ASX / Media Release 11 December 2025

Drill assays confirm high-grade mineralisation in northern area at Red Mountain Lithium Project, Nevada

Highlights

- First assay results received from the northern area of Red Mountain from the October 2025 drilling campaign.
- Drill-hole RMRC014 (twin of RMDD002) intersected 89.9m @ 1,380ppm Li, including:
 - o 18.3m @ 2,530ppm Li from 44.2m; and
 - o 18.3m @ 1,420ppm Li from 67.1m.
- Results are consistent with diamond hole RMDD002, which intersected 86.9m @ 1,470ppm Li
 from 18.3m, providing confidence in the representative nature of Reverse Circulation (RC)
 sampling methods employed at the Project.
- Drill-hole RMRC015 intersected a **combined 91.4m of lithium mineralisation (combined estimated true width 'ETW' of 75m)**, including:
 - o 27.4m (ETW 23.4m) @ 2,160ppm Li from 57.9m, including
 - 6.1m (ETW 5.2m) @ 3,550ppm Li from 73.2m; and
 - o 6.1m (ETW 4.7m) @ 1,290ppm Li from 111.3m
- Results add to previous high-grade intersections in the Project's north.
- Assay results remain outstanding for four holes, expected in the coming fortnight. These assays represent the final inputs for a maiden Mineral Resource Estimate for the Red Mountain Project.

Venari Minerals NL (ASX: VMS) ("Venari", "the Company" or "VMS") is pleased to report assay results for a further three holes of the 13-hole Reverse Circulation (RC) drilling campaign completed at the 100%-owned Red Mountain Lithium Project in Nevada, USA, in October 2025.

The latest assays, from holes in the northern project area, reveal a similar high tenor of mineralisation as previous holes drilled in the area, with a number of high-grade zones grading in excess of 2,000ppm Li, within broader zones of mineralisation with widths between 41.1m and 89.9m (Figure 1).

Drill-hole RMRC014, drilled as a twin hole of RMDD002, intersected comparable mineralisation width and grades, providing confidence in the representative nature of the RC sampling method as the Company advances the project towards its maiden Mineral Resource Estimate (MRE). Assays for the remaining four holes from the campaign are expected in the coming fortnight.

Venari Chairman, Tony Leibowitz, said:

"Assays from the October drilling campaign at Red Mountain are continuing to deliver outstanding results, with this latest batch confirming the presence of high-grade lithium mineralisation in the northern part of the project area.

"We are continuing to see very broad mineralised intercepts – with one of the holes returning almost 90 metres of continuous lithium mineralisation – including internal high-grade zones.

"These results bode well for the forthcoming delivery of a maiden Mineral Resource for Red Mountain, which will mark a significant milestone for the Company.

"Final assays from the October drilling are expected within the next two weeks, after which the Company can progress the maiden Resource Estimate."

Results

Intersections for the latest drill-hole results are as follows:

Hole RMRC014

- 89.9m @ 1,380ppm Li / 0.75% Lithium Carbonate Equivalent¹⁰ (LCE) from 15.2m, including:
 - o 18.3m @ 2,530ppm Li / 1.35% LCE from 44.2m; and
 - o **18.3m @ 1,420ppm Li / 0.76% LCE** from 67.1m.

Hole RMRC015

- 50.3m (estimated true width 'ETW' 43m) @ 1,630ppm Li / 0.87% LCE from 39.6m, including:
 - o **27.4m (ETW 23.4m) @ 2,160ppm Li / 1.15% LCE** from 57.9m, including:
 - 6.1m (ETW 5.2m) @ 3,550ppm Li / 1.89% LCE from 73.2m
- 41.1m downhole (ETW 32m) @ 861ppm Li / 0.46% LCE from 94.5m, including:
 - o 6.1m (ETW 4.7m) @ 1,290ppm Li / 0.69% LCE from 111.3m; and
 - o 10.7m (ETW 8.3m) @ 1,180ppm Li / 0.63% LCE from 125m.

