	7,515,389	49.96	50	-90	0	113	114
24YRAC058	310,734			50	-90	0	95	96
241 RAC056 24Y RAC059	310,373	7,515,372 7,515,372	50.78	50	-90	0	90	90
	-		53.20		-90	0		
24YRAC060	310,317	7,515,802	50.14	50			83	84
24YRAC061	310,064	7,516,472	50.83	50	-90	0	74	90
24YRAC062	310,426	7,516,557	50.31	50	-90	0	68	69
24YRAC063	310,614	7,516,642	50.42	50	-90	0	40	66
24YRAC064	310,805	7,516,618	50.80	50	-90	0	50	66
24YRAC065	309,882	7,516,928	49.32	50	-90	0	74	90
24YRAC066	309,729	7,516,934	50.64	50	-90	0	71	75
24YRAC067	310,629	7,514,900	49.87	50	-90	0	98	108
24YRAC068	310,812	7,514,592	51.44	50	-90	0	81	83
24YRAC069	311,013	7,514,599	52.55	50	-90	0	84	90
24YRAC070	311,193	7,514,604	52.05	50	-90	0	85	87
24YRAC071	310,631	7,514,590	51.08	50	-90	0	89	90
24YRAC072	310,458	7,514,596	51.34	50	-90	0	83	84
24YRAC073	310,399	7,514,914	51.51	50	-90	0	88	89
24YRAC074	310,097	7,515,818	49.96	50	-90	0	98	99
24YRAC075	309,973	7,516,226	51.09	50	-90	0	85	86
24YRAC076	310,159	7,516,236	49.67	50	-90	0	82	83
24YRAC077	309,602	7,517,321	49.83	50	-90	0	57	60
24YRAC078	309,991	7,517,351	48.55	50	-90	0	83	84
24YRAC079	309,741	7,518,019	48.24	50	-90	0	72	75
24YRAC080	310,311	7,516,933	51.34	50	-90	0	53	78
24YRAC081	310,508	7,516,926	49.47	50	-90	0	68	69
24YRAC082	310,652	7,516,937	49.52	50	-90	0	48	60
24YRAC083			46.87	50	-90	0		
24YRAC084	309,810	7,517,587		50	-90	0	80.5	81
24YRAC085	310,367	7,517,346	50.32	50	-90 -90	0	71	78
24YRAC085 24YRAC086	310,573	7,517,353	51.94	50	-90 -90	0	58	60
	310,257	7,517,682	49.03				74	75
24YRAC087	310,141	7,518,023	48.96	50	-90	0	99	102
24YRAC088	309,112	7,518,023	49.71	50	-90	0	96	102
24YRAC089	308,796	7,518,003	47.53	50	-90	0	59	63
24YRAC090	309,064	7,518,395	49.30	50	-90	0	122	126
24YRAC091	308,675	7,518,423	48.46	50	-90	0	76	78
24YRAC092	310,042	7,515,370	50.82	50	-90	0	89	90
24YRAC093	310,544	7,516,277	51.61	50	-90	0	86	87
24YRAC094	310,738	7,516,223	50.70	50	-90	0	89	90
24YRAC095	310,894	7,516,228	51.74	50	-90	0	63	66
24YRAC096	310,663	7,515,784	53.50	50	-90	0	98	99

HoleID	GDA2020	GDA2020	RL	Zone	DIP	AZI	Top of	EOH
	Easting	Northing					Bedrock	
	(mE)	(mN)	(mASL)		(°)	(°)	(m)	(m)
2024 Drillh	oles – Many	yingee Sou	th (conti	nued)				
24YRAC097	310,853	7,515,843	53.09	50	-90	0	77	78
24YRAC098	310,953	7,515,609	50.68	50	-90	0	77	78
24YRAC099	310,965	7,514,908	52.34	50	-90	0	83	84
24YRAC100	310,489	7,515,637	51.60	50	-90	0	95	96
24YRAC101	310,665	7,515,638	52.01	50	-90	0	95	96
24YRAC102	310,511	7,515,180	51.14	50	-90	0	80	81
24YRAC103	310,347	7,515,205	50.69	50	-90	0	87	88
24YRAC104	310,182	7,515,184	51.47	50	-90	0	89	90
24YRAC105	309,850	7,515,075	50.55	50	-90	0	60	78
24YRAC106	309,974	7,515,109	49.85	50	-90	0	74	87
24YRAC107	310,073	7,517,571	50.66	50	-90	0	72	76
24YRAC108	310,375	7,517,561	52.95	50	-90	0	68	69
24YRAC109	309,937	7,516,023	50.99	50	-90	0	52	99
24YRAC110	310,139	7,516,050	50.46	50	-90	0	86	87
24YRAC111	310,368	7,516,051	50.28	50	-90	0	95	96
24YRAC112	310,372	7,515,078	51.22	50	-90	0	88	89
24YRAC113	310,572	7,517,569	50.17	50	-90	0	59	60
24YRAC114	310,563	7,515,088	53.27	50	-90	0	85	86
24YRAC115	310,709	7,515,134	52.50	50	-90	0	91	96
24YRAC116	310,805	7,515,188	52.03	50	-90	0	98	99
24YRAC117	309,959	7,515,824	50.26	50	-90	0	90	93
24YRAC118	309,666	7,517,135	47.45	50	-90	0	N/A	54
24YRAC119	309,886	7,517,124	51.66	50	-90	0	79	80
24YRAC120	310,106	7,517,123	48.72	50	-90	0	88	89
24YRAC121	309,842	7,517,216	49.67	50	-90	0	71	72
24YRAC122	310,944	7,515,827	50.39	50	-90	0	56	57
24YRAC123	310,701	7,515,191	51.63	50	-90	0	89	90
24YRAC124	310,879	7,515,121	49.57	50	-90	0	89	90
24YRAC143	310,304	7,515,269	50.67	50	-90	0	95	96
2025 Drillh	oles – Many	yingee Sou ^r	th					
25YRAC001	310,601	7,515,286	51.1	50	-90	0	92	96
25YRAC002	311,003	7,515,196	48.9	50	-90	0	83.5	87
25YRAC003	311,201	7,515,205	52.0	50	-90	0	89	90
25YRAC004	311,405	7,515,205	50.9	50	-90	0	63	66
25YRAC005	310,006	7,515,001	52.7	50	-90	0	N/A	78
25YRAC006	310,202	7,514,993	50.6	50	-90	0	95.5	96
25YRAC007	310,212	7,514,797	50.7	50	-90	0	71	81
25YRAC008	310,001	7,514,796	50.3	50	-90	0	99.5	100
25YRAC009	310,974	7,514,987	49.9	50	-90	0	101	102
25YRAC010	310,871	7,514,990	49.0	50	-90	0	94.5	96
25YRAC011	311,011	7,514,811	52.9	50	-90	0	98.5	99
25YRAC012	311,197	7,514,796	50	50	-90	0	86	87
25YRAC013	311,392	7,514,802	52.2	50	-90	0	42	57
25YRAC014	311,807	7,514,801	47.6	50	-90	0	83.5	86
25YRAC015	312,007	7,514,800	52.1	50	-90	0	38	84
25YRAC016	311,607	7,514,800	52.2	50	-90	0	44.5	75
25YRAC017	311,012	7,514,398	52.1	50	-90	0	60	84
25YRAC018	311,199	7,514,400	51.0	50	-90	0	76	78
25YRAC019	311,398	7,514,401	50.1	50	-90	0	68	69
25YRAC020	311,582	7,514,419	52.1	50	-90	0	78	84
25YRAC021	311,805	7,514,408	53.2	50	-90	0	40	84

