HIGH GRADE GOLD RESULTS POINT TO LADY HERIAL UPSIDE

ASX ANNOUNCEMENT

11 DECEMBER 2025

KEY POINTS

- Significant gold assays returned for Lady Herial Upper Structure and Northwest Prospect in the 'shadow' area below future open pit/infrastructure
- Results include: 13m @ 3.28g/t Au, 10m @ 1.74g/t Au, 16m @ 0.98g/t Au
- New infill results from Lower, Middle and Upper Structures support high grade areas within current planned open pit: 13m @ 4.78g/t Au, 17m @ 4.74g/t Au, 10m @ 4.91g/t Au and 5m @ 13.15g/t Au
- Once regulatory approvals are received, a Final Investment Decision can be made, enabling clearing and open pit mining to commence

Lunnon Metals Limited (ASX: LM8) (the **Company** or **Lunnon Metals**) is pleased to report on the progress of activities at the Lady Herial gold deposit, a priority development and production opportunity at its Kambalda Gold & Nickel Project (**KGNP**). Further gold assays from step out and infill definition reverse circulation (**RC**) drilling (approximate 8m x 6m grade control spacing) have been returned at the Lady Herial gold deposit.

Recent drilling results reported on 23 September 2025 at the Northwest Prospect (**NWP**), suggested that in addition to the potential on the NWP itself, the Upper Structure, notably the highest grade and thickest gold mineralised structure at Lady Herial, also remained prospective and open down plunge to the northwest of the planned open pit.

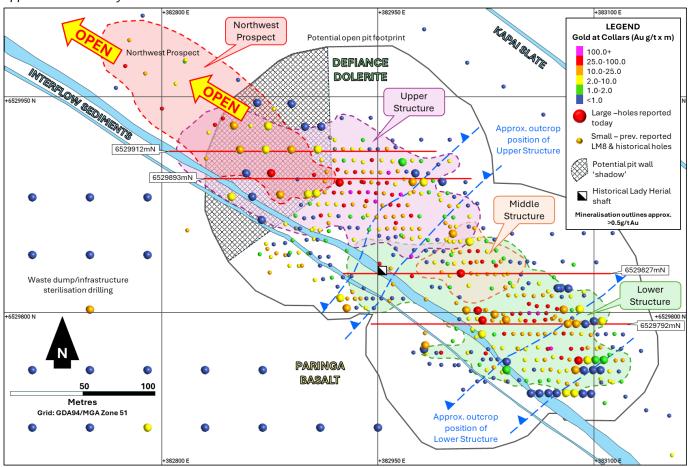
Once the open pit commences, there will be no access to this area for further drilling, so a program of RC drilling was designed to further define the potential for gold mineralisation in these areas now. The results of this drilling confirm that both structures remain highly prospective in what will in future be a 'shadow' beneath the open pit walls (see **Figure 1** where the area hatched represents this 'shadow' and **Figures 2** and **3** for cross sections illustrating the highlights below).

Significant results were recorded on each of the structures in the 'shadow' area as follows (>0.5g/t Au cut-off):

Borehole ID	Intercept	Structure/Comment
LDH25RC_388 (from 57m)	13m @ 3.28g/t Au	Upper Structure outside June 2025 mine design
LDH25RC_389 (from 26m)	16m @ 0.98g/t Au	
LDH25RC_391 (from 36m)	10m @ 1.74g/t Au	NWP - all outside June 2025 mine design
LDH25RC_393 (from 35m)	12m @ 0.97g/t Au	

The Company will evaluate the opportunity to exploit this exciting potential for additional gold on the Upper Structure and the NWP. Options include a future underground development or a second stage of open pit mining at the conclusion of the current mine plan.

The RC program also infilled wider spaced areas (not yet at 8m x 6m spacing) on the Upper, Lower and Middle Structures within the current development footprint. Significant results from this drilling on each structure were as follows (>0.5g/t Au cut-off):


Borehole ID	Intercept	Structure/Comment
LDH25RC_378 (from 26m)	13m @ 4.78g/t Au	Upper Structure inside previous pit design
LDH25RC_411 (from 3m)	17m @ 4.74g/t Au	
LDH25RC_451 (from 32m)	10m @ 4.91g/t Au	Lauran Churchuna within municus wit desires
LDH25RC_407 (from 0m)	18m @ 0.64g/t Au	Lower Structure, within previous pit design
LDH25RC_415 (from 0m)	15m @ 1.24g/t Au	
LDH25RC_417 (from 6m)	5m @ 13.15g/t Au	Middle Churchuse within province wit design
LDH25RC_375 (from 12m)	3m @ 6.85g/t Au	Middle Structure, within previous pit design

Full collar details and assay results are contained in Annexures 1a and 2a.

Managing Director, Edmund Ainscough, commenting said:

"Naturally our priority and focus has been on preparing Lady Herial for mining. However, as we await regulatory approval of our Mining Proposal, which will enable clearing and mining to start, it was important to not leave these areas untested and then subsequently stuck in the shadow of the future open pit walls. Whilst we have confidence that the current open pit design is optimal, given these results and the gold price trajectory, the opportunity for the NWP and Upper Structure to underpin further mining in the Lady Herial vicinity is clearly very real. The OPA with our major shareholder will provide a significant cash flow boost which will free us up to aggressively pursue these and other opportunities as they arise."

Figure 1: Plan view of the Lady Herial open pit development area illustrating the results reported today (larger spheres) and prior reported results (smaller spheres) together with a representation of the 'shadow' along the northwest wall of the planned pit (hatched area).

Next Steps

Review of the results reported today indicates that they conform with the existing Mineral resource estimate (**MRE**) last updated on 18 November 2025. The MRE will be updated prior to mining commencing and will serve as the grade control model for operational day-to-day activities. No material change to the last reported MRE is expected.

The Company is currently completing a technical and financial analysis of Lady Herial at Feasibility Study (**FS**) level (last reported¹ in June 2025 at Scoping Study level) based on the updated MRE together with Hampton's tendered mining costs and the haulage and processing rates agreed with its major shareholder, St Ives Gold Mining Co. Pty Ltd (**SIGM**), in the Ore Purchase Agreement² (**OPA**). The Company will report the results of the FS when complete.

The June 2025 Scoping Study (applied a gold price of \$5,000/oz) recorded that the Lady Herial open pit could deliver approximately \$31.3 million³ (pre-tax⁴). The FS will be evaluated at \$5,750/oz and application of this price to the June 2025 Scoping Study financial model generates approximately \$39.1 million (pre-tax). At prices approaching the current spot price (\$6,250/oz) the June 2025 Scoping Study generates a forecast of approximately \$44 million (pre-tax). As required by ASX

¹ See ASX announcement dated 16 June 2025.

² See ASX announcement dated 19 September 2025.

³ Calculated on the basis of the 70% share of free cash flow, as agreed with SIGM in the OPA.

⁴ The Company reported a carried forward tax loss of approximately \$77.5M as at 30 June 2025, in its 2025 Annual Report (lodged 22 Sept 2025).

Listing Rule 5.19, the Company confirms that all the material assumptions underpinning the production target and forecast financial information derived from that production target in the June 2025 Scoping Study, continue to apply and have not materially changed from the original report lodged with the ASX on 16 June 2025.

Regulatory Permitting Update

The necessary Mining Proposal and Mine Closure Plan and Native Vegetation Clearing Permit were both submitted to the Western Australian Government, Department of Mines, Petroleum and Exploration early in the September 2025 quarter. Once regulatory approvals are received, the mining contracts can be executed and the Board will be in a position to make a Final Investment Decision, enabling clearing and open pit mining to commence.

Plan and Sectional Representation of the Grade Control Results

Prior Figure 1 depicts the Lady Herial site plan illustrating all previous drilling along with today's results shown as larger circles for clarity, and the 'shadow' area (cross hatched).

Representative sectional views of the Lady Herial deposit and the results reported today follow, as well as an isometric view to highlight the opportunity that is hosted in the future open pit wall 'shadow'. The sections are presented north to south as follows:

- NWP & Upper Structure Figure 2 section 6,529,912mN highlighting results on both the NWP and Upper Structure that are located below the current planned pit wall.
- NWP & Upper Structure Figure 3 section 6,529,893mN highlighting today's results which sit both within the current development footprint/ mine design but also highlighting results on both the NWP and Upper Structure that are located below the current planned pit wall.
- Middle Structure Figure 4 section 6,529,827mN highlighting one result on this structure within the current development footprint/mine design.
- Lower Structure Figure 5 section 6,529,792mN highlighting today's results which sit within the current development footprint/mine design.
- Isometric view Figure 6, illustrates the NWP and Upper Structure gold mineralisation hosted underneath the planned northwest wall of the future open pit.

Sterilisation Drilling

Annexures 1b and 2b contain collar details and significant results of aircore holes completed as sterilisation drilling for the placement of waste dumps and other mine site infrastructure. Although occasional significant intercepts were recorded there was insufficient anomalism, at or near surface, to change the current site layout plans.

The Company's Strategic Approach at St Ives

As announced to the ASX on 19 September 2025, the Company has reached agreement with SIGM and executed an OPA relating to the processing of potential gold production from a future Lady Herial open pit at SIGM's nearby gold processing plant. Lunnon Metals' strategy at its Foster-Baker project is to leverage off, and replicate, the success achieved at Lady Herial. The Company's objective is to position itself to effectively self-fund an extensive discovery program testing higher risk, higher reward targets capable of hosting a significant gold discovery in the +16Moz⁵ St Ives gold camp.

This release has been approved and authorised for release by the Board.

Edmund Ainscough Managing Director Phone: +61 8 6424 8848

Email: info@lunnonmetals.com.au

⁵ Sum of historical WMC production records to December 2001, sum of Gold Fields Ltd's, Karora Resources and Westgold Resources report filings

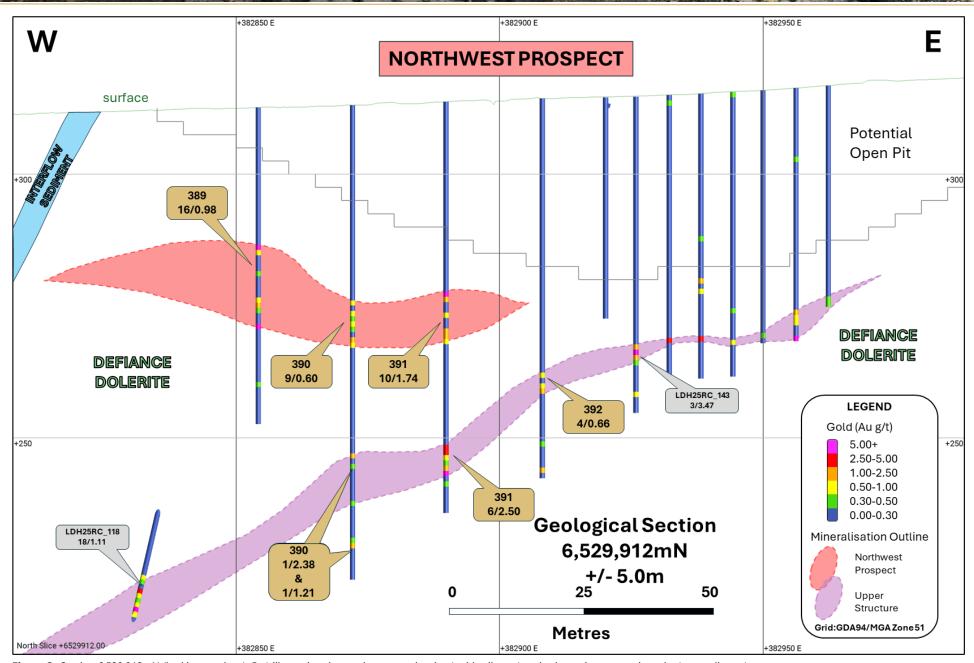


Figure 2: Section 6,529,912mN (looking north +/- 5m) illustrating the results reported today (gold call-outs) and select prior reported results (grey call-outs).

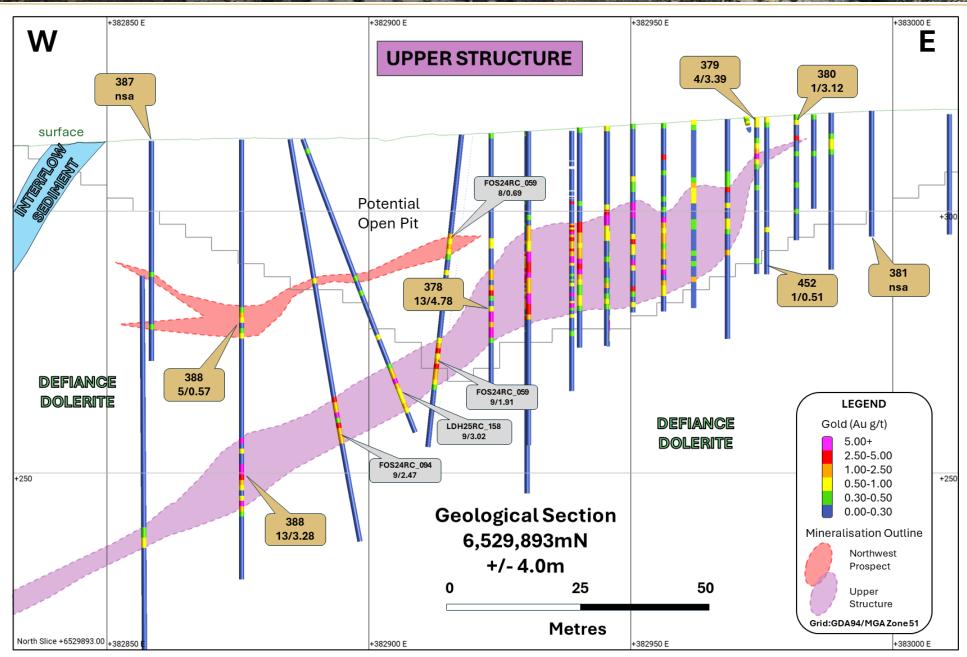


Figure 3: Section 6,529,893mN (looking north +/- 4m) illustrating the results reported today (gold call-outs) and select prior reported results (grey call-outs).