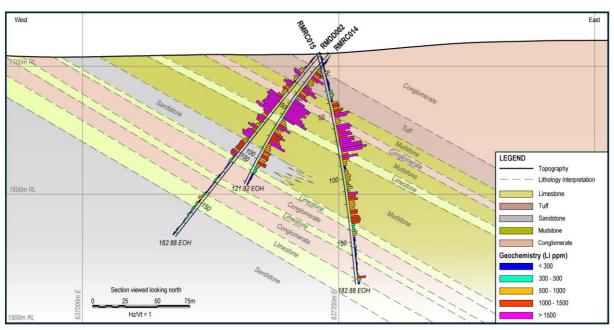


Figure 1. RMRC014-015 preliminary interpretative cross-section with down-hole lithium geochemistry.

Hole RMRC012

Drill-hole RMRC012 (Figure 2) intersected no significant lithium mineralisation, which is interpreted to represent a pinching out of the lithium bearing lens intersected in holes RMRC014, RMRC015 and RMDD003, amongst other holes, to the far north of the project.

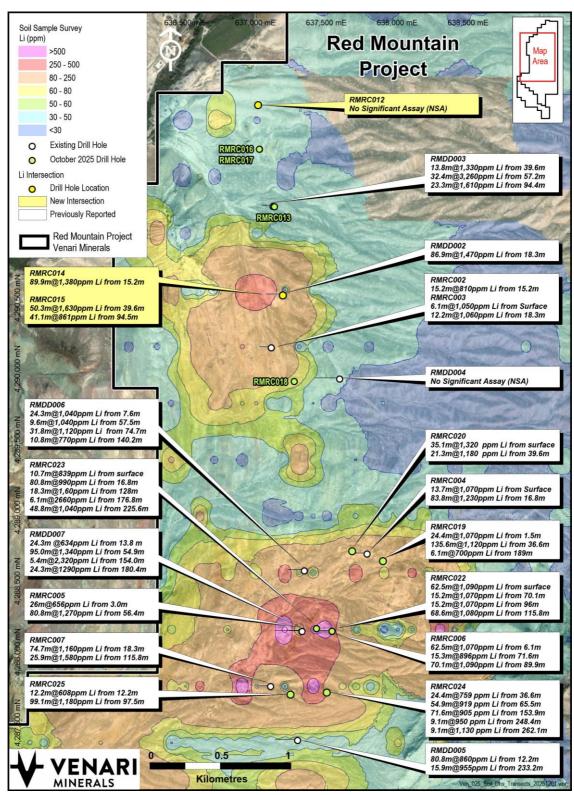


Figure 2. Red Mountain north and central (down-hole) drill intersections over gridded soil geochemistry image.

Background

Located in central-eastern Nevada (Figure 3), adjacent to the Grand Army of the Republic Highway (Route 6), the Red Mountain Project was staked by Venari in August 2023.

The Project area has broad mapped tertiary lacustrine (lake) sedimentary rocks known locally as the Horse Camp Formation. Elsewhere in Nevada, equivalent rocks host large lithium deposits (see Figure 3) such as Lithium Americas' (NYSE: LAC) 62.1Mt LCE Thacker Pass Project³ and American Battery Technology Corporation's (NASDAQ: ABAT) 15.8Mt LCE Tonopah Flats deposit⁴.

Prior to the current campaign, a total of 19 drill holes had been completed at the project to date for a combined 3,336m of drilling across three campaigns. These campaigns have been highly successful, intersecting strong lithium mineralisation in almost every hole⁶.

Scoping leachability testwork on mineralised material from Red Mountain indicates high leachability of lithium of up to 98%, varying with temperature, acid strength and leaching duration⁵, and beneficiation testwork has indicated the potential to upgrade the Red Mountain mineralisation^{1,2,7}.