HoleID	GDA2020	GDA2020	RL	Zone	DIP	AZI	Top of	EOH
	Easting	Northing					Bedrock	
	(mE)	(mN)	(mASL)		(°)	(°)	(m)	(m)
2025 Drillhol	les – Manyi	ngee South	(contin	ued)				
25YRAC022	311,998	7,514,394	52.3	50	-90	0	41	63
25YRAC023	310,598	7,514,389	54.1	50	-90	0	28	51
25YRAC024	310,801	7,514,402	52.0	50	-90	0	32	72
25YRAC025	311,019	7,515,372	54.5	50	-90	0	41	87
25YRAC026	311,212	7,515,618	52.1	50	-90	0	59	93
25YRAC027	311,217	7,515,399	53.4	50	-90	0	50	84
25YRAC028	311,201	7,514,994	52.9	50	-90	0	70	83
25YRAC029	311,604	7,514,990	50.5	50	-90	0	51	73
25YRAC030	310,004	7,514,601	49.3	50	-90	0	71	72
25YRAC031	309,803	7,514,603	50.0	50	-90	0	N/A	78*
25YRAC032	309,811	7,514,399	48.1	50	-90	0	100	108
25YRAC033	309,999	7,514,400	53.03	50	-90	0	59	63
* Hole terminate	d at blade refu	sal in hard sar	ndstone.					
2025 Drillhol	les – Manyi	ngee North						
25YRAC034	313,800	7,522,095	50.78	50	-90	0	121	126
25YRAC035	314,000	7,522,096	49.58	50	-90	0	136	138
25YRAC036	314,193	7,522,094	49.19	50	-90	0	130	132
25YRAC037	314,398	7,522,091	50.79	50	-90	0	121	123
25YRAC038	313,795	7,521,844	49.51	50	-90	0	134	135
25YRAC039	314,008	7,521,843	48.46	50	-90	0	137	138
25YRAC040	314,190	7,521,838	50.58	50	-90	0	123	132
25YRAC041	314,404	7,521,838	49.88	50	-90	0	120	122
25YRAC042	314,577	7,521,794	51.01	50	-90	0	139	141
25YRAC043	314,210	7,522,503	49.23	50	-90	0	115	117
25YRAC044	313,802	7,522,498	49.99	50	-90	0	106	111
25YRAC045	314,005	7,522,497	49.33	50	-90	0	110	115
25YRAC046	314,438	7,522,511	47.70	50	-90	0	117	119
25YRAC047A	314,610	7,522,496	48.40	50	-90	0	N/A	80⁺
25YRAC047	314,603	7,522,497	48.40	50	-90	0	116	117
25YRAC048	314,800	7,522,508	51.69	50	-90	0	126	132
25YRAC049	314,538	7,522,299	50.70	50	-90	0	116	117
25YRAC050	314,671	7,522,101	50.44	50	-90	0	125	126
25YRAC051	314,792	7,522,089	50.53	50	-90	0	116	117
25YRAC052	315,003	7,522,111	51.26	50	-90	0	115	117
25YRAC053	315,196	7,522,088	52.56	50	-90	0	109	111
25YRAC054	314,990	7,521,859	50.78	50	-90	0	121	123
25YRAC055	315,177	7,521,850	51.30	50	-90	0	104	117
25YRAC056	314,800	7,521,852	50.69	50	-90	0	141	147
⁺ Hole abandone	ed at 80m after	rods detached	d.					