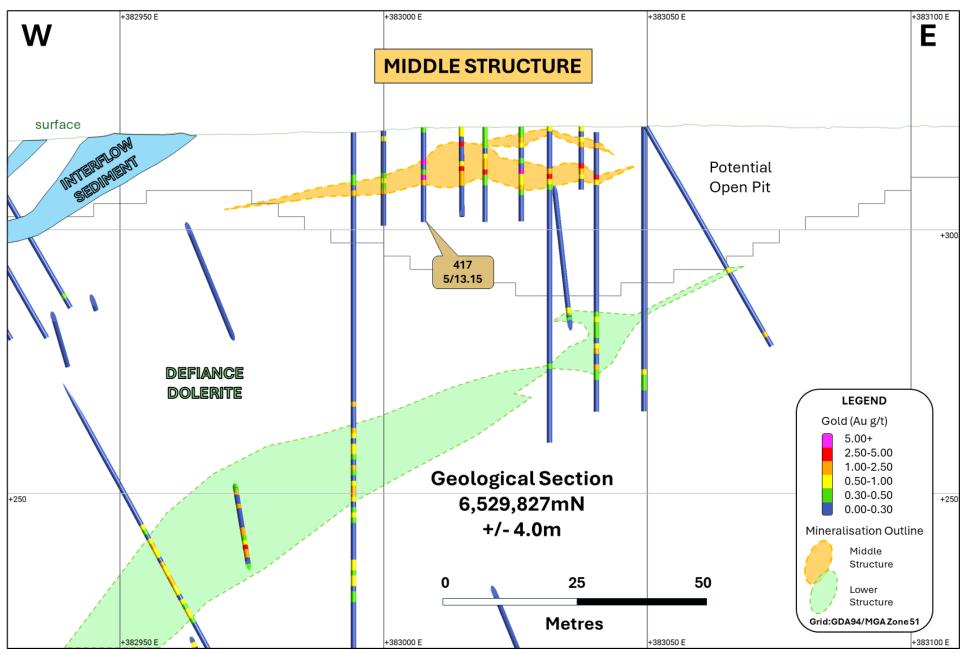


Figure 4: Section 6,529,827mN (looking north +/- 4m) illustrating the results reported today (gold call-outs).

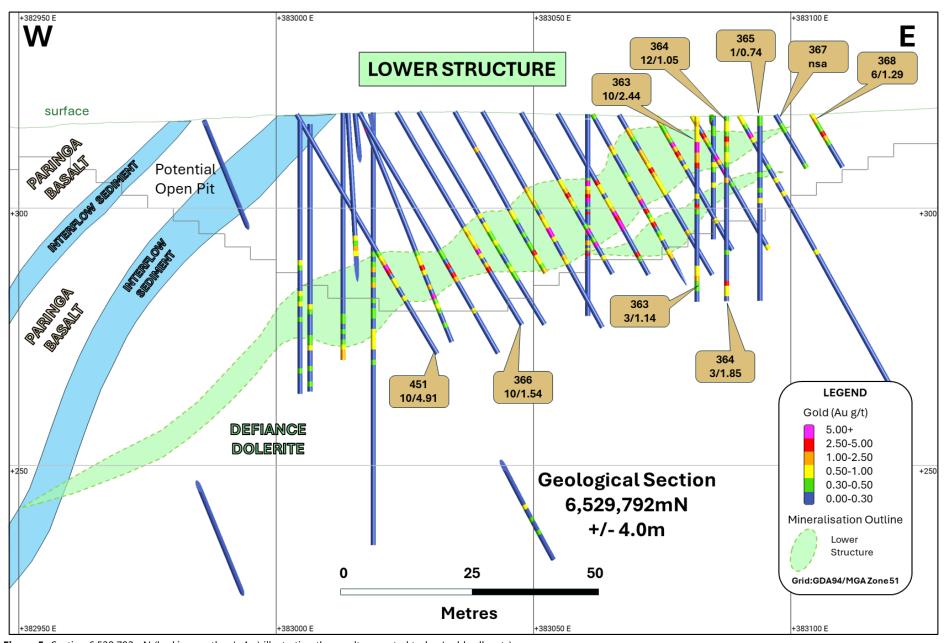


Figure 5: Section 6,529,792mN (looking north +/- 4m) illustrating the results reported today (gold call-outs).

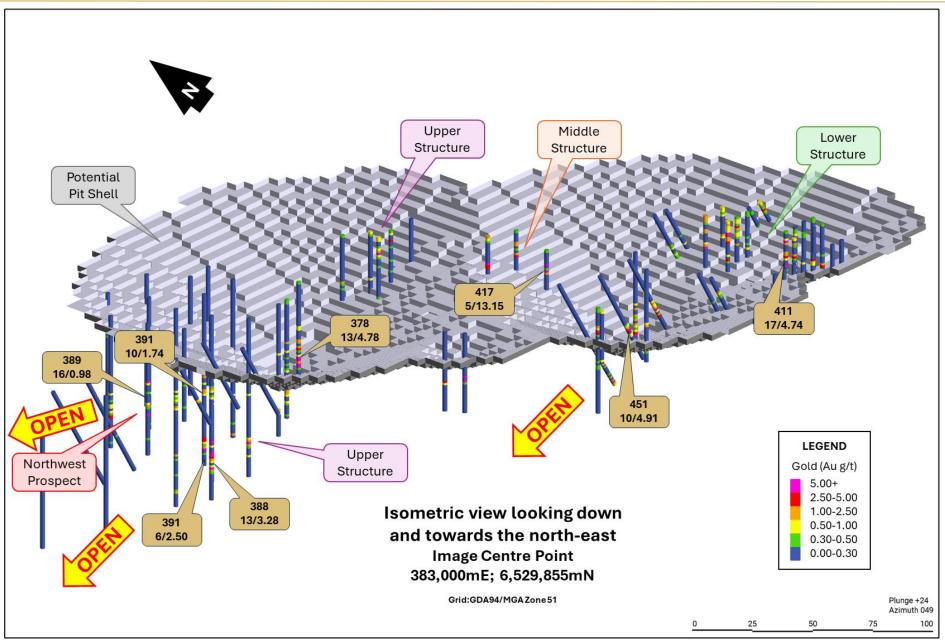


Figure 6: Isometric (looking northeast and down) illustrating the drill traces of only today's reported holes and the NWP and Upper Structure gold mineralisation hosted underneath the planned northwest wall of the future open pit.

GEOLOGICAL⁶ DESCRIPTION & STATUS OF MINERALISED SURFACES REFERENCED IN ANNEXURE 2A

Upper Structure

In plan view, the Upper Structure has been modelled with a NW-SE extent of approximately 200m. The near surface, dolerite hosted portion of this structure, comprising approximately 95m (NW-SE) by 70m (SW-NE), has now been mostly intersected on an approximate 8m x 6m spacing. In the remainder of the structure near surface, the drill spacing is variable but typically better than 16m x 12m, with much broader drill spacing down plunge at depth. The gold mineralisation on the Upper Structure in the local Lady Herial area is closed off to the immediate north-east although the associated shear zone is still present in holes that returned no significant assays and therefore potential for mineralisation in more favourable host rocks along strike remains further to the north and east. The Upper Structure is also closed off to the south-east where it outcrops however it remains open down plunge to the northwest within the known favourable host rock, being Zone 4 of the Defiance Dolerite. The intersection of the Upper Structure with the iron rich interflow sediments and Paringa Basalt along strike to the southwest now has an increased density of drilling although final vegetation clearing approval is required in order to complete the 8m x 6m spaced grade control. To date this area only contributes a small portion of the overall MRE. This geological location is what was prospected in the 1920s via the Lady Herial Shaft.

Lower Structure

The near surface up dip portions of the Lower Structure have now been mostly intersected on an approximate 8m x 6m drill spacing over a plan area of approximately 100m (NW-SE) x 90m (SW-NE). The down dip and peripheral portions are less well drilled but still intersected on an irregular 20m x 20m (W-E) spacing or broader at depth. This structure is closed off to the immediate north-east along strike near surface, but again, the structure is still present in holes that returned no significant assays and therefore potential for further mineralisation in favourable host rocks remains in this direction. The Lower Structure is now effectively closed off near surface to the south-east where it daylights, and mostly to the south-west where the structure intersects the interflow sediments and Paringa Basalt. The Lower Structure remains open down plunge towards the north-west within the known favourable host, again being Zone 4 of the Defiance Dolerite.

Middle Structure

The Middle Structure is located between the Upper and Lower Structures and has an extent in plan view of approximately 60m x 60m. It is now defined to an approximate 8m x 6m spacing over the majority of the structure, with only a minor area that might benefit from further infill to 8m x 6m once final vegetation clearing has been approved. It is closed off up-dip to the south and east where it daylights, there remains some potential to extend the zone to the north and west down plunge.

Sediment / Paringa Basalt hosted gold mineralisation

The sediment is characterised as two, 3m to 8m wide banded iron-rich cherty interflow sediment units located stratigraphically between the Defiance Dolerite and the Paringa Basalt. Although relatively narrow this same interflow sediment unit has presented as an exceptional host to high grade gold mineralisation, including visible specimen style gold, elsewhere at St Ives such as at the Conqueror deposit within the Victory Leviathan gold complex. The historical, circa 1920s, Lady Herial shaft was mined to exploit high grade gold from these sediments. To date 8m x 6m drilling into this intercalated sediment / basalt zone has returned sporadic high grade and low grade intercepts at the very margin of the Lady Herial MRE, although some important portions, notably immediately adjacent to the historical Lady Herial shaft, are yet to be tested to grade control spacing pending final approval for vegetation clearing.

NWP

As first reported in the ASX announcement dated 30 May 2025 and again 29 July 2025, drilling proximal to Lady Herial designed to assist position infrastructure (such as dumps and Run of Mine pads) recorded significant gold mineralisation, which was termed the Northwest Prospect or NWP. Follow up drilling reported on 23 September 2025 confirmed that this mineralisation did represent another 'stacked gold structure' in the broader Lady Herial system. Located approximately 60m-70m above the Upper Structure, 50m below surface and displaying strong horizontal components where drilled to date, currently the NWP does not impact on the pending mine design for the main gold mineralisation at Lady Herial. However, it does present as an important follow up opportunity for either a push back of the open pit to the northwest or alternatively a modest underground development once the open pit is complete. The structure is currently drilled over a plunge extent of 130m towards the northwest and strike extent of 50m with 40m x 20m spaced RC drilling. It remains open in all directions.

MZ Surface

In addition to the bedrock structures detailed above, minor gold mineralisation was also modelled in a broadly horizontal zone at surface of typically 1 to 2 metres thick, termed the 'MZ Surface', representing the presence of gold in the upper regolith as potentially either eluvial and/or alluvial gold concentrations.

⁶ A full suite of further representative geological cross sections was included in the last set of results announced at Lady Herial lodged on the ASX dated 23 September 2025.