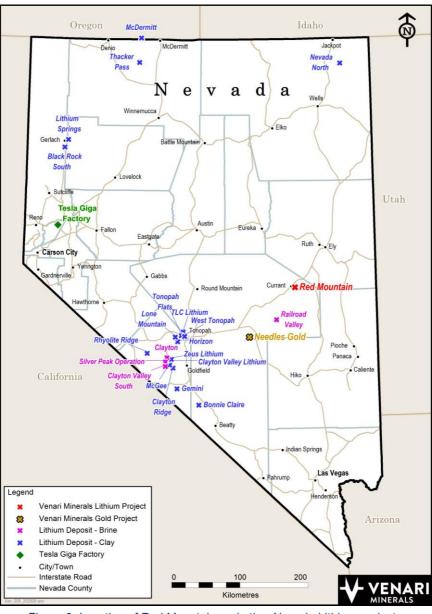


Figure 3. Location of Red Mountain and other Nevada Lithium projects.

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Azimuth (°)	Dip (°)	Depth (m)
RMRC012	637010.3	4291916.6	1705.5	266.5	-50	152.4
RMRC014	637192.5	4290568.7	1710.1	270.5	-50	121.9
RMRC015	637183.1	4290570.6	1709.9	90.5	-75	182.9

Table 1. Drill collar details

References

- 1 ASX: ASE, 22 April 2025, Beneficiation testwork successfully upgrades mineralisation at Red Mountain
- 2 ASX: ASE, 10 June 2025, Beneficiation Delivers 4,480ppm Lithium Clay Concentrate at Red Mountain
- 3 NYSE: LAC, 31 December 2024, Updated NI 43-101 Technical Report for the Thacker Pass Project
- 4 OTCMKTS: ABML, 26 February 2023, Technical Report Summary for The Tonopah Flats Lithium Project, Esmeralda
- 5 ASX: ASE, 9 December 2024, Positive initial metallurgical results from Red Mountain
- 6 ASX: ASE, 25 June 2025, Exceptional Drill-hole Intersects combined 170m of Lithium Mineralisation at Red Mountain
- 7 ASX: ASE, 3 September 2025, Outstanding lithium anomalism in surface sampling at Red Mountain Extension
- 8 ASX: VMS, 15 October 2025, Metallurgical test-work delivers 132% upgrade to lithium mineralisation at Red Mountain, Nevada
- 9 ASX: VMS, 17 November 2025, Initial Red Mountain Assays confirm High-grade Lithium
- 10 Lithium Carbonate Equivalent wt%(LCE) has been calculated from Lithium parts-per-million (ppm) by the formula LCE = Li (ppm) $\times 5.323/10,000$

Authorisation

This announcement has been authorised for release by the Board of Venari Minerals NL.

Join the Venari Minerals Investor Hub

Engage with Venari Minerals through accessing reports, presentations, interviews and other Company content. Ask Questions and browse responses to other investors' questions. Click here and follow the prompts to sign up.

For further information, please contact:

Matthew Healy Executive Director & CEO T: +61 (0) 431 683 952

E: matt@venariminerals.com

Nicholas Read

Media & Investor Relations

T: +61 (0) 419 929 046

E: nicholas@readcorporate.com.au

Competent Persons

The information in this report that relates to Sampling Techniques and Data (Section 1) is based on information compiled by Mr. Matthew Healy, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM Member number 303597). Mr Healy is a full-time employee of Venari Minerals NL and is eligible to participate in share-based incentive schemes of the Company. Mr Healy has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources

and Ore Reserves'. Mr Healy consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Reporting of Exploration Results (Section 2) is based on information compiled by Mr. Richard Newport, principal partner of Richard Newport & Associates – Consultant Geoscientists. Mr. Newport is a member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person under the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Newport consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

APPENDIX 1 - JORC Code, 2012 Edition - Table 1

SECTION 1 - SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	5.5" reverse circulation drilling was undertaken for drill sample collection. Samples were collected on a 5-foot basis in calico bags, with approximate 30% split retained from a rotary cone splitter for lab assay. Water was injected throughout the hole. Nominal small drill sample was collected for chip tray records Samples were air dried on elevated grid mesh until practical to transport Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiary-aged tuffaceous lacustrine sediments of the mapped Ts3 unit. Inputs of lithium from geothermal sources have also been proposed.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	5.5" Reverse Circulation drilling methods employed using a crossover sub immediately behind the hammer.