Appendix B: Manyingee North & South Significant Intersections

	eU₃O₃ Grade x					Cumulative	
Drillhole ID	From	То	Width	Av. Grade	Thickness (GT)	GT	
	(m)	(m)	(m)	≥ 150ppm	(ppm.m)	(ppm.m)	
2024 Drillho	les – Ma	anyinge	e South				
	51.06	51.84	0.78	400	312		
	59.30	60.24	0.94	228	215		
24YRAC048	60.54	61.18	0.64	236	151	2,962	
	69.02	69.40	0.38	201	76		
	73.76	79.66	5.90	374	2,208		
	51.52	52.02	0.50	356	178		
24YRAC049	53.16	53.38	0.22	162	36	369	
	56.04	56.62	0.58	268	155		
24YRAC050	69.76	70.86	1.10	328	360	360.4	
24YRAC051	61.48	65.60	4.12	622	2,562	2,561.5	
	61.50	62.22	0.72	475	342		
24YRAC052	63.22	63.94	0.72	563	406	1,176	
	70.46	71.90	1.44	297	423		
0.41/0.4.0050	54.16	54.50	0.34	250	85	400	
24YRAC053	62.24	62.52	0.28	184	51	136	
	45.68	46.16	0.48	183	88		
	50.54	50.90	0.36	198	71		
24YRAC056	52.74	53.24	0.50	264	132	1,452	
	55.78	57.16	1.38	673	929		
	57.70	58.56	0.86	270	233		
	48.08	49.32	1.24	464	576		
0.4\/D.4.0057	50.26	51.06	0.80	306	245	4.400	
24YRAC057	51.32	51.70	0.38	250	95	1,103	
	72.54	73.08	0.54	348	188		
	55.82	56.22	0.40	200	80		
	57.18	59.64	2.46	407	1,002		
247040000	59.98	60.34	0.36	212	76	5,051	
24YRAC058	60.58	61.24	0.66	339	224	3,031	
	67.30	69.98	2.68	384	1,029.9		
	75.40	78.40	3.00	880	2,639		
	49.56	50.30	0.74	489	362		
24VDA COEO	52.42	52.96	0.54	226	122	910	
24YRAC059	65.98	66.60	0.62	204	127	910	
	69.00	70.44	1.44	208	300		
	49.42	50.42	1.00	384	384		
24VDA C060	51.66	52.46	0.80	402	322	022	
24YRAC060	55.98	56.42	0.44	282	124	932	
	69.22	69.62	0.40	256	102		
24YRAC061	51.28	51.90	0.62	254	157	158	
247.0002	54.84	57.76	2.92	669	1,953	2.264	
24YRAC065	61.02	61.74	0.72	570	410	2,364	
041/04.0000	57.82	58.14	0.32	235	75	100	
24YRAC066	59.28	59.80	0.52	219	114	189	
	50.06	50.56	0.50	200	100		
24YRAC067	52.48	53.22	0.74	295	219	362	
	83.84	84.10	0.26	166	43		

				eU₃O ₈	Grade x	Cumulative	
Drillhole ID	From	То	Width	Av. Grade	Thickness (GT)	GT	
	(m)	(m)	(m)	≥ 150ppm	(ppm.m)	(ppm.m)	
2024 Drillho	les – Ma	anyinge	e South	(continued)		
	47.56	48.18	0.62	292	181		
24YRAC068	71.16	71.82	0.66	183	121	302	
24YRAC071	48.34	49.04	0.70	345	241	241	
	71.04	71.68	0.64	216	138		
24YRAC073	72.96	73.40	0.44	154	68	206	
	52.22	52.94	0.72	177	127		
24YRAC075	59.08	59.40	0.32	212	68	290	
	71.56	71.94	0.38	250	95		
	56.18	56.50	0.32	181	58		
24YRAC076	71.78	72.86	1.08	310	335	393	
	61.22	61.80	0.58	324	188		
	63.60	64.34	0.74	375	278		
24YRAC078	65.56	67.02	1.46	290	423	1,015	
	68.94	69.34	0.40	180	72		
	73.90	74.20	0.30	182	55		
24YRAC084	60.42	60.62	0.20	154	31	31	
24YRAC089	48.14	48.72	0.58	186	108	108	
24YRAC091	67.26	68.92	1.66	308	511	510	
24YRAC092	47.70	48.20	0.50	313	156	156	
24YRAC096	74.76	75.56	0.80	250	200	200	
24YRAC098	59.58	61.60	2.02	487	983	983	
	53.16	53.68	0.52	163	85		
24YRAC099	74.86	75.64	0.78	363	283	1,464	
	76.04	77.82	1.78	616	1,096		
0.4VDA.C100	52.30	52.78	0.48	326	157	1 457	
24YRAC100	56.86	60.06	3.20	406	1,300	1,457	
0.4VDA.C101	52.22	53.22	1.00	298	298	200	
24YRAC101	55.32	55.74	0.42	216	91	389	
	49.94	50.20	0.26	177	46		
24YRAC102	50.98	53.14	2.16	345	746	1,038	
	53.68	54.32	0.64	384	246		
24YRAC103	61.66	66.00	4.34	1,021	4,433	4,433	
	63.50	65.78	2.28	954	2,176		
	67.40	67.78	0.38	189	72		
24YRAC104	68.00	68.50	0.50	184	92	9,623	
	72.04	73.28	1.24	1,359	1,685		
	74.16	75.54	1.38	165	228		
0.4VDA.C10C	67.78	69.42	1.64	538	883	1.050	
24YRAC106	69.98	70.72	0.74	230	170	1,053	
24YRAC107	49.94	50.18	0.24	208	50	50	
24YRAC108	62.42	62.94	0.52	170	89	313	
2-110-100	63.40	64.72	1.32	170	224		
24YRAC109	53.88	54.40	0.52	260	135		
	60.88	61.58	0.70	280	196		
24YRAC110	58.02	58.68	0.66	286	189	872	
	60.50	62.04	1.54	444	683		