ANNEXURE 1A: COLLAR DETAILS – GRADE CONTROL AND STEP OUT HOLES

Hole ID	Easting	Northing	Elevation (m ASL)	Dip	Azimuth	EOH Depth (m)	Hole Type	Grid
LDH25RC_362	382,982.0	6,529,774.4	316.0	-90.0	0.0	24.0	RC	MGA94_51
LDH25RC_362A	382,982.9	6,529,777.2	316.4	-90.0	0.0	48.0	RC	MGA94_51
LDH25RC_363	383,081.8	6,529,792.1	317.8	-90.0	0.0	36.0	RC	MGA94_51
LDH25RC_364	383,087.5	6,529,792.1	317.9	-90.0	0.0	36.0	RC	MGA94_51
LDH25RC_365	383,094.0	6,529,792.0	318.0	-90.0	0.0	36.0	RC	MGA94_51
LDH25RC_366	383,023.4	6,529,795.4	318.7	-60.1	91.9	48.0	RC	MGA94_51
LDH25RC_367	383,097.0	6,529,794.0	318.1	-59.5	92.3	12.0	RC	MGA94_51
LDH25RC_368	383,104.0	6,529,794.0	318.3	-60.1	91.0	12.0	RC	MGA94_51
LDH25RC_369	383,031.0	6,529,798.6	318.9	-90.0	0.0	42.0	RC	MGA94_51
LDH25RC_370	382,986.8	6,529,802.2	317.8	-59.7	91.4	66.0	RC	MGA94_51
LDH25RC_371	382,928.3	6,529,803.0	315.5	-90.0	0.0	36.0	RC	MGA94_51
LDH25RC_372	382,923.8	6,529,810.1	315.7	-90.0	0.0	36.0	RC	MGA94_51
LDH25RC_373	383,063.8	6,529,816.9	319.2	-59.5	90.2	42.0	RC	MGA94_51
LDH25RC_374	383,071.1	6,529,816.8	319.0	-59.3	91.4	36.0	RC	MGA94_51
LDH25RC_375	383,002.0	6,529,854.7	319.5	-90.0	0.0	18.0	RC	MGA94_51
LDH25RC_376	382,901.2	6,529,882.1	314.5	-90.0	0.0	60.0	RC	MGA94_51
LDH25RC_377	382,907.1	6,529,882.7	314.5	-90.0	0.0	54.0	RC	MGA94_51
LDH25RC_378	382,923.3	6,529,890.3	314.9	-90.0	0.0	48.0	RC	MGA94_51
LDH25RC_379	382,974.1	6,529,890.6	318.0	-90.0	0.0	30.0	RC	MGA94_51
LDH25RC_380	382,981.6	6,529,890.4	318.5	-90.0	0.0	24.0	RC	MGA94_51
LDH25RC_381	382,994.8	6,529,890.7	319.1	-90.0	0.0	24.0	RC	MGA94_51
LDH25RC_382	382,967.0	6,529,904.5	317.2	-90.0	0.0	42.0	RC	MGA94_51
LDH25RC_383	382,858.7	6,529,864.9	313.8	-60.1	93.2	42.0	RC	MGA94_51
LDH25RC_384	382,834.5	6,529,880.5	312.5	-59.7	89.8	42.0	RC	MGA94_51
LDH25RC_385	382,852.2	6,529,880.8	313.7	-60.3	92.6	42.0	RC	MGA94_51
LDH25RC_386	382,882.1	6,529,881.8	314.7	-90.0	0.0	72.0	RC	MGA94_51
LDH25RC_387	382,858.5	6,529,896.7	313.4	-90.0	0.0	42.0	RC	MGA94_51
LDH25RC_388	382,875.7	6,529,896.8	313.7	-90.0	0.0	84.0	RC	MGA94_51
LDH25RC_389	382,854.2	6,529,913.1	312.6	-90.0	0.0	60.0	RC	MGA94_51
LDH25RC_390	382,872.1	6,529,913.2	313.1	-90.0	0.0	90.0	RC	MGA94_51
LDH25RC_391	382,889.8	6,529,913.2	313.8	-90.0	0.0	78.0	RC	MGA94_51
LDH25RC_392	382,908.1	6,529,913.2	314.4	-90.0	0.0	72.0	RC	MGA94_51
LDH25RC_393	382,849.9	6,529,929.8	312.4	-90.0	0.0	60.0	RC	MGA94_51
LDH25RC_394	382,873.7	6,529,929.4	313.0	-90.0	0.0	60.0	RC	MGA94_51
LDH25RC_395	382,899.4	6,529,929.1	313.8	-90.0	0.0	54.0	RC	MGA94_51
LDH25RC_396	382,910.6	6,529,929.1	314.5	-90.0	0.0	54.0	RC	MGA94_51
LDH25RC_397	382,866.2	6,529,945.6	312.6	-90.0	0.0	60.0	RC	MGA94_51
LDH25RC_398	382,890.0	6,529,945.0	313.3	-90.0	0.0	60.0	RC	MGA94_51
LDH25RC_399	383,056.3	6,529,743.8	316.5	-90.0	0.0	18.0	RC	MGA94_51
LDH25RC_400	383,062.2	6,529,743.8	316.8	-90.0	0.0	18.0	RC	MGA94_51
LDH25RC_401	383,068.5	6,529,744.0	317.0	-90.0	0.0	12.0	RC	MGA94_51
LDH25RC_402	383,074.1	6,529,743.9	317.3	-90.0	0.0	12.0	RC	MGA94_51
LDH25RC_403	383,080.6	6,529,744.1	317.5	-90.0	0.0	12.0	RC	MGA94_51
LDH25RC_404	383,086.3	6,529,743.9	317.7	-90.0	0.0	12.0	RC	MGA94_51
LDH25RC_405	383,092.4	6,529,743.6	317.9	-90.0	0.0	12.0	RC	MGA94_51
LDH25RC_406	383,098.0	6,529,743.5	318.1	-90.0	0.0	12.0	RC	MGA94_51
LDH25RC_407	383,087.1	6,529,760.0	317.8	-90.0	0.0	24.0	RC	MGA94_51
LDH25RC_408	383,092.9	6,529,759.9	318.1	-90.0	0.0	18.0	RC	MGA94_51
LDH25RC_409	383,099.4	6,529,760.0	318.3	-90.0	0.0	24.0	RC	MGA94_51
LDH25RC_410	383,104.5	6,529,760.0	318.5	-90.0	0.0	24.0	RC	MGA94_51
LDH25RC_411	383,089.3	6,529,766.7	318.2	-90.0	0.0	24.0	RC	MGA94_51
LDH25RC_412	383,095.5	6,529,766.8	318.2	-90.0	0.0	24.0	RC	MGA94_51

Hole ID	Easting	Northing	Elevation (m ASL)	Dip	Azimuth	EOH Depth (m)	Hole Type	Grid
LDH25RC_413	383,101.1	6,529,767.0	318.6	-90.0	0.0	24.0	RC	MGA94_51
LDH25RC_414	383,106.9	6,529,767.1	318.2	-90.0	0.0	24.0	RC	MGA94_51
LDH25RC_415	383,079.0	6,529,802.0	318.5	-90.0	0.0	36.0	RC	MGA94_51
LDH25RC_416	383,090.0	6,529,802.2	318.4	-90.0	0.0	18.0	RC	MGA94_51
LDH25RC_417	383,007.6	6,529,827.2	319.5	-90.0	0.0	18.0	RC	MGA94_51
LDH25RC_418	383,013.5	6,529,849.1	319.9	-90.0	0.0	18.0	RC	MGA94_51
LDH25RC_448	383,034.7	6,529,760.2	317.2	-60.1	90.0	24.0	RC	MGA94_51
LDH25RC_449	383,033.5	6,529,765.9	317.7	-60.1	90.9	24.0	RC	MGA94_51
LDH25RC_450	383,022.2	6,529,784.9	318.1	-90.0	0.0	42.0	RC	MGA94_51
LDH25RC_451	383,004.0	6,529,794.6	318.3	-60.1	89.9	54.0	RC	MGA94_51
LDH25RC_452	382,976.0	6,529,896.7	318.0	-90.0	0.0	30.0	RC	MGA94_51

ANNEXURE 1B: COLLAR DETAILS – STERILISATION DRILLING

Hole ID	Easting	Northing	Elevation (m ASL)	Dip	Azimuth	EOH Depth (m)	Hole Type	Grid
FOS25AC_184	382,674.0	6,529,801.0	310.3	-90.0	0.0	48.0	AC	MGA94_51
FOS25AC_185	382,750.0	6,529,802.0	311.0	-90.0	0.0	44.0	AC	MGA94_51
LDH25AC_001	382,790.0	6,529,880.0	310.0	-90.0	0.0	67.0	AC	MGA94_51
LDH25AC_002	382,750.0	6,529,880.0	309.9	-90.0	0.0	55.0	AC	MGA94_51
LDH25AC_003	382,710.0	6,529,880.0	309.4	-90.0	0.0	52.0	AC	MGA94_51
LDH25AC_004	382,670.0	6,529,880.0	308.7	-90.0	0.0	64.0	AC	MGA94_51
LDH25AC_005	382,630.0	6,529,880.0	308.7	-90.0	0.0	37.0	AC	MGA94_51
LDH25AC_006	382,790.0	6,529,840.0	310.0	-90.0	0.0	58.0	AC	MGA94_51
LDH25AC_007	382,750.0	6,529,840.0	309.9	-90.0	0.0	58.0	AC	MGA94_51
LDH25AC_008	382,710.0	6,529,840.0	309.4	-90.0	0.0	45.0	AC	MGA94_51
LDH25AC_009	382,670.0	6,529,840.0	308.7	-90.0	0.0	45.0	AC	MGA94_51
LDH25AC_010	382,630.0	6,529,840.0	308.7	-90.0	0.0	50.0	AC	MGA94_51
LDH25AC_011	382,870.0	6,529,760.0	312.0	-90.0	0.0	46.0	AC	MGA94_51
LDH25AC_012	382,830.0	6,529,760.0	311.5	-90.0	0.0	58.0	AC	MGA94_51
LDH25AC_013	382,790.0	6,529,760.0	310.6	-90.0	0.0	55.0	AC	MGA94_51
LDH25AC_014	382,750.0	6,529,760.0	310.0	-90.0	0.0	51.0	AC	MGA94_51
LDH25AC_015	382,710.0	6,529,760.0	309.9	-90.0	0.0	48.0	AC	MGA94_51
LDH25AC_016	382,670.0	6,529,760.0	309.3	-90.0	0.0	45.0	AC	MGA94_51
LDH25AC_017	382,950.0	6,529,720.0	313.7	-90.0	0.0	31.0	AC	MGA94_51
LDH25AC_018	382,910.0	6,529,720.0	312.7	-90.0	0.0	30.0	AC	MGA94_51
LDH25AC_019	382,870.0	6,529,720.0	312.0	-90.0	0.0	50.0	AC	MGA94_51
LDH25AC_020	382,830.0	6,529,720.0	311.8	-90.0	0.0	65.0	AC	MGA94_51
LDH25AC_021	382,790.0	6,529,720.0	311.1	-90.0	0.0	70.0	AC	MGA94_51
LDH25AC_022	382,750.0	6,529,720.0	310.3	-90.0	0.0	80.0	AC	MGA94_51
LDH25AC_023	382,710.0	6,529,720.0	310.0	-90.0	0.0	64.0	AC	MGA94_51
LDH25AC_024	382,670.0	6,529,720.0	309.7	-90.0	0.0	52.0	AC	MGA94_51
LDH25AC_025	382,990.0	6,529,680.0	314.0	-90.0	0.0	36.0	AC	MGA94_51
LDH25AC_026	382,950.0	6,529,680.0	313.8	-90.0	0.0	35.0	AC	MGA94_51
LDH25AC_027	382,910.0	6,529,680.0	313.0	-90.0	0.0	41.0	AC	MGA94_51
LDH25AC_028	382,870.0	6,529,680.0	312.2	-90.0	0.0	44.0	AC	MGA94_51
LDH25AC_029	382,830.0	6,529,680.0	312.0	-90.0	0.0	59.0	AC	MGA94_51
LDH25AC_030	382,790.0	6,529,680.0	311.6	-90.0	0.0	72.0	AC	MGA94_51
LDH25AC_031	382,750.0	6,529,680.0	311.0	-90.0	0.0	84.0	AC	MGA94_51
LDH25AC_032	382,710.0	6,529,680.0	310.3	-90.0	0.0	80.0	AC	MGA94_51

Hole ID	Easting	Northing	Elevation (m ASL)	Dip	Azimuth	EOH Depth (m)	Hole Type	Grid
LDH25AC_033	383,030.0	6,529,640.0	314.6	-90.0	0.0	35.0	AC	MGA94_51
LDH25AC_034	382,990.0	6,529,640.0	314.1	-90.0	0.0	31.0	AC	MGA94_51
LDH25AC_035	382,950.0	6,529,640.0	314.0	-90.0	0.0	33.0	AC	MGA94_51
LDH25AC_036	382,910.0	6,529,640.0	313.7	-90.0	0.0	39.0	AC	MGA94_51
LDH25AC_037	382,870.0	6,529,640.0	312.9	-90.0	0.0	50.0	AC	MGA94_51
LDH25AC_038	382,830.0	6,529,640.0	312.1	-90.0	0.0	85.0	AC	MGA94_51
LDH25AC_039	382,790.0	6,529,640.0	312.0	-90.0	0.0	88.0	AC	MGA94_51
LDH25AC_040	382,750.0	6,529,640.0	311.7	-90.0	0.0	88.0	AC	MGA94_51
LDH25AC_041	383,110.0	6,529,600.0	316.0	-90.0	0.0	60.0	AC	MGA94_51
LDH25AC_042	383,070.0	6,529,600.0	316.0	-90.0	0.0	43.0	AC	MGA94_51
LDH25AC_043	383,030.0	6,529,600.0	315.8	-90.0	0.0	41.0	AC	MGA94_51
LDH25AC_044	382,990.0	6,529,600.0	315.4	-90.0	0.0	44.0	AC	MGA94_51
LDH25AC_045	382,950.0	6,529,600.0	314.4	-90.0	0.0	58.0	AC	MGA94_51
LDH25AC_046	382,910.0	6,529,600.0	314.0	-90.0	0.0	78.0	AC	MGA94_51
LDH25AC_047	382,870.0	6,529,600.0	313.7	-90.0	0.0	55.0	AC	MGA94_51
LDH25AC_048	382,830.0	6,529,600.0	312.8	-90.0	0.0	64.0	AC	MGA94_51
LDH25AC_049	383,110.0	6,529,560.0	316.0	-90.0	0.0	71.0	AC	MGA94_51
LDH25AC_050	383,070.0	6,529,560.0	316.0	-90.0	0.0	63.0	AC	MGA94_51
LDH25AC_051	383,030.0	6,529,560.0	316.0	-90.0	0.0	49.0	AC	MGA94_51
LDH25AC_052	382,990.0	6,529,560.0	316.0	-90.0	0.0	56.0	AC	MGA94_51
LDH25AC_053	382,950.0	6,529,560.0	315.1	-90.0	0.0	52.0	AC	MGA94_51
LDH25AC_054	382,910.0	6,529,560.0	314.3	-90.0	0.0	52.0	AC	MGA94_51
LDH25AC_055	382,870.0	6,529,560.0	314.0	-90.0	0.0	54.0	AC	MGA94_51
LDH25AC_056	383,110.0	6,529,520.0	316.0	-90.0	0.0	41.0	AC	MGA94_51
LDH25AC_057	383,070.0	6,529,520.0	316.0	-90.0	0.0	46.0	AC	MGA94_51
LDH25AC_058	383,030.0	6,529,520.0	316.0	-90.0	0.0	45.0	AC	MGA94_51
LDH25AC_059	382,990.0	6,529,520.0	316.0	-90.0	0.0	37.0	AC	MGA94_51
LDH25AC_060	382,950.0	6,529,520.0	315.3	-90.0	0.0	40.0	AC	MGA94_51

ANNEXURE 2A: ASSAY RESULTS FOR STEP OUT AND INFILL DRILLING

Hole ID	From (drill depth) (m)	Width (m)	Au g/t	Cut-off Au g/t	Comment/internal zones below cut-off		
LDH25RC_362	NSA			0.5	Sediment		
LDH25RC_362A	8.0	4.0	5.81	0.5	Sediment		
including	8.0	1.0	1.00	1.0			
and including	10.0	2.0	10.65	1.0			
LDH25RC_363	0.0	10.0	2.44	0.5	Lower		
including	1.0	1.0	1.28	1.0			
and including	5.0	5.0	4.12	1.0			
and	15.0	3.0	1.21	0.5	Lower	Maximum of 1m internal dilution	
including	17.0	1.0	2.90	1.0			
and	29.0	3.0	1.14	0.5	Lower		
including	31.0	1.0	1.65	1.0			
LDH25RC_364	1.0	12.0	1.05	0.5	Lower	Maximum of 3m internal dilution	
including	4.0	2.0	3.22	1.0			
and including	12.0	1.0	2.17	1.0			
and	32.0	3.0	1.85	0.5	Lower		