Drill sample	Method of recording and assessing	Sample recoveries to be measured by
recovery	core and chip sample recoveries and results assessed.	dry sample weight at the laboratory prior to assay.
	Measures taken to maximise sample recovery and ensure representative nature of the	Some instances of poor recovery noted.
	samples.	Instances of poor recovery are not expected to materially impact
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	interpretation of results
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of	Drill cuttings of entire hole logged for lithology by consultant geologist
	detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Logging is qualitative with selective quantitative logging (e.g. quartz veining)
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Chip tray photography undertaken on all full drill holes
	The total length and percentage of the relevant intersections logged.	
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	Samples 30% split using a rotary cone splitter and submitted to ALS
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotarysplit, etc. and whether sampled wet or dry.	Laboratories in Reno for preparation and analysis.
	For all sample types, the nature, quality and appropriateness of the sample preparationtechnique.	
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	
	Measures taken to ensure that the sampling isrepresentative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	

Quality of assay data and laboratory tests	Whether sample sizes are appropriate to thegrain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used andwhether the technique is considered partial ortotal. For geophysical tools, spectrometers, handheldXRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Samples analysed by method ME-MS61 which is an ICP-MS method employing a 4-acid digest. A comparison of aqua-regia and 4-acid digests was undertaken for Red Mountain mineralisation, with no material difference in lithium results identified. Assay quality was monitored using pulp blanks, as well as certified reference materials (CRMs) at a range of lithium grades. Pulp blank results indicated no material contamination of samples from sample preparation or during the analytical process. CRM results were within 3 standard deviations of certified values. No material systematic bias nor other accuracy related issues were identified.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entryprocedures, data verification, data storage(physical and electronic) protocols. Discuss any adjustment to assay data.	Sample intervals assigned a unique sample identification number prior to sample despatch Lithium-mineralised claystone Certified Reference Materials (standards), pulp blanks and coarse blanks inserted into the sample stream at regular intervals to monitor lab accuracy and potential contamination during sample prep and analysis.
Location of data points	Accuracy and quality of surveys used to locatedrill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Drill collar locations determined using hand held GPS with location reported in NAD83 UTM Zone 11 with expected accuracy of +/- 10m Downhole surveys conducted on drill holes at nominal 100ft intervals, with drill rigs lined up by compass and clino at start of hole.

APPENDIX 1 - JORC Code, 2012 Edition – Table 1

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Drill spacing appropriate for early stage exploration
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Claystone beds are regionally shallow-dipping at ~20°-45° to the east and varying locally across the Project with some evidence of faulting and potential folding. Most holes are drilled approximately perpendicular to bedding, with some having a downdip component due to drill pad location and allowable disturbance limitations. These holes have estimated true width intersections included in the body release as well as down hole intersections.
Sample security	The measures taken to ensure sample security.	Samples stored at secured yard and shed located in township of Currant until delivered by staff or contractors to the ALS labs
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Not applicable

APPENDIX 1 - JORC Code, 2012 Edition - Table 1

SECTION 2 - REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Red Mountain Claims held in 100% subsidiary Needles Holdings Inc. Claims located on Federal (BLM) Land Drilling conducted on claims certified by the Bureau of Land Management (BLM)
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No known previous lithium exploration conducted at Red Mountain. Exploration conducted elsewhere in Nevada by other explorers referenced in body text.
Geology	Deposit type, geological setting and style of mineralisation.	The principal target deposit style is claystone hosted lithium mineralisation. Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiaryaged tuffaceous lacustrine sediments of the mapped Ts3 unit. Lacustrine environments formed as a result of extensional tectonic regime that produced 'basin and range' topography observed across the state of Nevada. Inputs of lithium from geothermal sources have also been proposed.

Drill hole Information

A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:

- easting and northing of the drill hole collar
- elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
- dip and azimuth of the hole
- down hole length and interception depth
- hole length.

If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

Drill hole information is tabulated in body text and/or shown in relevant maps.

Data Aggregation Methods

In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.

Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.

The assumptions used for any reporting of metal equivalent values should be clearly stated

Intersections, where quoted are weighted by length. Lengths originally recorded in feet are quoted to the nearest 10cm.