	_	_		eU₃O ₈	Grade x	Cumulative	
Drillhole ID	From	То	Width	Av. Grade	Thickness (GT)	GT	
	(m)	(m)	(m)	≥ 150ppm	(ppm.m)	(ppm.m)	
2024 Drillho	les – Ma	anyinge	e South	(continued)		
	49.62	50.16	0.54	275	148		
24YRAC111	51.82	52.14	0.32	190	61	209	
24YRAC112	73.52	73.92	0.40	168	67	67	
	46.04	46.56	0.52	337	175		
24YRAC113	49.64	50.10	0.46	201	92	304	
	50.80	51.02	0.22	167	37		
	49.64	51.40	1.76	359	632		
24YRAC114	54.16	54.74	0.58	183	106	1,211	
	56.94	58.32	1.38	343	473		
	52.04	53.02	0.98	307	301		
24YRAC115	57.88	58.76	0.88	239	210	2,380	
	75.24	78.60	3.36	556	1,868		
	50.64	51.20	0.56	256	143		
	52.00	52.60	0.60	348	209	6,986	
0.0/54.0440	57.08	58.08	1.00	435	435		
24YRAC116	73.86	74.70	0.84	433	364		
	75.42	77.52	2.10	655	1,376		
	78.96	83.76	4.80	929	4,459		
04VDA 0447	55.04	55.44	0.40	255	102	200	
24YRAC117	58.22	58.96	0.74	388	287	389	
24YRAC119	58.72	60.80	2.08	1,755	3,650	3,650	
	61.40	62.10	0.70	291	204		
24YRAC120	63.50	63.74	0.24	193	46	690	
	66.12	66.96	0.84	523	439		
24YRAC121	61.30	61.70	0.40	164	66	66	
	51.44	51.98	0.54	302	163		
	53.72	54.28	0.56	388	218		
24YRAC123	54.76	55.56	0.80	345	276	2,884	
	57.68	58.42	0.74	509	377		
	71.84	75.42	3.58	517	1,850		
	54.34	54.90	0.56	261	146		
	55.74	57.58	1.84	779	1,433		
24YRAC124	72.76	74.06	1.30	1,039	1,351	3,799	
	76.90	78.64	1.74	468	814		
	78.84	79.18	0.34	163	55		
Note: Minimum	cut-off 15	0 eU₃O ₈ a	nd 0.2m m	inimum thicki	ness.		

HoleID	From	То	Thickness	eU₃O ₈	eU₃O₃ Max	Grade x	Cumulative
				Av. Grade	Max. Grade	Thickness (GT)	GT
	(m)	(m)	(m)	≥ 150ppm		(ppm.m)	(ppm.m)
Manyingee I	North - P	reviousl	y Announce	ed 2025 Drill	holes		
	94.92	95.25	0.33	175.5	195.0	57.9	
	96.65	97.42	0.77	282.7	541.0	217.7	1
	97.98	98.26	0.28	178.1	199.0	49.9	
25YRAC034	100.30	100.52	0.22	170.3	461.0	37.5	992.3
	101.18	101.49	0.31	310.8	461.0	96.3	
	105.83	106.77	0.94	242.1	327.0	227.6	
	107.31	108.60	1.29	236.8	324.0	305.5	
25YRAC035	97.59	98.89	1.30	448.7	745.0	583.3	583.3
	90.97	91.80	0.83	278.7	521.0	231.3	4
25YRAC036	92.33	92.61	0.28	168.7	198.0	47.2	991.9
	93.37	94.29	0.92	536.7	1,108.0	493.8	
	94.93	95.54	0.61	359.9	625.0	219.5	
	92.96	95.16	2.20	471.4	1,194.0	1,037.1	4
	95.31	95.86	0.55	236.2	344.0	129.9	4
	97.47	97.86	0.39	237.5	307.0	92.6	4
25YRAC037	98.99	101.55	2.56	278.1	473.0	711.9	3,374.2
	103.44	106.44	3.00	320.0	623.0	960.0	4
	106.50 108.77	107.25 109.22	0.75 0.45	324.1 240.3	519.0 302.0	243.1 108.1	-
	114.11	114.59	0.48	190.5	222.0	91.4	-
	96.92	99.64	2.72	887.2	1,956.0	2,413.2	
25YRAC038	108.48	108.74	0.26	179.1	208.0	2,413.2 46.6	2,459.8
	92.86	93.30	0.26	218.5	296.0	96.1	
25YRAC039	93.88	96.42	2.54	343.4	565.0	872.2	968.4
	88.89	93.69	4.80	1,016.5	4,487.0	4,879.2	4,981.0
25YRAC040	97.36	97.71	0.35	184.70	224.0	64.6	
231 NAC040	115.45	115.68	0.23	161.7	184.0	37.2	
	93.68	94.34	0.66	252.9	380.0	166.9	+
	94.83	95.11	0.28	186.4	214.0	52.2	+
25YRAC041	96.07	98.47	2.40	243.1	462.0	583.4	2,835.2
20111/100-11	98.74	101.53	2.79	710.9	1,620.0	1,983.4	2,000.2
	101.67	101.90	0.23	214.3	264.0	49.3	†
25YRAC042	109.04	109.38	0.34	201.4	252.0	68.5	68.5
	94.67	95.19	0.52	281.0	446.0	146.1	35.5
	95.56	96.27	0.71	308.8	445.0	219.2	1
051/5 - 5	97.04	97.76	0.72	307.2	388.0	221.2	1
25YRAC043	98.50	99.08	0.58	181.5	214.0	105.3	1,345.1
	103.89	104.27	0.38	231.2	323.0	87.9	7
	112.13	113.55	1.42	398.2	979.0	565. <i>4</i>	7
25YRAC044	100.81	103.49	2.68	371.9	769.0	996. <i>7</i>	996.7
25YRAC045	101.28	105.08	3.80	285.9	477.0	1,086.4	1,086.4
Manyingee l	North - N	lew Drill	holes				
	95.33	96.18	0.85	305.4	444.0	259.6	
	99.59	103.92	4.33	330.8	827.0	1,432.4	7
05/04/02/12	104.15	107.81	3.66	368.4	675.0	1,348.3	0.050.0
25YRAC046	111.46	111.98	0.52	256.0	359.0	133.1	3,350.2
	113.79	114.36	0.57	234.6	330.0	133.7	1
	114.40	114.66	0.26	165.5	181.0	43.0	7
	91.19	92.76	1.57	547.9	1,786.0	860.2	
	92.85	93.71	0.86	295.8	497.0	254.4	1,622.2
05/04/06/47	94.43	94.97	0.54	288.3	508.0	155.7	
25YRAC047	97.95	98.51	0.56	231.8	333.0	129.8	
	98.93	99.60	0.67	262.9	481.0	176.1	
	100.26	100.47	0.21	219.1	260.0	46.0	
25YRAC048	101.86	103.40	1.54	254.8	444.0	392.4	575.8