Hole ID	From (drill depth) (m)	Width (m)	Au g/t	Cut-off Au g/t	Comment/internal zones below cut-off	
including	32.0	1.0	4.12	1.0		
LDH25RC_365	16.0	1.0	0.74	0.5	Lower	
LDH25RC_366	26.0	10.0	1.54	0.5	Lower	Maximum of 1m internal dilution
including	27.0	1.0	1.24	1.0		
and including	30.0	2.0	3.44	1.0		
and including	34.0	2.0	2.02	1.0		
LDH25RC_367	NSA			0.5	Lower	
LDH25RC_368	0.0	6.0	1.29	0.5	Lower	Maximum of 2m internal dilution
including	1.0	1.0	1.01	1.0		
and including	4.0	2.0	2.62	1.0		
LDH25RC_369	23.0	15.0	1.18	0.5	Lower	Maximum of 2m internal dilution
including	36.0	2.0	4.77	1.0		
LDH25RC_370	43.0	10.0	1.31	0.5	Lower	Maximum of 3m internal dilution
including	46.0	2.0	1.24	1.0		
and including	52.0	1.0	7.43	1.0		
and	60.0	6.0	5.10	0.5	Lower	Maximum of 2m internal dilution
including	60.0	1.0	1.63	1.0		
and including	63.0	2.0	13.79	1.0		
LDH25RC_371	14.0	1.0	0.64	0.5	Sediment	
and	19.0	3.0	3.56	0.5	Sediment	Maximum of 1m internal dilution
including	19.0	1.0	5.04	1.0		
and including	21.0	1.0	5.59	1.0		
LDH25RC_372	22.0	2.0	1.84	0.5	Sediment	
including	22.0	1.0	2.70	1.0		
LDH25RC_373	21.0	1.0	0.73	0.5	Lower	
and	25.0	1.0	0.50	0.5	Lower	
LDH25RC_374	21.0	1.0	0.65	0.5	Lower	
LDH25RC_375	0.0	2.0	0.94	0.5	Upper	
including	0.0	1.0	1.29	1.0		
and LDH25RC_376	12.0 32.0	3.0 4.0	6.85 0.54	0.5	Middle Upper	Maximum of 2m internal
						dilution
LDH25RC_377	19.0	1.0	1.34	0.5	Northwest	
and	32.0	1.0	0.69	0.5	Upper	
and	41.0	6.0	0.83	0.5	Upper	Maximum of 2m internal dilution
including	41.0	2.0	1.64	1.0		
LDH25RC_378	20.0	2.0	0.57	0.5	Upper	
and	26.0	13.0	4.78	0.5	Upper	Maximum of 2m internal dilution
including	26.0	2.0	1.57	1.0		
and including	29.0	2.0	3.36	1.0		
and including	34.0	5.0	10.18	1.0		

Hole ID	From (drill depth) (m)	Width (m)	Au g/t	Cut-off Au g/t	Comment/internal zones below cut-off	
LDH25RC_379	0.0	2.0	0.68	0.5	MZ SURFACE	
and	5.0	4.0	3.39	0.5	Upper	
including	6.0	2.0	6.06	1.0		
LDH25RC_380	4.0	1.0	3.12	0.5	Upper	
LDH25RC_381	NSA			0.5	Upper	
LDH25RC_382	21.0	1.0	1.53	0.5	Upper	
and	31.0	1.0	0.51	0.5	Upper	
LDH25RC_383	NSA			0.5	Sediment	
LDH25RC_384	26.0	2.0	1.36	0.5	Sediment	
including	27.0	1.0	1.78	1.0		
LDH25RC_385	NSA			0.5	Sediment	
LDH25RC_386	34.0	1.0	0.57	0.5	Northwest	
and	54.0	9.0	1.27	0.5	Upper	Maximum of 4m internal dilution
including	55.0	3.0	3.16	1.0		
LDH25RC_387	NSA			0.5	Northwest	
LDH25RC_388	33.0	5.0	0.57	0.5	Upper	Maximum of 2m internal dilution
including	33.0	1.0	1.09	1.0		
and	57.0	13.0	3.28	0.5	Upper	Maximum of 2m internal dilution
including	57.0	1.0	6.58	1.0		
and including	62.0	4.0	6.16	1.0		
and including	69.0	2.0	6.01	1.0		
LDH25RC_389	26.0	16.0	0.98	0.5	Northwest	Maximum of 8m internal dilution
including	26.0	1.0	5.26	1.0		
and including	37.0	1.0	1.05	1.0		
and including	41.0	1.0	5.84	1.0		
LDH25RC_390	37.0	9.0	0.60	0.5	Northwest	Maximum of 2m internal dilution
including	44.0	1.0	2.08	1.0		
and	66.0	1.0	2.38	0.5	Upper	
and	83.0	1.0	1.21	0.5	Upper	
LDH25RC_391	36.0	10.0	1.74	0.5	Northwest	Maximum of 2m internal dilution
including	36.0	2.0	6.83	1.0		
and including	43.0	2.0	1.01	1.0		
and	65.0	6.0	2.50	0.5	Upper	Maximum of 1m internal dilution
including	65.0	2.0	3.20	1.0		
and including	69.0	2.0	3.83	1.0		
LDH25RC_392	52.0	4.0	0.66	0.5	Upper	Maximum of 1m internal dilution
including	55.0	2.0	0.72	1.0		
and LDH25RC_393	70.0 35.0	1.0 12.0	2.11 0.97	0.5	Upper Northwest	Maximum of 4m internal
					INOLLINACSE	dilution
including	45.0	2.0	3.72	1.0		

Hole ID	From (drill depth) (m)	Width (m)	Au g/t	Cut-off Au g/t	Comment/internal zones below cut-off	
LDH25RC 394	(m) 19.0	2.0	2.70	0.5	New	
and	43.0	1.0	0.74	0.5	Northwest	
LDH25RC_395	NSA			0.5	Northwest	
 LDH25RC_396	NSA			0.5	Northwest	
 LDH25RC_397	47.0	1.0	0.71	0.5	Northwest	
LDH25RC_398	NSA			0.5	Northwest	
 LDH25RC_399	NSA			0.5	Sediment	
LDH25RC_400	NSA			0.5	Lower	
LDH25RC_401	NSA			0.5	Lower	
LDH25RC_402	1.0	1.0	0.55	0.5	Lower	
LDH25RC_403	2.0	3.0	1.37	0.5	Lower	
including	2.0	1.0	2.55	1.0		
LDH25RC_404	6.0	2.0	3.16		Lower	
LDH25RC_405	NSA			0.5	Lower	
LDH25RC_406	NSA			0.5	Lower	
LDH25RC_407	0.0	18.0	0.64	0.5	Lower	Maximum of 4m internal dilution
including	2.0	1.0	1.01	1.0		
and including	7.0	2.0	1.83	1.0		
and including	12.0	1.0	1.25	1.0		
and including	17.0	1.0	2.16	1.0		
LDH25RC_408	NSA			0.5	Lower	
LDH25RC_409	NSA			0.5	Lower	
LDH25RC_410	NSA			0.5	Lower	
LDH25RC_411	3.0	17.0	4.74	0.5	Lower	Maximum of 3m internal dilution
including	4.0	2.0	32.78	1.0		
and including	9.0	3.0	2.31	1.0		
and including	15.0	1.0	5.05	1.0		
LDH25RC_412	3.0	1.0	0.89	0.5	Lower	
and	22.0	2.0	1.42	0.5	Lower	
including	23.0	1.0	2.30	1.0		
LDH25RC_413	20.0	1.0	1.93	0.5	Lower	
LDH25RC_414	6.0	1.0	1.98	0.5	Lower	
and	18.0	1.0	0.57	0.5	Lower	
LDH25RC_415	0.0	15.0	1.24	0.5	Lower	Maximum of 4m internal dilution
including	0.0	3.0	2.02	1.0		
and including	6.0	2.0	1.75	1.0		
and including	13.0	2.0	3.40	1.0		
LDH25RC_416	0.0	4.0	0.63	0.5	Lower	Maximum of 1m internal dilution
and	12.0	2.0	1.06	0.5	Lower	
including	12.0	1.0	1.23	1.0		
LDH25RC_417	6.0	5.0	13.15	0.5	Middle	Maximum of 2m internal dilution
including	6.0	1.0	6.90	1.0		
and including	9.0	2.0	23.16	1.0		

Hole ID	From (drill depth) (m)	Width (m)	Au g/t	Cut-off Au g/t	Comment/interna	l zones below cut-off
LDH25RC_418	5.0	7.0	1.15	0.5	Middle	Maximum of 3m internal dilution
including	5.0	2.0	1.89	1.0		
and including	10.0	2.0	1.85	1.0		
LDH25RC_448	8.0	2.0	0.93	0.5	Sediment	
including	8.0	1.0	1.11	1.0		
LDH25RC_449	NSA			0.5	Lower	
LDH25RC_450	24.0	2.0	1.13	0.5	Lower	
including	25.0	1.0	1.34	1.0		
LDH25RC_451	32.0	10.0	4.91	0.5	Lower	Maximum of 2m internal dilution
including	33.0	3.0	15.38	1.0		
LDH25RC_452	21.0	1.0	0.51	0.5	Upper	

ANNEXURE 2B: SIGNIFICANT ASSAY RESULTS FOR STERILISATION DRILLING

Hole ID	From (drill depth) (m)	Width (m)	Au g/t	Cut-off Au g/t	Purpose
FOS25AC_185	28.0	8.0	1.71	0.5	Waste Dump
LDH25AC_021	20.0	2.0	1.02	0.5	Waste Dump
LDH25AC_031	16.0	4.0	1.45	0.5	Waste Dump
LDH25AC_038	34.0	2.0	0.69	0.5	Waste Dump
LDH25AC_039	14.0	2.0	1.64	0.5	Waste Dump
LDH25AC_040	26.0	2.0	1.19	0.5	Waste Dump
LDH25AC_043	34.0	2.0	0.52	0.5	Waste Dump
LDH25AC_054	38.0	2.0	1.46	0.5	Waste Dump
LDH25AC_055	38.0	2.0	0.97	0.5	Waste Dump
LDH25AC_060	34.0	2.0	2.41	0.5	Waste Dump

All other sterilisation drilling returned 'no significant assays' above a 0.5g/t Au cut-off.

BACKGROUND: ST IVES / KAMBALDA - ONE OF AUSTRALIA'S MOST PROLIFIC GOLD CAMPS

The Kambalda / St Ives gold camp is one of Australia's most prolific gold production and discovery centres. Gold has been produced in the area since the discovery of the Red Hill gold mine in 1896 (adjacent to the Company's historical Silver Lake nickel mine at Kambalda). The area immediately encompassing and surrounding the FBA project produced gold from the 1920s onwards, but this goldfield came to prominence in the early 1980s when WMC commenced dedicated gold production from the adjacent Victory-Defiance Complex and the Hunt nickel mine, approximately 15km to the north near Kambalda.

The St Ives Gold Mine was sold by WMC to Gold Fields Ltd (**Gold Fields**) in December 2001 after 5.6Moz^{7a} of gold had been produced. With an expanded exploration budget requisite with being one of the world's major gold companies, Gold Fields has gone on to mine over 10Moz^{7b} of gold itself and has found what is shaping to be the most significant discovery in the camp's history, the Invincible deposit (see **Figure 14**), suggesting that the biggest deposits are not always found first in the discovery cycle. The Company holds all mineral rights over the FBA, except gold in specific "Excluded Areas" (see **Figure 13**).

The Company highlights that all gold prospects being tested and evaluated are 100% owned by Lunnon Metals. The FBA project is located on granted mining tenements with significant existing infrastructure in place. Nearby gold plants include the Lefroy, Lakewood (ASX:BC8) and Higginsville plants (ASX:WGX), with the Lefroy plant, a few kilometres to the north, notably owned and operated by the Company's major shareholder, Gold Fields. The gold prospects of the Foster Gold Belt are hosted in the Defiance Dolerite, a known favourable host for gold in the immediate vicinity of FBA at the Victory-Defiance gold complex a few kilometres to the north. High-grade quartz veins were mined by prospectors in the 1920s in what was then called the Cooee/St Ives field (see ASX announcement dated 22 April 2024) with gold ore won from these workings treated at either the nearby historical State Battery or the privately owned Ives Reward battery, the relic sites of which are both located on what are now Lunnon Metals' leases.

ABOUT THE KAMBALDA GOLD & NICKEL PROJECT (KGNP)

The KGNP features approximately 47sqkm of tenements in the Kambalda/St Ives district. KGNP is located approximately 570km east of Perth and 50-70km south-southeast of Kalgoorlie, in the Eastern Goldfields of Western Australia. KGNP comprises two project areas, Foster and Baker* (19 contiguous mining leases) and Silver Lake and Fisher⁺ (20 contiguous mining leases). This world-renowned district has produced in excess of 1.6 million tonnes⁹ of nickel metal since its discovery in 1966 by WMC. In addition, over 16Moz of gold⁹ in total has been mined, making Kambalda/St Ives a globally significant gold camp in its own right.

The KGNP is assessed via public roads, well-established mine road infrastructure and the main St Ives causeway over Lake Lefroy. The KGNP is broadly surrounded by tenements held by SIGM, a wholly owned subsidiary of Gold Fields Limited (JSE:GFI) and the Company's major shareholder.

*SIGM retains right⁸ to explore for and mine gold in the "Excluded Areas" at the FBA, as defined in the subsisting agreements between Lunnon Metals and SIGM, and on the remaining area of the tenements, has select rights to gold in limited circumstances.

⁺The Company has the exclusive rights to nickel on 19 mining leases and related access rights on one additional tenure. Gold Fields retains the rights to the other minerals (except to the extent minerals occur in conjunction with nickel mineralisation or nickel bearing ore but excluding gold).

⁷ (a) sum of historical WMC production records to Dec 2001 and (b) sum of Gold Fields Annual Report filings thereafter.

⁸ Refer to the Company's Prospectus (lodged 11 June 2021) for further details. SIGM has a pre-emptive right over gold material from the FBA (other than the Excluded Areas and the Lady Herial deposit).