Estimates of 'true width' intersections given where drilling is interpreted to have a significant down-dip component. Rounding is conducted to 3 significant figures

A 500ppm Li cut-off was used to quote headline intersections, with allowance for 10ft of internal dilution by lower grade material.

Low grade mineralisation (300-500ppm Li) is present outside of the quoted intersections

Intersections are quoted in both lithium ppm and as wt% Lithium Carbonate Equivalent (LCE). LCE is calculated as LCE = Li (ppm) x 5.323 / 10,000, as per industry conventions

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Relationship between mineralisatio n widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Insufficient information available due to early exploration status, although interpretation to date is that intersections in this hole approximate true width unless otherwise indicated.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included in ASX announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This release describes all relevant information
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This release describes all relevant information
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	The Red Mountain lithium project is emerging as a significant lithium discovery in Nevada and is being advanced toward a maiden Mineral Resource Estimate later this year. It is the Company's intent to advance the project beyond this to technical studies.

APPENDIX 2 – Red Mountain Drilling Sample Assay Table

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)	Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC014	0	5		ample	RMRC014	210	215	(BBIII) 716	0.38
RMRC014	5	10	42.8	0.02	RMRC014	215	220	920	0.49
RMRC014	10	15	77.3	0.04	RMRC014	220	225	1195	0.64
RMRC014	15	20	163	0.09	RMRC014	225	230	1965	1.05
RMRC014	20	25	247	0.13	RMRC014	230	235	1000	0.53
RMRC014	25	30	228	0.12	RMRC014	235	240	335	0.18
RMRC014	30	35	205	0.11	RMRC014	240	245	873	0.46
RMRC014	35	40	76.5	0.04	RMRC014	245	250	1375	0.73
RMRC014	40	45	342	0.18	RMRC014	250	255	1890	1.01
RMRC014	45	50	408	0.22	RMRC014	255	260	1320	0.70
RMRC014	50	55	654	0.35	RMRC014	260	265	1205	0.64
RMRC014	55	60	1100	0.59	RMRC014	265	270	1485	0.79
RMRC014	60	65	1055	0.56	RMRC014	270	275	1835	0.98
RMRC014	65	70	921	0.49	RMRC014	275	280	2600	1.38
RMRC014	70	75	1890	1.01	RMRC014	280	285	542	0.29
RMRC014	75	80	1135	0.60	RMRC014	285	290	547	0.29
RMRC014	80	85	508	0.27	RMRC014	290	295	797	0.42
RMRC014	85	90	822	0.44	RMRC014	295	300	706	0.38
RMRC014	90	95	783	0.42	RMRC014	300	305	1105	0.59
RMRC014	95	100	316	0.17	RMRC014	305	310	963	0.51
RMRC014	100	105	1005	0.53	RMRC014	310	315	1000	0.53
RMRC014	105	110	1780	0.95	RMRC014	315	320	1140	0.61
RMRC014	110	115	2280	1.21	RMRC014	320	325	997	0.53
RMRC014	115	120	1195	0.64	RMRC014	325	330	824	0.44
RMRC014	120	125	924	0.49	RMRC014	330	335	1230	0.65
RMRC014	125	130	1020	0.54	RMRC014	335	340	1320	0.70
RMRC014	130	135	1510	0.80	RMRC014	340	345	534	0.28
RMRC014	135	140	839	0.45	RMRC014	345	350	414	0.22
RMRC014	140	145	490	0.26	RMRC014	350	355	323	0.17
RMRC014	145	150	1685	0.90	RMRC014	355	360	418	0.22
RMRC014	150	155	2670	1.42	RMRC014	360	365	349	0.19
RMRC014	155	160	2860	1.52	RMRC014	365	370	241	0.13
RMRC014	160	165	2760	1.47	RMRC014	370	375	190	0.10
RMRC014	165	170	2320	1.23	RMRC014	375	380	244	0.13
RMRC014	170	175	2700	1.44	RMRC014	380	385	239	0.13
RMRC014	175	180	2240	1.19	RMRC014	385	390	159	0.08
RMRC014	180	185	1985	1.06	RMRC014	390	395	184.5	0.10
RMRC014	185	190	2580	1.37	RMRC014	395	400	125.5	0.07
RMRC014	190	195	3100	1.65	RMRC015	0	5	33.9	0.02
RMRC014	195	200	3660	1.95	RMRC015	5	10	33.2	0.02
RMRC014	200	205	1830	0.97	RMRC015	10	15	237	0.13
RMRC014	205	210	403	0.21	RMRC015	15	20	268	0.14