	104.00	104.61	0.61	235.0	325.0	143.4		
	95.40	99.93	4.53	1,280.2	4,667.0	5,799.3		
	103.67	103.97	0.30	171.6	199.0	51.5		
	105.50	105.81	0.31	261.4	366.0	81.0	6,063.3	
	109.21	109.43	0.22	179.9	195.0	39.6		
25YRAC049	113.29	113.76	0.47	195.5	251.0	91.9		
25YRAC050	106.57	107.18	0.61	174.0	196.0	106.1	106.1	
25YRAC051	102.66	104.39	1.73	422.5	632.0	730.9	730.9	
25YRAC052	97.06	99.50	2.44	386.0	943.0	941.8	941.8	
	89.08	89.88	0.80	248.0	328.0	198.4	326.5	
25YRAC053	90.23	90.74	0.51	177.5	204.0	90.5		
	90.81	91.04	0.23	163.3	177.0	<i>37</i> .6		
	93.51	93.82	0.31	158.7	166.0	49.2		
25YRAC054	94.11	94.97	0.86	269.8	334.0	232.0	368.3	
	95.57	96.05	0.48	181.5	208.0	87.1		
	82.55	82.94	0.39	166.5	188.0	64.9		
	82.96	83.66	0.70	223.0	293.0	156.1		
25YRAC055	83.86	86.03	2.17	251.9	359.0	546.6	853.4	
	113.31	113.56	0.25	172.1	206.0	43.0		
	114.62	114.87	0.25	171.0	191.0	42.8	1	
25YRAC056	101.79	102.82	1.03	272.5	401.0	280.7	280.7	
Note: Minimum	cut-off 150	ppm eU₃O	8 and 0.2m min	nimum thicknes	ss.			

Appendix C: Bennet Well Mineral Resource Estimate

A Mineral Resource Estimate (JORC 2012) for the mineralisation at Bennet Well was completed by Ravensgate Mining Industry Consultants (Ravensgate) in 2015 and is based on information compiled by Mr Jess Oram, Executive Director of Cauldron Energy at that time and Mr Stephen Hyland, who was a Principal Consultant of Ravensgate. Mr Oram is a Member of the Australasian Institute of Geoscientists and Mr Hyland is a Fellow of the Australasian Institute of Mining and Metallurgy.

The mineralisation at Bennet Well is a shallow accumulation of uranium hosted in unconsolidated sands close to surface (less than 100 m downhole depth) in Cretaceous sedimentary units of the Ashburton Embayment.

The Bennet Well deposit is comprised of four spatially separate deposits; namely Bennet Well East, Bennet Well Central, Bennet Well South and Bennet Well Channel.

The Mineral Resource (JORC 2012) estimate is:

- Inferred Resource: 16.9 Mt at 335 ppm eU_3O_8 for total contained uranium-oxide of 12.5 Mlb (5,670 t) at 150 ppm cut-off;
- Indicated Resource: 21.9 Mt at 375 ppm eU_3O_8 for total contained uranium-oxide of 18.1 Mlb (8,230 t) at 150 ppm cut-off;
- total combined Mineral Resource: $38.9 \, \text{Mt}$ at $360 \, \text{ppm}$ eU₃O₈, for total contained uranium-oxide of $30.9 \, \text{Mlb}$ (13,990 t) at 150 ppm cut-off.

Table: Mineral Resource (JORC 2012) at various cut-off

Deposit	Cutoff (ppm eU₃O ₈)	Deposit Mass (t)	Deposit Grade (ppm eU₃O ₈)	Mass U₃O ₈ (kg)	Mass U₃O ₈ (lbs)
Bennet Well_Total	125	39,207,000	355	13,920,000	30,700,000
Bennet Well_Total	150	38,871,000	360	13,990,000	30,900,000
Bennet Well_Total	175	36,205,000	375	13,580,000	29,900,000
Bennet Well_Total	200	34,205,000	385	13,170,000	29,000,000
Bennet Well_Total	250	26,484,000	430	11,390,000	25,100,000
Bennet Well_Total	300	19,310,000	490	9,460,000	20,900,000
Bennet Well_Total	400	10,157,000	620	6,300,000	13,900,000
Bennet Well_Total	500	6,494,000	715	4,640,000	10,200,000
Bennet Well_Total	800	1,206,000	1175	1,420,000	3,100,000