⁹ Gold: Sum of historical WMC production records to December 2001, sum of Gold Fields Ltd's, Karora Resources and Westgold Resources report filings thereafter. Nickel: Sum of historical WMC production records and relevant ASX company nickel production figures.

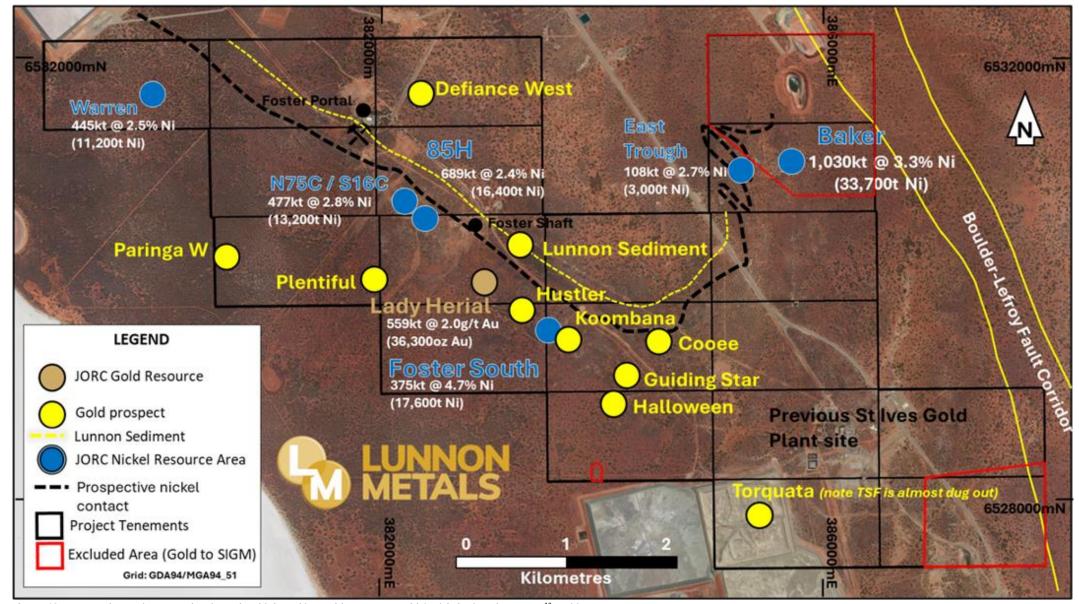
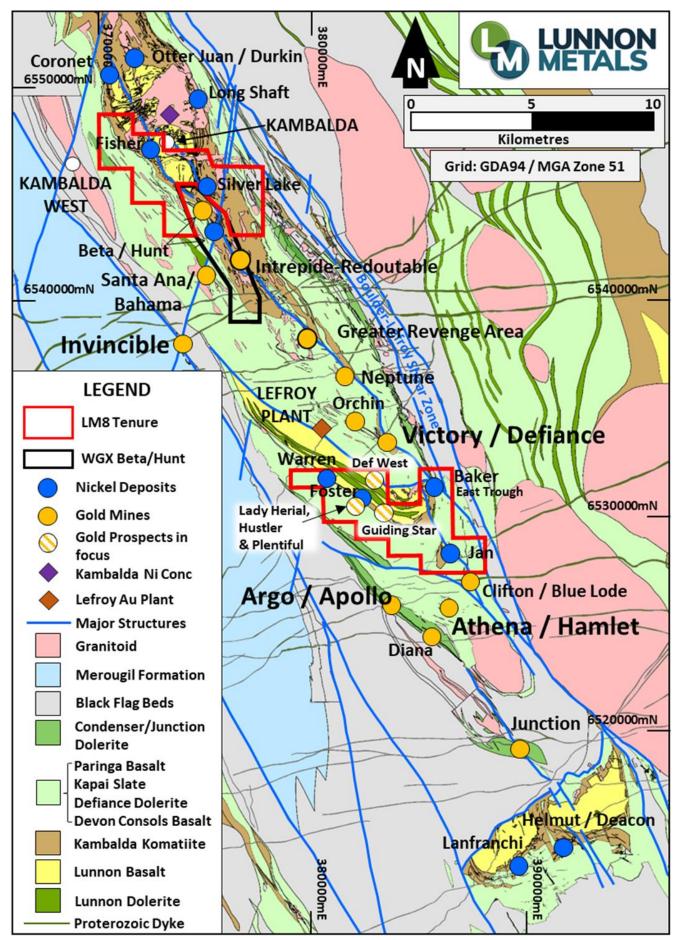



Figure 13: Foster-Baker Project Area showing select high-ranking gold prospects, gold & nickel Mineral Resource¹⁰ positions.

¹⁰ A full breakdown of the gold and nickel Mineral Resource is contained on page 21.

Figure 14: Location of the KGNP (red outlines) at the local Kambalda/St Ives scale; showing surface geology and structure of this significant Australian gold camp.

COMPETENT PERSONS' STATEMENTS

Mr. Aaron Wehrle is the Company's principal Competent Person and takes overall responsibility for any information in this report that relates to gold and nickel geology, or informed gold and nickel Mineral Resources or Ore Reserves, Exploration Targets, Exploration Results and the Company's Historical Core Program, which includes the accessing, re-processing, relogging, cutting and assaying of historical WMC diamond core and the appropriateness of the use of this data and other historical geoscience hard copy data such as cross sections, underground level mapping plans, longitudinal projections and long sections, including commentary relying on personal experience whilst employed at Kambalda by WMC and Gold Fields. Any such information in this report or previous announcements is based on, and fairly represents, information and supporting documentation prepared by Mr. Wehrle, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM).

Mr. Wehrle is a full-time employee of the Company, a shareholder and holder of employee options/performance rights; he has sufficient experience that is relevant to the style of mineralisation and types of deposit under consideration and to the activity that he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (**JORC Code**) and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Any information in this or previous announcements that relates to, or informed, the Lady Herial Mineral resource estimate, geostatistics, methodology and estimation is based on, and fairly represents, information and supporting documentation prepared by Mr. Stephen Law, who holds current Chartered Professional (Geology) status with the AusIMM. Mr Law is a full-time employee of Lunnon Metals Ltd, a shareholder and holds employee performance rights; he has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as Competent Person as defined in the JORC Code. Mr. Law consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Any information in this or previous announcements that relates to or informed the previous Lady Herial gold metallurgical testwork program, or past nickel metallurgy, was based on, and fairly represents, information and supporting documentation prepared by Mr. Barry Cloutt, who is a Member of the AuslMM. Mr. Cloutt is an external and independent consultant to the Company and has sufficient experience that is relevant to the activity that he is undertaking to qualify as Competent Person as defined in the JORC Code. Mr. Cloutt consented to the inclusion in this Announcement of the matters based on his information in the form and context in which it appears.

Any information in this or previous announcements that relates to the mining, metallurgical and environmental Modifying Factors or assumptions as they may apply was based on, and fairly represents, information and supporting documentation prepared by Mr. Wehrle, Mr. Max Sheppard and Mr. Edmund Ainscough. Messrs. Sheppard and Ainscough are also Competent Persons and Members of the AusIMM. Mr Ainscough is a full-time employee and Mr Sheppard is a permanent, part-time employee, both of Lunnon Metals Ltd. Both Messrs. Ainscough and Sheppard are shareholders and hold employee performance rights in Lunnon Metals Ltd.

Messrs Wehrle, Sheppard and Ainscough have sufficient experience that is relevant to the style of mineralisation, both gold and nickel, the types of deposit under consideration, the activity that they are undertaking and the relevant factors, in particular regarding Lady Herial specifically and the Foster-Baker project area more generally, the historical Foster mine and the KGNP regionally, to qualify as Competent Persons as defined in the JORC Code. Messrs. Sheppard, Wehrle and Ainscough consent to the inclusion in this announcement of the matters based on their information in the form and context in which it appears.

DISCLAIMER

References in this announcement may have been made to certain previous ASX announcements, which in turn may have included Exploration Results, Exploration Targets, Mineral Resources, Ore Reserves and the results of Scoping and Pre-Feasibility or Feasibility Studies. For full details, please refer to the said announcement on the said date. The Company is not aware of any new information or data that materially affects this information. Other than as specified in this announcement and mentioned announcements, the Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement(s), and in the case of estimates of Mineral Resources and Ore Reserves (if reported) that all material assumptions and technical parameters underpinning the estimates in the relevant announcement continue to apply and have not materially changed. The Company confirms that the Competent Person's findings in relation to the estimates of Mineral Resources and Ore Reserves (if reported) have not been materially modified from the original announcements reporting those estimates.

GOLD MINERAL RESOURCES

The detailed breakdown, by mineralised structures, of the Company's gold Mineral Resources¹¹, above a 0.5g/t Au cut-off, at 18 November 2025, is as follows:

		Measured			Indicated			Inferred			Total	
	Tonnes	Aug/t	Au Ounces	Tonnes	Aug/t	Au Ounces	Tonnes	Aug/t	Au Ounces	Tonnes	Aug/t	Au Ounces
LADYHERIAL												
Upper	94,000	3.4	10,300	27,000	2.2	1,900	13,000	1.6	700	135,000	3.0	12,900
Middle	19,000	2.5	1,500	-	-	-	-	-	-	19,000	2.5	1,500
Lower	104,000	2.2	7,200	56,000	1.2	2,200	106,000	0.9	3,200	266,000	1.5	12,600
Sed/Paringa Basalt	-	-	-	7,000	1.7	400	4,000	2.2	300	11,000	1.9	700
MZ Surface	8,000	0.8	200	-	-	-	-	-	-	8,000	0.8	200
Northwest	-	-	-	-	-	-	120,000	2.2	8,500	120,000	2.2	8,500
TOTAL	226,000	2.6	19,200	90,000	1.6	4,500	243,000	1.6	12,600	559,000	2.0	36,

NICKEL MINERAL RESOURCES

The detailed breakdown of the Company's nickel Mineral Resources¹¹, above a 1.0% Ni cut-off, restated at 30 June 2025, is as follows:

	М	easured I	Ni	li	ndicated I	Vi		Inferred N	li		Total Ni	
	Tonnes	%	Ni Tonnes	Tonnes	% *	Ni Tonnes	Tonnes	% *	Ni Tonnes	Tonnes	% *	Ni Tonnes
FOSTER MINE												
Warren				345,000	2.6	8,800	100,000	2.4	2,400	445,000	2.5	11,200
Foster Central												
85H				395,000	3.2	12,800	294,000	1.2	3,600	689,000	2.4	16,400
N75C				271,000	2.6	6,900	142,000	1.9	2,600	413,000	2.3	9,500
S16C / N14C				-	-	-	64,000	5.7	3,700	64,000	5.7	3,700
South				264,000	4.7	12,400	111,000	4.7	5,200	375,000	4.7	17,600
Sub total				1,275,000	3.2	40,900	711,000	2.5	17,500	1,986,000	2.9	58,400
BAKER AREA												
Baker	110,000	3.4	3,700	622,000	3.7	22,900	298,000	2.4	7,100	1,030,000	3.3	33,700
East Trough				-	-	-	108,000	2.7	3,000	108,000	2.7	3,000
Sub total	110,000	3.4	3,700	622,000	3.7	22,900	406,000	2.5	10,100	1,138,000	3.2	36,700
SILVER LAKE												
25H				336,000	1.6	5,300	488,000	1.7	8,500	824,000	1.7	13,800
Sub total				336,000	1.6	5,300	488,000	1.7	8,500	824,000	1.7	13,800
FISHER		•					•					
F Zone				56,000	2.7	1,500	196,000	1.6	3,200	252,000	1.9	4,700
Sub total				56,000	2.7	1,500	196,000	1.6	3,200	252,000	1.9	4,700
		•					•					
TOTAL	110,000	3.4	3,700	2,289,000	3.1	70,600	1,801,000	2.2	39,300	4,200,000	2.7	113,600

¹¹ As defined in the Joint Ore Reserves Committee of the Australian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (JORC): 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

JORC TABLE 1

The following tables address historical WMC and Gold Fields exploration activities/methods where relevant, Lunnon Metals' reverse circulation, diamond drilling and aircore programs as well as covering the Company's Historical Core Program, again where relevant. This report may by necessity also reference past DD, RC, Aircore and grab sampling results, which are therefore also covered in this Table 1.

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria **JORC Code explanation Commentary** Sampling Nature and quality of sampling • All drilling and sampling are undertaken in an industry standard manner techniques (e.g., cut channels, random chips, both by Lunnon Metals Ltd (Lunnon Metals or the Company) since or specific specialised industry 2021 and historically by both Gold Fields Ltd (Gold Fields) from 2001 to standard measurement tools 2014 and WMC Resources Ltd (WMC) from 1966 to 2001 (collectively appropriate to the minerals **Previous Owners**). under investigation, such as • Lunnon Metals' aircore (AC), diamond drill (DD) and reverse circulation down-hole gamma sondes, or (**RC**) holes are completed by Blue Spec Drilling Pty Ltd (**Blue Spec**) handheld XRF instruments, etc.). following protocols and QAQC procedures aligned with industry best These examples should not be taken as limiting the broad • Any DD holes on the surface of the salt lake, Lake Lefroy, have been meaning of sampling. drilled to date by Ausdrill Pty Ltd (Ausdrill), using a track-mounted lake rig. Include reference to measures **RC Lunnon Metals** taken to ensure sample • RC samples are collected directly into calico sample bags on a 1.0m representivity and the basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample appropriate calibration of any mass typically averages 3.0kg splits. measurement tools or systems • Sub-sampling techniques and sample preparation are described further below in the relevant section. used • Sample sizes are considered appropriate for the material sampled. Aspects of the determination of • The samples are considered representative and appropriate for this type mineralisation that are Material of drilling. to the Public Report. In cases • RC samples are appropriate for use in a Mineral Resource estimate. where 'industry standard' work **DD Lunnon Metals** has been done this would be • Core samples are collected with a DD rig typically drilling HQ (63.5mm relatively simple (e.g. 'reverse core diameter) and/or NQ2 (51mm core diameter) either from surface or as tails from RC pre-collars. Occasionally PQ (83mm core diameter) is circulation drilling was used to obtain 1 m samples from which drilled in shallow holes which have the additional purpose of collecting 3 kg was pulverised to produce a material and data for metallurgical and geotechnical studies. HQ3 30 g charge for fire assay'). In (61mm core diameter) is occasionally used for shallow geotechnical other cases more explanation may be required, such as where • All DD core is stored in industry standard plastic core trays labelled with there is coarse gold that has the drill hole ID and core depth intervals. inherent sampling problems. • Sub-sampling techniques and sample preparation are described further Unusual commodities or below in the relevant section. mineralisation types (e.g. • Sample sizes are considered appropriate for the material sampled. submarine nodules) may warrant • The samples are considered representative and appropriate for this type disclosure of detailed of drilling. information. • DD core samples are appropriate for use in a Mineral Resource estimate. **AC Lunnon Metals** • AC samples are collected manually by scoop sampling directly from spoil piles on the ground which have been transferred via plastic buckets from a cyclone mounted on the drill rig. • The field technician collects a single two-metre composite from two consecutive spoil piles starting from the collar, taking care that the resultant composite sample is representative and with a total sample weight of approximately 2.5 ± 0.5 kg. • Each 1.0m spoil mass typically averages 8.5kg ± 3.4kg. • The final two samples for each hole are sampled on a single metre basis

(not composited).

Criteria	JORC Code explanation	Commentary
Sampling		Sub-sampling techniques and sample preparation are described further
techniques		below in the relevant section.
(continued)		Sample sizes are considered appropriate for the material sampled and
		the intended use of the assay data in exploration planning only.
		AC samples are generally not appropriate for use in a mineral resource
		estimate.
		Historical data
		Sampling procedures followed by Previous Owners in the drilling, The samples and save years in line.
		retrieval, and storage of AC, RC and DD samples and core were in line with industry standards at the time.
		Surface diamond drill obtaining NQ (48mm) and/or BQ (37mm)
		diameter drill core, were the standard exploration sample techniques
		employed by WMC. Underground DD was also used extensively in the
		operating environment, with drilling of both up and down holes,
		retrieving typically BQ diameter drill core and to a lesser extent AQ
		(22mm) diameter drill core.
		The core trays were labelled with the drill hole number and numbered
		with the downhole meterage for the start of the first 1 m run and the
		end of the last 1 m run on the lip of the core tray and typically included
		core blocks within the core trays demarcating the depth meterage of
		rod pull breaks. • The earlier drilling was collected in wooden, and hybrid wooden/steel
		· · · · · · · · · · · · · · · · · · ·
		core trays and occasionally depths recorded in feet. Handheld XRF
		Where a handheld XRF tool was used to collect any exploration data
		reported, it was done so to assess the levels of key chemical elements.
		The individual XRF results themselves are not reported and any element
		values or ratios are used as a guide only for lithological and alteration
		logging/sampling and to assist vectoring to potential mineralisation. No
		XRF results are used in any MRE.
		Surface rock chip and grab Sampling
		Rock chip samples are taken manually from outcrop exposures using
		geological pick / crack hammer while grab samples are collected from
		loose rock material proximal to its original source such as spoils from
		historical sample pits and surface rock float.
		Larger rock samples may be reduced in size using geological pick / crack hammer for representative sample compositing purposes.
		Individual samples comprise several rock chips / grab samples from the
		area of interest, typically totalling 1.0 to 3.0kg collected in pre-
		numbered calico bags.
		The sampling methodology is considered to be appropriate for the
		intended purpose of the data.
		Sub-sampling techniques and sample preparation are described further
		below in the relevant section.
		Sample sizes are considered appropriate for the material sampled and
		the intended use of the assay data in exploration planning only.
		The samples are not considered appropriate for use, and will not be used in any MPE.
Drilling	Drill type (e.g. core, reverse	used, in any MRE. RC Lunnon Metals
techniques	circulation, open-hole hammer,	RC holes are typically drilled with a 5 1/2-inch bit and face sampling
.commques	rotary air blast, auger, Bangka,	hammer. Holes are drilled dry with use of booster/auxiliary air when/if
	sonic, etc.) and details (e.g. core	ground water is encountered.
	diameter, triple or standard tube,	In the case of short holes not likely to intersect the water table and thus
	depth of diamond tails, face-	not requiring the use of booster/auxiliary air, a 4-inch bit and face
	sampling bit or other type,	sampling hammer may be used.
	whether core is oriented and if	DD Lunnon Metals
	so, by what method, etc.).	Core samples are collected with a DD rig typically drilling HQ (63.5mm)
		core diameter) and/or NQ2 (51mm core diameter) from surface, or as

Criteria	JORC Code explanation	Commentary
Criteria Drilling techniques (continued)	JORC Code explanation	tails from RC pre-collars, or as wedge holes off parent DD holes. Occasionally PQ (83mm core diameter) or HQ3 (61mm core diameter) is drilled in shallow holes which have the additional purpose of collecting material and data for metallurgical and geotechnical studies. • Triple tube HQ or PQ drilling techniques may be used where maximum recovery and preservation of core is required through the weathered zone from surface until competent fresh rock ground conditions are reached. • To help accurately test the targets, "navi" or motor drilling is sometimes used over short runs to control the direction of the drill hole. In these instances, no drill core or sample is returned from that portion of the drill hole. No navi drilling is undertaken within expected intervals of mineralisation. • Wedge holes, where present, utilise the parent hole to a given depth then branch off from the parent hole using either a casing wedge, a Hall-Rowe wedge, or a natural elbow, or navi bend, in the parent hole from where a lip can be cut with the diamond drill bit and the wedge hole drilled straight off the parent. • The DD core is orientated during the drilling process by the drill contractor, using a down hole Reflex ACTIIITM Rapid Descent Digital Core Orientation Tool, and then reconstructed over zones of interest by Lunnon Metals field staff for structural and geotechnical logging. AC Lunnon Metals • AC holes are typically drilled with a 90mm outside diameter (25mm inside diameter) open face tungsten carbide bladed drill bit designed to cut through unconsolidated ground formations. The rods used are 75mm outside diameter with a 30mm inside diameter. • Holes are typically drilled dry with use of booster/auxiliary air compressor used has a capacity of 350 psi generating approximately 900 cfm. The compressor is an Atlas Copco compressor. Historical Drilling • Historical Drilling • Historical Surface DD completed by Previous Owners typically comprised HQ, NQ and BQ size drill core. Pre-collars are not typically mineralised.
		 Although no documentation is available to describe the drilling techniques used by Previous Owners at the time it is understood that the various drilling types used conventional drilling methods consistent with industry standards of the time. None of the historical WMC diamond drill core was oriented.
Drill sample	Method of recording and	For Lunnon Metals AC, RC and DD
recovery	assessing core and chip sample recoveries and results assessed.	Every RC sample is assessed and recorded for recovery and moisture by Lunnon Metals field staff in real time during the drilling process. Samples are monitored for possible contamination during the drilling
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 process by Lunnon Metals geologists. DD core recovery is measured for each drilling run by the driller and then checked by the Lunnon Metals geological team during the mark up and logging process. No sample bias is observed.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	There is no observed relationship between recovery and gold grade nor bias related to fine or coarse sample material.

Criteria	JORC Code explanation	Commentary
		Historical data
	preferential loss/gain of fine/coarse material.	There are no available records for sample recovery for AC, DD or RC
		drilling completed by Previous Owners; however, re-logging exercises
		completed by Lunnon Metals of surface and underground DD holes
		from across the KGNP between 2017 and present found that on average
		drill recovery was good and acceptable by industry standards.
Logging	Whether core and chip samples	For Lunnon Metals AC, RC and DD (and re-logging of Historical DD
	have been geologically and	where relevant)
	geotechnically logged to a level	Geological logging is undertaken for the entire hole recording lithology,
	of detail to support appropriate	oxidation state, mineralisation, alteration, structural fabrics, and veining,
	Mineral Resource estimation,	subject to the following exception.
	mining studies and metallurgical studies	DD orientated structural logging, core recovery, and Rock Quality Designation (RQDs) are all recorded from drill core over intervals of interest and relevance.
	Whether logging is qualitative or	Detailed geotechnical logging and rock property test work is completed
	quantitative in nature. Core (or	over intervals of relevance by independent MineGeoTech Pty Ltd (MGT)
	costean, channel, etc.)	contractor geotechnical engineers.
	photography.	Geological logging (and where required, geotechnical logging) is
		completed in sufficient detail to support future Mineral Resource
		estimation, mining and metallurgical studies.
		Metallurgical test work in the broader project area is ongoing in addition to the geological logging and element assaying detailed below.
		General logging data captured are qualitative (descriptions of the
		various geological features and units) and quantitative (numbers
		representing structural attitudes, and vein and sulphide percentages,
		magnetic susceptibility and conductivity).
		DD core is photographed in both dry and wet form.
		AC and RC chip trays are photographed in both dry and wet form.
		Historical data
		There is no available documentation describing the logging procedures There is no available documentation describing the logging procedures There is no available documentation describing the logging procedures
		employed by Previous Owners' geologists in the KGNP area. • However, the WMC historical graphical hardcopy logs and other
		geoscientific records available for the project are of high quality and
		contain significant detail with logging intervals down to as narrow as
		0.01 m.
		• The geological logs document lithology, textures, structures, alteration,
		and mineralisation observed in drill core captured both graphically and
		in a five-character logging code (Lunnon Metals notes that a previous
		logging legend employed at WMC's Kambalda Nickel Operations
		utilised a 3-letter code which is often represented on hard copy plans and cross sections of an older vintage and which was converted by
		WMC to the latter 5-character code at some later time).
		Stratigraphy is also captured in a three-character logging code. Sample
		intervals are recorded on the graphical log. These logging legends are
		well documented in lieu of a recorded procedure and are utilised by
		Lunnon Metals in current logging practices.
		• In regard geotechnical logging or procedures, there is no record of any
		formal relevant procedures or logging and based on personal
		experience of the Competent Person, such logging was not routinely completed prior to the introduction of Regulation 10:28 in the WA Mine
		Safety and Inspection Act, requiring the same in approximately 1996.
		Based on the personal experience of the relevant Competent Person to
		this announcement, having worked for WMC in Kambalda between 1996
		and 2001, and Gold Fields between 2001 and 2006, it is known that the
		Previous Owners had a rigorous and regimented system for storing and
		archiving the graphical logs physically, microfilmed, and drafted on to
		master cross sections, plans, and long sections.

Criteria	JORC Code explanation	Commentary
Logging (continued)		 Starting in the early 2000s under Gold Fields ownership drillhole logging information was captured digitally via rugged tablet, field- based laptops (known as "Toughbooks") using a newly developed in-house (and industry standard) geological logging legend which was overseen by the Competent Person who was Exploration Manager for the St Ives Gold Mining Co Pty Ltd (SIGM) at that time. Both the graphically captured interval data and the more recently digitally captured geological logging information was stored in a secure digital database. Lunnon Metals sourced historical diamond core from the SIGM Kambalda core yard on Durkin Road where relevant to its investigations. Optical Televiewer downhole surveys For additional information regarding Optical Televiewer surveys please refer to Table 1 section 2 'Other substantive exploration data' criteria. Surface rock chip and grab sampling All rock chip / grab samples have been geologically described and recorded by a qualified geologist. The geological logging was to a level appropriate for exploration planning purposes.
Sub-sampling	If core, whether cut or sawn and	Geological logging of the samples is qualitative in nature. Lunnon Metals RC
techniques and sample preparation	whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Dry RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. Duplicate samples are collected directly from the drill rig cyclone, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. After receipt of the RC samples by the independent laboratory the samples submitted for fire assay or multielement analysis are typically dried and pulverised with >85% pulverised to 75micron or better. For sample weights > 3kg the sample is dried, split and pulverised up to 3kg. RC samples submitted for Chrysos PhotonAssayTM (PhotonAssay) method of gold analysis, are dried and crushed to ~2-3mm and loaded into 330mL plastic jars (typically 400-650g) ready for analysing. Lunnon Metals DD (and re-sampling of Historical DD where relevant) DD core samples are most typically collected with a diamond drill rig drilling HQ and/or NQ2 size core. After logging, sample interval markup, photographing, and geotechnical rock property test work, selected sample intervals of drill core are cut in half along the length of the drill core with a diamond saw in a Discoverer® Automatic Core Cutting Facility using a Corewise Auto Core Saw. Typically, one half of the drill core is sent to the laboratory for assay and the other half retained in its original core tray. The PQ metallurgical holes had one quarter sent to the assay laboratory and the remaining three-quarters is saved for metallurgical testwork samples. Holes are marked-up and sampled for assaying over mineralised and surrounding intervals at a typical minimum sample interval of 0.3m to ensure adequate sample weight and a typical maximum sample interval of 1.0m, constrained by geological boundaries. Specific Gravity – Sufficient density measurements are taken for each mineralised DD sample for the Lunnon Metals drill holes. Sample weigh

CriteriaJORC Code explanationCommentarySub-sampling techniques and sample preparationinto quarters and submitting both quarters to the laborator as two separate samples.• In the case of the metallurgical holes no field duplicates are consistent amount of core for metallurgical testor
After receipt of the DD core samples by the independent lat samples are dried, crushed to ~2mm, and pulverised with >4 gulverised to 75micron or better. For sample weights >3 kg dried, crushed to ~2mm, split, and pulverised up to 3 kg. DD core samples submitted for PhotonAssay method of go are dried and crushed to ~2-3mm and loaded into 330mL to (typically 400-650g) ready for analysisng. Sample sizes are considered appropriate for the style of min Samples are submitted to Intertek Genalysis in Kalgoorile for preparation i.e. drying, crushing where necessary, and pulve Pulverised samples are then transported to Intertek Genalys for analysis. Lunnon Metals AC AC samples are collected manually by scoop sampling direct spoil piles on the ground which have been transferred via p buckets from a cyclone mounted on the drill rig. The field technician collects a single two-metre composite of consecutive spoil piles starting from the collar, taking care tresultant composite sample is representative and with a tot weight of approximately 2.5 ± 0.5 kg. Each 1.0m spoil mass typically averages 8.5kg ± 3.4kg. The final two samples for each hole are sampled on a single (not composited). Duplicate samples are collected by scoop sampling from the into calico sample bags, at a rate of 1 in every 25 samples a frequently in the expected mineralised zones. Additional fie samples are collected if required from key geological horiz: After receipt of the AC samples by the independent laborat samples are typically dried, crushed to ~2mm, and pulverised polymers and polymers