Deposit	Cutoff (ppm U₃O ₈)	Deposit Mass (t)	Deposit Grade (ppm U₃O ₈)	Mass U ₃ O ₈ (kg)	Mass U ₃ O ₈ (lbs)
BenWell_Indicated	125	22,028,000	375	8,260,000	18,200,000
BenWell_Indicated	150	21,939,000	375	8,230,000	18,100,000
BenWell_Indicated	175	21,732,000	380	8,260,000	18,200,000
BenWell_Indicated	200	20,916,000	385	8,050,000	17,800,000
BenWell_Indicated	250	17,404,000	415	7,220,000	15,900,000
BenWell_Indicated	300	13,044,000	465	6,070,000	13,400,000
BenWell_Indicated	400	7,421,000	560	4,160,000	9,200,000
BenWell_Indicated	500	4,496,000	635	2,850,000	6,300,000
BenWell_Indicated	800	353,000	910	320,000	700,000

Deposit	Cutoff (p	pm Deposit Mass (t)	Deposit Grade	Mass U₃O ₈ (kg)	Mass U ₃ O ₈ (lbs)
	U₃O ₈)		(ppm U₃O ₈)		
D 144 H 1 6		47.470.000			10 700 000
BenWell_Inferred	125	17,179,000	335	5,750,000	12,700,000
BenWell_Inferred	150	16,932,000	335	5,670,000	12,500,000
BenWell_Inferred	175	14,474,000	365	5,280,000	11,600,000
BenWell_Inferred	200	13,288,000	380	5,050,000	11,100,000
BenWell_Inferred	250	9,080,000	455	4,130,000	9,100,000
BenWell_Inferred	300	6,266,000	535	3,350,000	7,400,000
BenWell_Inferred	400	2,736,000	780	2,130,000	4,700,000
BenWell_Inferred	500	1,998,000	900	1,800,000	4,000,000
BenWell_Inferred	800	853,000	1285	1,100,000	2,400,000

Note 1: table shows rounded numbers therefore units may not convert nor sum exactly. Note 2: preferred 150 ppm cut-off shown in bold.

Appendix D: Manyingee South Resource Estimate

A Mineral Resource Estimate for the mineralisation at Manyingee South was completed by AMC Consultants Pty Ltd (AMC) in 2025.

The Mineral Resources were reported in accordance with the JORC (2012) Code. The MRE was completed by Mr Dmitry Pertel, Principal Geologist of AMC. Geological information and Quality Assurance and Quality Control (QAQC) analysis was completed by Cauldron's Exploration Manager, Mr John Higgins and assisted by Mr Robert Annett, consulting geologist engaged by Cauldron. The conversion of downhole gamma grades to estimated eU₃O₈ grades was undertaken by Mr David Wilson, Principal Geoscientist with 3D Exploration. Dmitry assumes Competent Person status for the Geological information and QAQC analysis, and David assumes Competent Person status for the reported eU₃O₈ grades.

The mineralisation at Manyingee South is a shallow accumulation of uranium hosted in unconsolidated sands close to surface (less than 100 m downhole depth) developed within a palaeochannel of Early Cretaceous age.

The Mineral Resource (JORC 2012) estimate is:

• Inferred Resource: 15.5 Mt at 325 ppm eU_3O_8 for total contained uranium-oxide of 11.1 Mlbs (5,045 t) at 100 ppm eU_3O_8 cut-off.

Table B: Manyingee South Deposit Mineral Resource (JORC 2012) at various cut-off grades.

Deposit	Cutoff	Tonnes	e	U₃O ₈
	$(ppm eU_3O_8)$	(Mt)	Grade (ppm)	Metal (Mlbs)
Manyingee South Inferred	0	15.48	324	11.07
Manyingee South Inferred	100	15.47	325	11.07
Manyingee South Inferred	125	15.42	325	11.06
Manyingee South Inferred	150	14.92	331	10.9
Manyingee South Inferred	175	14.19	340	10.64
Manyingee South Inferred	200	13.12	352	10.19
Manyingee South Inferred	250	9.71	396	8.48
Manyingee South Inferred	300	7.09	443	6.92
Manyingee South Inferred	400	4.4	500	4.84
Manyingee South Inferred	500	1.5	622	2.05
Manyingee South Inferred	800	0.07	1056	0.16

Manyingee South grade tonnage report with cut-offgrades between 0 and 800ppm eU_3O_8 applied to Uranium oxide grades. The Mineral Resource classification applies to the 100ppm cut-off grade.

Appendix E:

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The principal sampling method for all drilling conducted at the Manyingee South prospect and larger Yanrey project area has been by downhole geophysical gamma logging to determine uranium assay and <i>in-situ</i> formation density data. Data collected at 2 cm sample rate comprised gamma ray (Triple Gamma / Geiger Probe), single point resistivity and dual density. Downhole geophysical log data was collected by contractors, Borehole Wireline of Adelaide SA using Mount Sopris and GeoVista made downhole slim-line tools.
		All uranium grades are determined from the gamma (counts per second) logs using the (non dead-time corrected) calibrated gamma probe, the application of a smoothing filter on the raw data, HQ drill casing correction, hole-size correction, moisture correction, and a correction for secular disequilibrium. Drill hole formation density was estimated from the calibrated dual density probe (short spaced and long spaced measurements). These data were corrected for the high background gamma environment of the mineralised zone (by running the probe without the source in grades above 800 ppm eU ₃ O ₈) and for variations in hole-size by applying a hole-size correction model derived from the AMDEL calibration facility.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Downhole gamma logging was performed by Borehole Wireline using a Geovista 4322 total count gamma probe. Calibration of gamma probe was completed using non-dead-time corrected grade and hole-size correction models, and for the density sonde using a density model and a hole-size correction model. The probes were calibrated in Adelaide at the Department of Water facility in Regency Park.
	Aspects of the determination of mineralisation that are Material to the Public Report.	Data was collected at 2cm (0.02m) sample intervals down the length of the drillhole. Uranium assay grades were determined from gamma logs using a non dead-time corrected calibrated gamma probe, a smoothing filter on the raw data, hole-size correction, moisture correction, and a correction for secular disequilibrium. Downhole geophysical logging was undertaken by contractors, Borehole Wireline of Adelaide SA, using GeoVista made downhole slim-line tools. Secular disequilibrium was established for the uranium mineralisation at Yanrey during the previous exploration, by Cauldron Energy Ltd, in 2014. The equilibrium samples were from various mineralized intercepts at Yanrey and analysed by ANSTO in Sydney.
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Not applicable.

Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other	Air-core drilling was undertaken during the period from November to December 2025 as a follow on to aircore drilling undertaken during July-November 2024. Historical drilling within the Bennet Well – Yanrey project consists of various phases of rotary mud, aircore and diamond
	type, whether core is oriented and if so, by what method, etc).	core drilling conducted between 1979 (historical) and 2014 (CXU). All holes were drilled vertically. The breakdown of programs is as follows:
		¬ pre-2013: historical drilling consisting mostly of aircore, comprising 285 holes for a total of 29,065 m and rotary mud, consisting of 95 holes for 8,993 m .
		¬ 2013: diamond core drilling comprising a total of 8 holes, consisting of 356 m rotary mud pre-collars and 257 m of HQ diamond core tails. The rotary mud pre-collars were drilled at a diameter of 5 ¼" while the diamond core tails were drilled with triple-tube PQ (diameter 83mm) in areas of hard drilling, and subsequently HQ (61mm) when the target zone of mineralisation was intersected.
		— 2014: approximately 90 % of the drill program was comprised of rotary mud (diameter for a total of 67 holes (5,785 m), while 10% consisted of triple tube diamond-drilled PQ core for a total of 6 holes (534m). The bore wall was stabilised by bentonite muds and chemical polymers.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Cauldron geologists logged the drill holes and assessed the sample recovery during the process.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Cauldron logged the drill holes and samples and used quality controls such as blanks, standards, and duplicates.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Cauldron has not identified any relationship between sample recovery and the determination of uranium assay from gamma ray data. Variations in uranium grade caused by changing drillholesize is minimised through an accurate measurement of hole diameter using a calliper tooland application of a hole-size correction factor. Hole-size correction models have been determined by Borehole Wireline, using data collected at the Department of Water calibration facility at Regency Park in Adelaide; with a hole-size correction factor derived as a function of drillhole diameter.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All air-core samples are collected in chip trays and geologically logged to assist in the interpretation of the resistivity and density profiles derived from the downhole geophysical probes. Uranium assay for a potential <i>in-situ</i> leach project requires mineralisation to be hosted in a porous sediment that are readily leachable. Porosity is estimated from the dual density data. No geotechnical data was collected due to the generally flat-lying geology and mostly unconsolidated sediments. Holes are first logged through the drill rods and then with a second set of logs run in the open hole.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The geological logging completed was both qualitative (sediment/rock type, colour, degree of oxidation, etc.) and quantitative (recording of specific depths and various geophysical data). The samples were sieved and photographed wet (lightly sprayed with water) and dry.

	The total length and percentage of the relevant intersections logged.	The gamma ray results were logged to the database and were used together with the geology and mineralogy information to establish U interceptions with are being reported in this announcement.
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Cuttings samples were not collected for conventional assay as previous experience has shown that the sampling method is inappropriate due to the samples being taken from a charged subsurface aquifer.
		Gamma grades were calculated directly via deconvolution of downhole gamma logs.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Air-core drilling allows the use of downhole geophysical probes which can derive assay for uranium mineralisation. A check against assay and density derived from gamma and density probes, respectively, will be completed using physical sampling derived from core drilled during the 2014 program.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	A reference drill hole (24YRAC143), containing uranium mineralisation, was established to provide a regular check on the repeatability of the gamma probe. This cross-check is also used to check if the correct calibration models are applied to the data, and to ascertain potential spurious results from a damaged probe or a probe that drifts out of calibration range. Calibration runs are done weekly whilst drilling is in progress.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Not applicable.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Not applicable.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	No assay results are being reported.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	No assay results are being reported.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No assay results are being reported.
	The use of twinned holes.	Drilling at Manyingee South prospect is a new exploration area. To date no twinned holes have been completed. Diamond drilling is planned for 2026 with the holes planned to twin high-grade drillholes from the 2024 & 2025 aircore drilling programs. Exact hole locations have not yet been selected as drilling is ongoing.