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation (continued)		 Portions of drill core distal to the main high-grade mineralisation were sometimes 'chip sampled' by WMC. Lunnon Metals has chosen not to utilise such samples in any estimation of grade or mineralisation. WMC typically sampled in interval lengths relevant to the underlying lithology and mineralisation such that sample interval lengths may vary from between minima of 0.05m and maxima up to 2.00m approximately within any mineralised zone. Intervals of no mineralisation or interest were typically not sampled. Review of historical drill core by Lunnon Metals indicated that the sample sizes were appropriate for the type, style and thickness of mineralisation being tested with sample breaks corresponding to lithological or mineralisation breaks being the norm. Although faded through time, sample depth intervals are evident as marked on the remaining half core as observed by Lunnon Metals and these correlate to sample interval depths in the original paper graphical drill logs and the historical database While the Previous Owners' procedures for logging, sampling, assaying and QAQC of drillhole programs was not available at the time of this announcement it is interpreted that it was of high quality and in line with industry standards at that time. It is the opinion of the relevant Competent Person that the sample preparation, security, and analytical procedures pertaining to the abovementioned historical drilling by Previous Owners were adequate and fit for purpose based on: - Both WMC and Gold Fields' reputation in geoscience, in WMC's case stemming from their discovery of nickel sulphides in Kambalda in the late 1960s; - identification of procedures entitled "WMC QAQC Practices for Sampling and Analysis, Version 2 – adapted for St Ives Gold" dated February 2001 and which includes practices for gold and nickel;
		 and the first-hand knowledge and experience of the Competent Person of this announcement whilst working for WMC and Gold Fields at Kambalda between 1996 and 2006. Surface rock chip and grab sampling As the rock chip / grab samples are intended for exploration planning purposes only no Company sample preparation QAQC processes were undertaken (insertion of CRM's or blanks). Laboratory QAQC protocols were utilized in the sample preparation and analysis phase. After receipt of the rock chip / grab samples by the independent laboratory the samples are dried, crushed to ~2mm, and pulverised with >85% pulverised to 75micron or better. For sample weights >3kg the sample is dried, crushed to ~2mm, split, and pulverised up to 3kg. Rock chip / grab samples submitted for PhotonAssay method of gold analysis, are dried and crushed to ~2-3mm and loaded into 330mL plastic jars (typically 400-650g) ready for analysing. Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation i.e. drying, crushing where necessary, and pulverising. Pulverised samples are then transported to Intertek Genalysis in Perth for analysis.
Quality of	The nature, quality and	For Lunnon Metals AC, RC and DD (and re-assaying of Historical DD
assay data and laboratory	appropriateness of the assaying and laboratory procedures used	 where relevant) and surface rock chip / grab samples Samples are submitted to Intertek Genalysis in Kalgoorlie for sample
tests	and whether the technique is	preparation such as drying, crushing where necessary, and pulverising.
	considered partial or total.	Prepared samples are then transported to Intertek Genalysis in Perth for analysis.
	For geophysical tools,	Samples are analysed for a multi-element suite (typically 33 or 48 Samples are analysed for a multi-element suite (typically 33 or 48
High Grade Gold Possil	ts Point to Lady Herial Upside	elements) including, as a minimum, Ni, Cu, Co, Cr, As, Fe, Mg, Pb, S, Ti, Page 28 of 38

Criteria **JORC Code explanation Commentary Quality of** spectrometers, handheld XRF Zn. Analytical techniques used a four-acid digest (with ICP-OES or ICPassay data and MS finish) of hydrofluoric, nitric, perchloric and hydrochloric acids, instruments, etc., the parameters used in determining the analysis suitable for near total dissolution of almost all mineral species including laboratory tests including instrument make and silica-based samples. (continued) model, reading times, Within selected gold mineralised zones and all nickel mineralised zones, calibrations factors applied and the platinum group elements (Pd, Pt, Au) are also analysed using a 50g their derivation, etc. charge lead collection fire assay method with ICP-MS finish. • For the purpose of gold exploration, samples have been typically Nature of quality control submitted for 50g charge lead collection fire assay, while samples procedures adopted (e.g. specifically located in weathered regolith and mineralised zones are standards, blanks, duplicates, submitted for the same multi-element suite as above for the purpose of external laboratory checks) and assessing potential gold path finder elements. whether acceptable levels of From 2024 the Company has moved to Chrysos PhotonAssay™ accuracy (i.e. lack of bias) and (PhotonAssay) as its preferred methods of gold analysis. PhotonAssay is precision have been established. a high-energy X-ray source that is used to irradiate large mineral samples, typically about 0.5 kg. The X-rays induce short-lived changes in the structure of any gold nuclei present. As the excited gold nuclei return to their ground state, they emit a characteristic gamma-ray signature, the intensity of which is directly proportional to the concentration of gold. The penetrating nature of PhotonAssay provides much higher energy than those used in conventional X-ray fluorescence (XRF), which provides a true bulk analysis of the entire sample. Samples are presented into a fully automatic process where samples are irradiated, measured, data collected and reported. • These techniques are considered quantitative in nature. • Industry prepared certified reference material (CRM), or standard samples, of various grades appropriate to the mineralisation expected are inserted into the sample batches, approximately every 50 samples and more frequently in the expected mineralised zones. • Lunnon Metals prepared blank samples are inserted, approximately every 50 samples and more frequently in the identified mineralised zones. At present blank samples are prepared from CRM Bunbury Basalt. In the past blanks were prepared from barren non-ultramafic RC chips as verified by laboratory analysis or barren non-ultramafic Proterozoic Dyke DD core acquired locally and verified by geological logging. • The independent laboratory also carries out numerous internal standards in individual batches. • The resultant Lunnon Metals and laboratory QAQC data is reviewed upon receipt to determine that the accuracy and precision of the data has been identified as acceptable prior to being cleared for upload to the project-wide Lunnon Metals KGNP Geobank® (Micromine) database (Database). **Historical data** • There is no data available at the time of this announcement pertaining to the assaying and laboratory procedures nor the historical field or laboratory quality assurance and quality control (QAQC), if any, undertaken by Previous Owners' drilling programs in the KGNP area; however, it is expected that industry standards as a minimum were likely to have been adopted in the KGNP area and the analytical laboratory. Verification of The verification of significant For Lunnon Metals AC, RC and DD sampling and intersections by either • In the case of current gold exploration, previous lodgements have independent or alternative specifically documented the results of drilling DD holes adjacent to assaying company personnel. previous Company RC holes. • Specific assayed gold interval samples nominated for verification are The use of twinned holes. either re-split in the field via riffle splitter in the case of RC samples, or in the case of DD core the remaining half of core from the core trays are Documentation of primary data, sampled. These full intervals of duplicate samples are assayed via the data entry procedures, data

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying (continued)	verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	original and/or alternative methods as a means of verifying the original gold assays. • Prior to drilling, all planned collar data is captured in a digital drillhole collar register stored on a secure site-based server which is backed up to Perth based server continuously. The collar register is updated as drilling progresses and is completed. • Sample intervals are captured in digital QAQC'd spreadsheets via Toughbooks. • Since September 2023 the data collected on the Toughbooks synchronises directly to the Database stored on a separate secure sequel server. A set of buffer tables store the data before the database administrator does a second validation of the data (driven by in-built validation rules in the Database) before loading to the production data tables. • Assays from the laboratory are sent directly to the database administrator via a dedicated Lunnon Metals assays email address where they are all checked and verified by the Lunnon Metals database administrator before accepting the batches into the database. • No adjustments are made to the original assay data. Only the Lunnon Metals database administrator has editable access to assay values stored in the Database and an internal periodic audit protocol is in place to verify Database assay values against original laboratory provided assay data. Historical data • Diamond core data – across the KGNP, Lunnon Metals has undertaken exhaustive assessment of historical WMC underground and surface diamond drill core to inspect and visually validate significant drill assays and intercepts, and re-sample and re-assay to validate historical assay data in the KGNP Database. • No significant or systematic inconsistencies have been identified and the Competent Person is satisfied that the original data in the project area is representative of the geology and mineralisation modelled; thus, no adjustments to assay data have been deemed necessary or made. Surface rock chip and grab sampling • No verification of sampling and assaying of surface rock chip/gra
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 samples is undertaken. No rock chip data is used in any MRE. General The grid projection is GDA94/ MGA Zone 51. Diagrams and location data tables have been provided in the previous reporting of exploration results where relevant. For Lunnon Metals AC, RC and DD RC and DD hole collar locations are located initially by handheld GPS to an accuracy of +/- 3m. Planned resource drill holes are set out by a licensed surveyor for better than 3m accuracy. Subsequently, drill hole collar locations are then picked up by a licensed surveyor using DGPS methods following the completion of the drilling. All drill holes are typically surveyed downhole at 5m intervals using the REFLEX gyro Sprint-IQ (north seeking gyro) system for both azimuth and dip measurements or the new REFLEX gyro OMNIx42, which is stated to have an even greater accuracy than the Sprint-IQ. Downhole surveys are uploaded by Blue Spec and Ausdrill to the IMDEXHUB-IQ, a cloud-based data management program where surveys are validated and approved by trained Lunnon Metals staff. Surveys can now be validated live and in 3D with the introduction of Seequent Central to the process, a cloud-based management system with direct integration between IMDEX and Leapfrog Geo (3D geology modelling software). Approved exports are then downloaded to the server and after additional QAQC checks and sign off the survey data is

Criteria	JORC Code explanation	Commentary
Criteria Location of data points (continued) Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the drill spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied Whether sample compositing has been applied	uploaded to the Database. The input file is the same file directly downloaded from the IMDEX hub, so data entry errors are eliminated. Historical data Historical methods of drill collar survey pick-up are not recorded however Previous Owners did employ surface surveyors dedicated to the collection of exploration collar data. The easting, northing and elevation values were originally recorded in local KNO ('Kambalda Nickel Operations') grid and later converted to the currently used GDA94/MGA Zone 51 grid. Both the original KNO grid coordinates and the converted coordinates are recorded in the Database. A representative number of historical drill collars were located in the field and their locations cross checked via differential GPS and/or handheld GPS to validate the Database collar coordinates. Historical hardcopy downhole survey data is generally available for the majority of surface drillholes and the records show that single shot magnetic instruments were used. A representative number of these hardcopy downhole survey records have been cross checked against the digital records in the Database. Downhole surveys of select historical surface DD have been conducted using modern gyro systems as described above and no significant errors or inconsistencies were deemed present. Lunnon Metals has corrected where necessary incorrect data in the Database where down hole measurements from the hardcopy data were incorrectly processed. No other significant errors or inconsistencies were deemed present or capable of being detrimental to any interpretation of gold or nickel mineralisation, including any MRE work. Surface rock chip / grab sampling The rock chip / grab sampling points are located by handheld GPS to a typical accuracy of +/- 3m. For Lunnon Metals AC, RC and DD The AC, RC and DD programs at KGNP comprise drillhole spacings that are dependent on the expected target style and size, orientation and depth. Drillholes are not necessarily drilled to set patterns or spacing at the exploration stage of the pr
and	Exploration Results. Whether the drill spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied Whether sample compositing	 For Lunnon Metals AC, RC and DD The AC, RC and DD programs at KGNP comprise drillhole spacings that are dependent on the expected target style and size, orientation and depth. Drillholes are not necessarily drilled to set patterns or spacing at the exploration stage of the program. Previous drill spacing varies greatly, again subject to the target style, dimensions, orientation and depth and inherent geological variability and complexity. All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation. No sample compositing has been applied except at the reporting stage of drill intercepts within a single hole. In the case of drilling intended to serve as grade control on which future
	nas been applied	 open pit production could be designed and scheduled, such as at the Lady Herial gold deposit, the drill spacing aims to approximate 8m x 6m. Historical data The typical spacing for the early WMC DD surface drill traverses varies but is typically approximately 200m to 400m apart with drillhole spacing along the traverses at 100m to 50m. In areas of shallower RC drilling this drill spacing is sometimes improved to 100m by 50m or even 50m by 50m. The drill spacing for areas the subject of underground DD holes was variable but was on average spaced at approximately 20m along the strike of a mineralised zone with fans or rings of DD holes that deliver pierce points in the dip orientation at variable spacing, but typically 10m to 20m apart. The drill spacing for the gold prospects reported, with both Lunnon Metals surface DD and RC and Previous Owners surface DD, RC and AC,

Criteria	JORC Code explanation	Commentary
Data spacing and distribution (continued)		 is variable but ranges typically from 320m, 160m, 80m, 40m, to 20m hole spacing depending on the maturity or state of advancement of the prospect by those Previous owners. Surface rock chip and grab sampling Not relevant to the reporting of rock chip / grab samples. Spacing of sample location is arbitrary, and dependent on the surface exposures identified in the field. The location, assay results and geological descriptions of the rock chip / grab samples reported is not appropriate for use, and will not be used, in any mineral resource estimate.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this	 The preferred orientation of drilling at KGNP is designed to intercept the target approximately perpendicular to the strike and dip of the mineralisation where/if known. Subsequent sampling is therefore considered representative of the mineralised zones if/when intersected. The chance of bias introduced by sample orientation relative to structures, mineralised zones or shears at a low angle to the drillhole is possible, however quantified orientation of the intercepted interval allows this possible bias to be assessed. Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal. Lunnon Metals does not consider that any bias was introduced by the orientation of sampling resulting from any particular drilling technique.
Sample security	should be assessed and reported if material. The measures taken to ensure sample security	 Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal. Lunnon Metals RC and AC The calico sample bags are collected by Lunnon Metals personnel stationed at the drill rig typically at the end of each day. The calico samples are collected sequentially in groups of five and placed into polyweave bags, or more recently green plastic bags, which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. The laboratory checks the samples received against the submission form and notifies the Company of any inconsistencies. Once the laboratory has completed the assaying, the pulp packets, pulp residues and coarse rejects are held in the Laboratory's secure warehouse until collected by the Company or approves them to be discarded. Lunnon Metals DD (and re-sampled Historical DD where relevant) After the drill core is cut and returned to its original position in the core tray, Lunnon Metals' geologists mark up the drill core for sampling and records the sample intervals against unique sample numbers in a digital sample register. A Lunnon Metals core farm technician then collects the cut core samples into calico bags guided by the sample register and sampling information contained therein. The calico samples are collected sequentially in groups of five and placed into polyweave bags which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. The laboratory checks the samples received against the submission form and notifies Lunnon Metals of any inconsistencies. Once the lab

Criteria	JORC Code explanation	Commentary
Sample security (continued)		There is no documentation which describes the historical sample handling and submission protocols during Previous Owners' drilling programs; however, it is assumed that due care was taken with security of samples during field collection, transport and laboratory analysis. The historical drill core remaining after sampling was stored and catalogued at the KNO core farm (now Gold Fields, SIGM core farm) and it remains at this location to the present day.
Audits or review	The results of any audits or reviews of sampling techniques and data.	 No external audits or reviews have been undertaken at this stage of the program. WMC Historical data Cube Consulting Pty Ltd (Cube) are independent of Lunnon Metals and have been previously retained by Lunnon Metals to complete the grade estimation for nickel mineralisation models and MRE exercises. Cube were also requested to review and comment on the protocols developed by Lunnon Metals to deal with, and thereafter utilise, the historical WMC Resources' data, in particular the re-sampling and QAQC exercise completed by Lunnon Metals such that the data is capable of being used in accordance with current ASX Listing Rules where applicable and JORC 2012 guidelines and standards for the generation and reporting of MREs. Cube documented no fatal flaws in that work completed by Lunnon Metals in this regard.