	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	No assay results are being reported.
	Discuss any adjustment to assay data.	No assay results are being reported.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Cauldron has surveyed the collar positions of the drill holes with handheld GPS, and the survey provided sufficient accuracy whilst drilling is underway. Upon completion of the drilling program the holes will be surveyed by differential RTK GPS for very high precision. The quality of survey data is fit for the purpose of planning exploration programs, generating targets for investigation, and further resource definition. No new Mineral Resource or Ore Reserve has been estimated.
	Specification of the grid system used.	Cauldron utilised GDA2020 Zone 50.
	Quality and adequacy of topographic control.	The primary topographic control is from SRTM. This technique is adequate given the generally flat-lying nature of the sediments. The highly accurate RTK pickups of collars from the 2013-2015 drilling is for only a small portion of the total drilling of the deposit. Lidar DTM was used for topographic control over the 2015 drilling at Bennet Well resource. Outside the Bennet Well resource, the SRTM derived data provide the best means to mitigate against level-busts that would occur with RL derived from two different methods. Cauldron has surveyed the collar positions of the drill holes reported in this announcement with handheld GPS, and the survey provided good precision and accuracy. The holes will soon be surveyed by differential RTK GPS for very high precision.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	For the present drilling program, most air-core drill holes are spaced along lines at between 100 and 200m W-E. The drill lines are planned 200m to 800m apart, as shown in various Figures in this report. Spacing of holes drilled historically is variable between 30 and
		200m on individual fence lines, and 50m to 1,100m between fence lines along the strike.
		Spacing of the core holes from the 2013 drilling program varied between 350m and 800m within individual prospects.
		The spacing of the drill holes from the 2014 program varied between 10 m and 800 m within individual prospects.
		The spacing of the drill holes from the 2015 program varied between 50m and 250m within individual prospect.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The area occupied by the deposit is very large and therefore drill spacing has always been variable. Drill spacings were sufficient to permit the calculation of a maiden Mineral Resource released on 02Apr2025.
	Whether sample compositing has been applied.	For the present AC drilling program, downhole geophysical data was collected at 2cm (0.02m) sample intervals. All downhole geophysical data was later composited to 0.10m increments for reporting the AC drilling results.

Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	All drill holes were drilled vertically since the sediments are mostly unconsolidated and generally flat-lying. All holes therefore, sample the true width of mineralisation.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is observed by the orientation of the drill holes.
Sample security	The measures taken to ensure sample security.	Chip trays collected from each aircore drill hole are stored securely in a locked sea-container at the Yanrey Exploration Camp. Chip trays and Diamond drill core from the 2008 and 2013 drill programs is also stored at a secure location on the project site, in lockable sea containers.
		Cuttings samples were not collected for conventional assay as previous experience has shown that the sampling method is inappropriate due to the samples being taken from a charged subsurface aquifer.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Cauldron's Competent Person has verified all sampling techniques and data collection is of high standard and no reviews are required at this stage.

Section 2: Report of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Yanrey Uranium Project comprises 16 granted exploration tenements and 4 exploration licences under application (E08/1489, E08/1490, E08/1493, E08/1501, E08/2017, E08/2081, E08/2205, E08/2385, E08/2386, E08/2387, E08/2774, E08/3088, E08/3066, E08/3068, E08/3088, E08/3201, E08/3204, E08/3611, E08/3686, E08/3688 and E08/3791) in northwest Western Australia. covering a total area of 1,340 km².
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenements are in good standing and Cauldron is unaware of any impediments to exploration of these licences.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	An 80 km long regional redox front and several palaeochannels were identified by open hole drilling by CRA Exploration Pty Ltd (CRAE) during the 1970s and early 1980s. CRAE drilled over 200 holes in the greater Yanrey Project area, resulting in the discovery of the Manyingee Deposit and the identification of uranium mineralisation in the Bennet Well channel and the Spinifex Well Channel. Uranium mineralisation was also identified in the Ballards and Barradale Prospects.
Geology	Deposit type, geological setting and style of mineralisation.	At least 15 major palaeochannels have been identified in the greater Yanrey project area at the contact between the Cretaceous aged marine sediments of the Carnarvon Basin and the Proterozoic Yilgarn Block which lies along the granitic and metamorphic ancient coastline. These palaeochannels have incised the underlying Proterozoicaged granite and metamorphic rocks, which are subsequently filled and submerged by up to 150m of mostly unconsolidated sand and clay of Mesozoic, Tertiary and Quaternary age.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth hole length.	Refer to the tables above.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Not applicable.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Average reporting intervals are derived from applying a cut-off grade of 150 ppm $U_3 O_8$ for a minimum thickness of 0.20m and maximum internal dilution of 0.20m. A maximum internal dilution of 0.20m was used to aggregate a less mineralised zone within bounding higher-grade material for thick intervals, as long as the grade-thickness of the interval was above cutoff (= 150 x 0.20m).

	Where aggregate intercepts incorporate short	The length of assay sample intervals varies for all results,
	lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	therefore a weighted average on a 0.20m composite has been applied when calculating assay grades to take account of the size of each interval. The higher-grade intervals quoted in Table 1 are derived by length averaging intervals greater than 0.20m width that have assays above 500ppm eU $_3$ O $_8$; sometimes these higher grade intervals appear inside a lower grade zone defined by the lower 150 ppm cutoff. A maximum internal dilution of 0.20m was used to aggregate a thin barren zone within bounding higher-grade material as long as the grade-thickness of the interval was above cutoff (= 500 x 0.20m).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	All drilling at Manyingee South is vertical. The overall dip of the mineralisation at the Manyingee South prospect is presumed to be near-horizontal therefore, all mineralisation values could be considered the true width.
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All drilling at Manyingee South is vertical. The overall dip of the mineralisation at the Manyingee South prospect is presumed to be near-horizontal therefore, all mineralisation values could be considered the true width.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	All drilling at Manyingee South is vertical. The overall dip of the mineralisation at the Manyingee South prospect is presumed to be near-horizontal therefore, all mineralisation values could be considered the true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included in the body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drill locations are shown in Table 2; intercepts that are greater than 150 ppm for at least 0.20m in thickness, are shown in Table 1.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Metallurgical sighter testing was completed by the Australian Nuclear Science and Technology Organisation (ANSTO) for the diamond core drilled in 2013, with further testing drilled in 2014 and 2015. Geochemical assaying was also completed for the diamond core from both 2013, 2014 and 2015. Further testing is planned on core drillholes intended tobe drilled in 2026.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further AC and Diamond Core drilling to increase the Mineral Resource of the Bennet Well deposit. Further passive seismicity surveys to further map palaeochannel(s) and exploration drilling is required to identify extensions to mineralisation.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Plans and sections have been included in this report as appropriate.