SECTION 2: REPORTING OF EXPLORATION RESULTS

and environmental settings.

any known impediments to

the area.

obtaining a licence to operate in

Mineral			
tenement and			
land tenure			

Criteria

status

JORC Code explanation

Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park The security of the tenure held at the time of reporting along with

Commentary

- The property is located on granted Mining Leases. Although all the tenements wholly or partially overlap with areas the subject of determined native title rights and interests, the Company notes that the original grant of the right to mine pre-dates 23 December 1996 and as such section 26D of the Native Title Act may be applied to exempt any future renewals or term extensions from the right to negotiate in Subdivision P of the Act.
- Notwithstanding the above, on January 9, 2025, the Company announced that it had executed a Mining Agreement with the Ngadju Native Title Aboriginal Corporation RNTBC (NNTAC), covering the relevant parts of the KGNP that fall on Ndadju Determination Area country. The renewal of the Company's mining licences has now been confirmed with the new expiry date being 23 December 2046.
- The complete area of contiguous tenements on which the Silver Lake-Fisher project and rights is located is, together with the wholly owned Foster-Baker project area on the south side of Lake Lefroy, collectively referred to as the Kambalda Gold & Nickel Project ("KGNP") area.
- Gold Fields Ltd's wholly owned subsidiary, SIGM, remains the registered holder and the beneficial owner of the Silver Lake- Fisher area
- Lunnon Metals holds:
 - 100% of the rights and title to the Foster-Baker (FBA) area of KGNP, its assets and leases, subject to certain select reservations and excluded rights retained by SIGM, principally relating to the right to gold in defined areas and the rights to process any future gold ore mined at their nearby Lefroy Gold Plant;
 - The FBA project area of KGNP comprises 19 tenements, each approximately 1,500 m by 800 m in area, and three tenements on which infrastructure may be placed in the future. The tenement numbers are as follows:

M15/1546; M15/1548; M15/1549; M15/1550; M15/1551; M15/1553; M15/1556; M15/1557; M15/1559; M15/1568; M15/1570; M15/1571; M15/1572; M15/1573; M15/1575; M15/1576 M15/1577; M15/1590; M15/1592;

- and additional infrastructure tenements:
- M15/1668; M15/1669; M15/1670; and
- 100% of the mineral rights to nickel and associated metals in the Silver Lake-Fisher (SLF) project area of KGNP, subject to the rights retained by SIGM as tenement holder and as detailed in the Mineral Rights Agreement (MRA). The tenement numbers are as follows (note select tenements are not wholly within the MRA area):

M15/1497: M15/1498; M15/1499; M15/1505; M15/1506; M15/1507; M15/1511; M15/1512; M15/1513; M15/1515; M15/1516; M15/1523; M15/1524; M15/1525; M15/1526; M15/1528; M15/1529; M15/1530; M15/1531: and access rights to ML15/0142.

- There are no known impediments to potential future development or operations, subject to relevant regulatory approvals, over the leases where significant results have been reported.
- The tenements are in good standing with the Western Australian Department of Mines, Industry Regulation and Safety.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgement and appraisal of exploration by other parties.	 In relation to nickel mineralisation, WMC, now BHP Nickel West Pty Ltd and a wholly owned subsidiary of BHP Group Ltd, conducted all relevant exploration, resource estimation, development and mining of the mineralisation at Foster, Jan, Silver Lake and Fisher mines from establishment of the mineral licences through to sale of the properties to SIGM in December 2001. Whilst the majority of this prior work had a nickel focus, some gold exploration did occur. Approximately over 550,000m of DD was undertaken on the properties the subject of the FBA and SLF area by WMC prior to 2001. SIGM has conducted later gold exploration activities on the KGNP area since 2001, however until nickel focused work recommenced under Lunnon Metals management, no meaningful nickel exploration has been conducted since the time of WMC ownership and only one nickel focused surface diamond core hole (with two wedge holes), was completed in total since WMC ownership and prior to Lunnon Metals' IPO. In relation to gold exploration, Lunnon Metals adopted a 100% gold focussed strategy in early 2024. Since that time over 34km of drilling has been completed by the Company, with over 500 RC holes and 25 DD holes completed. In relation to past gold production, no modern gold production has occurred on FBA leases where Lunnon Metals has the gold rights. 1920's vintage gold production occurred and is understood to have totalled approximately 50k short tons, for 23.4koz of gold (source: "WA Government List of Cancelled Gold Mining Leases (which have produced gold)" WA DMP 1954). On the KGNP, past total production from underground mining was conducted by WMC and was solely focused on nickel, recording in contained nickel metal terms: - Foster 61,129 nickel tonnes; - Jan 30,270 nickel tonnes; - Fisher 38,070 nickel tonnes; - Fisher 38,070 nickel tonnes.
Geology	Deposit type, geological setting and style of mineralisation.	 The KGNP area is host to both typical Archaean greenstone gold deposits and 'Kambalda' style, komatiitic hosted, nickel sulphide deposits as routinely discovered and mined in the Kambalda/St Ives district. The project area is host to gold mineralisation as evidenced by the past mining activities noted above and also nickel mineralisation and elements associated with this nickel mineralisation, such as Cu, Co, Pd and Pt.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: • easting and northing of the drillhole collar • elevation or RL (elevation above sea level in metres) of the drillhole collar • dip and azimuth of the hole • down hole length and • interception depth hole length	 Drill hole collar location and downhole directional information has been provided for all material drill holes within the body of this, or related previous ASX reports and also within the relevant Additional Details Table in the Annexures of this, or those reports. Cross sections are often only able to be presented once sufficient pierce points on the same section have been generated and the interpretation sufficiently well advanced to present such sections in a meaningful manner.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Grades have been reported as intervals recording down-hole length and interpreted true width where this estimation is able to be made. Any grades composited and reported to represent an interpreted mineralised intercept of significance are reported as sample-length weighted averages over that drill intercept. Gold Exploration Results The Company currently considers that grades above 0.5 g/t Au and/or 1.0 g/t Au are worthy of consideration for individual reporting in any announcement of Exploration Results in additional details tables provided. Composite grades may be calculated typically to a 0.5 g/t Au cut-off with intervals greater than 1.0 g/t reported as "including" in any zones of broader lower grade mineralisation. Due to the operational nature of the drilling in today's announcement, results have been reported above 0.5g/t Au only, except in cases where exceptional high grades existed within these intervals, in which case the interval grade above 1.0 g/t Au was also presented. Reported intervals may contain variable widths of internal waste (samples with values below stated cut-off grade) depending on the style of gold mineralisation being investigated however the resultant composite must be greater than either the 0.5 g/t Au or 1.0 g/t Au as relevant (or the alternatively stated cut-off grade). No top-cuts have been applied to reporting of drill assay results and no metal equivalent values have been reported. Where present, historical SIGM drilling in the project area was typically only assayed for Au. Surface rock chip and grab sampling (where relevant) Only individual rock chip assay results have been released. Results have not been aggregated. No metal equivalent values are reported. Results are from surface outcrops, existing historical sample pit spoils as relevant, and/or surface rock float and no estimate of width or geometry of the sampled medium is provided
Relationship between mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 In regard to the gold prospects reported, subject to the stage of maturity and thus understanding of the prospect and target mineralisation, again, if possible, drillholes are designed to intersect target surfaces at approximately perpendicular to the strike of mineralisation. Earlier stage or conceptual gold targets however may not be sufficiently well understood to allow this to be the case.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	 Due to the closely spaced drilling and angle of drilling at Lady Herial, it is not possible to display all significant intercepts in any plan view due to the overlapping nature and broad width of gold mineralisation encountered. Accordingly cross sections have been and are provided to depict the program results more clearly. Generally numerous and extensive plans, long projections and sections, and isometric imagery where able to clearly represent the results of drilling, have been previously provided in prior lodged reports whose dates are referenced. If long plunge extents are present, long projections are often considered the most appropriate format to present most results, especially if there are insufficient drill hole intercepts to present meaningful, true cross sections.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading	 Isometric and plan views are also utilised to place drill results in context if possible. In regard the gold prospects reported, plan, isometric, long projection and/or cross section views are presented if sufficient data or individual drill intercepts are present to make this meaningful. Drill collar locations of Previous Owners Historical drilling and current drilling completed by Lunnon Metals have been previously lodged on the ASX platform and all results of the drilling have also been previously reported.
Other substantive exploration data	reporting of Exploration Results. Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The KGNP has a long history of geological investigation, primarily for nickel, but also gold to a lesser degree. Datasets pertinent to the KGNP that represent other meaningful and material information include: Geophysics - multiple ground and aerial based surveys of magnetic, gravity, Sub Audio Magnetics, electro magnetics, and down hole transient electromagnetic surveys along with more limited 2D and 3D seismic surveys. Geochemistry - gold and nickel soil geochemistry datasets across the KGNP and rock chip sampling in areas of outcrop. Geotechnical test work on drill core is carried out by independent consultants MGT involving on-site geotechnical logging of the DD core and off-site rock property testing of selected DD core samples. Downhole Transient Electro-magnetic (DHTEM) surveys, when conducted, use the DigiAtlantis system and DRTX transmitter. The readings are typically recorded at 2.5m to 10m intervals. The survey used loops ranging from 300m x 200m to 690m x 290m in orientations designed relative to the target and stratigraphic setting. If required, the Company generally retains ABIM Solutions Pty Ltd (ABIMS) to use the latest generation QL40 OBI Optical Televiewer (OTV) and a customized logging vehicle, to conduct OTV wireline surveys in the project area in select RC or DD holes. The OTV survey generates an oriented 360-degree image of the borehole wall by way of a CCD camera recording the image reflected from a prism. ABIMS provide in-house OTV data interpretation techniques which include structural feature classifications along with structural feature dip and dip direction determination The OTV wireline surveys in RC holes, if applicable, are particularly useful in defining geological and structural orientation data, data that is otherwise unobtainable from RC drill chips. Where completed, these OTV surveys can identify the downhole locations of geological for geological logging. If required,

Criteria	JORC Code explanation	Commentary
Other substantive exploration data (continued)		Company's geologists in support of deposit geological and structural modelling and by geotechnical consultants for geotechnical assessment purposes. • If required, Southern Geoscience Consultants Pty Ltd (SGC) provide an ultrasonic velocity meter for the collection of velocity data measurements on DD. Data from this coupled with density measurements will provide acoustic impedance information, enabling the reflectivity in the seismic section to be tied to the geology in the borehole. Commentary specific to previous metallurgical test work • Detailed metallurgical test work has been completed to simulate the operating conditions at the SIGM Lefroy Plant. • By commercial agreement with SIGM in the OPA, the metallurgical recovery factor has been set at 91.0% on the basis of this extensive test work. • The results of this test work have been previously reported on 17 February 2025 and 14 August 2025. • Therefore both the principal and relevant Competent Persons have concluded that there are reasonable prospects that the gold
		mineralisation will be amenable to treatment at the gold processing facilities closest to the KGNP i.e. Lefroy.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Since the Company's IPO through to end of October 2025, over 124,000m of diamond, RC or aircore drilling has now been completed at FBA and SLF, primarily focused on nickel exploration until a shift of focus to gold in early 2024. Over 30,000m of historical core has also been reprocessed in the Company's Historical Core Program (HCP) over that same period. All Company work programs are continuously assessed against, and in comparison to, ongoing high priority programs elsewhere at the KGNP. This report is in addition to multiple campaigns of drilling that generated the updated MRE, and the ongoing upgrading of the June 2025 Scoping Study to Feasibility Study level. The Company's MRE and the above studies form the basis for development studies that are likely to lead to an investment decision to commence mining once regulatory approvals are received. Given the short life of the open pit, any future reported Ore Reserve will be largely depleted or exhausted by the next annual Mineral Resource and Ore Reserve reporting date, being 30 June 2026. The Company highlights that no further evaluation work would be required once the OPA becomes unconditional to provide assurance of an economic development case and to position the Board of the Company to make a Final Investment Decision in regard the current planned open pit. The opportunity to exploit the balance of the Mineral Resource that is not extracted in the planned Lady Herial open pit, either by underground mining methods or a push back to the planned open pit, will be fully evaluated during the operating life of this short duration project.