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)	Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC015	20	25	104.5	0.06	RMRC015	230	235	2350	1.25
RMRC015	25	30	162	0.09	RMRC015	235	240	1745	0.93
RMRC015	30	35	174.5	0.09	RMRC015	240	245	3410	1.82
RMRC015	35	40	172	0.09	RMRC015	245	250	3400	1.81
RMRC015	40	45	156.5	0.08	RMRC015	250	255	4040	2.15
RMRC015	45	50	192	0.10	RMRC015	255	260	3340	1.78
RMRC015	50	55	723	0.38	RMRC015	260	265	978	0.52
RMRC015	55	60	414	0.22	RMRC015	265	270	1045	0.56
RMRC015	60	65	118.5	0.06	RMRC015	270	275	2460	1.31
RMRC015	65	70	102.5	0.05	RMRC015	275	280	1030	0.55
RMRC015	70	75	199.5	0.11	RMRC015	280	285	662	0.35
RMRC015	75	80	262	0.14	RMRC015	285	290	551	0.29
RMRC015	80	85	294	0.16	RMRC015	290	295	533	0.28
RMRC015	85	90	231	0.12	RMRC015	295	300	273	0.15
RMRC015	90	95	190.5	0.10	RMRC015	300	305	288	0.15
RMRC015	95	100	178.5	0.10	RMRC015	305	310	420	0.22
RMRC015	100	105	491	0.26	RMRC015	310	315	569	0.30
RMRC015	105	110	385	0.20	RMRC015	315	320	571	0.30
RMRC015	110	115	609	0.32	RMRC015	320	325	857	0.46
RMRC015	115	120	334	0.18	RMRC015	325	330	579	0.31
RMRC015	120	125	173.5	0.09	RMRC015	330	335	732	0.39
RMRC015	125	130	225	0.12	RMRC015	335	340	326	0.17
RMRC015	130	135	877	0.47	RMRC015	340	345	341	0.18
RMRC015	135	140	1055	0.56	RMRC015	345	350	590	0.31
RMRC015	140	145	1050	0.56	RMRC015	350	355	834	0.44
RMRC015	145	150	804	0.43	RMRC015	355	360	90.8	0.05
RMRC015	150	155	1445	0.77	RMRC015	360	365	360	0.19
RMRC015	155	160	1100	0.59	RMRC015	365	370	1545	0.82
RMRC015	160	165	2360	1.26	RMRC015	370	375	1175	0.63
RMRC015	165	170	1905	1.01	RMRC015	375	380	1040	0.55
RMRC015	170	175	548	0.29	RMRC015	380	385	1395	0.74
RMRC015	175	180	655	0.35	RMRC015	385	390	861	0.46
RMRC015	180	185	821	0.44	RMRC015	390	395	805	0.43
RMRC015	185	190	551	0.29	RMRC015	395	400	919	0.49
RMRC015	190	195	2020	1.08	RMRC015	400	405	644	0.34
RMRC015	195	200	2300	1.22	RMRC015	405	410	765	0.41
RMRC015	200	205	1965	1.05	RMRC015	410	415	1135	0.60
RMRC015	205	210	1145	0.61	RMRC015	415	420	1105	0.59
RMRC015	210	215	1935	1.03	RMRC015	420	425	707	0.38
RMRC015	215	220	2160	1.15	RMRC015	425	430	1250	0.67
RMRC015	220	225	1260	0.67	RMRC015	430	435	1410	0.75
RMRC015	225	230	2360	1.26	RMRC015	435	440	1435	0.76

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)	Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC015	440	445	1200	0.64	RMRC012	50	55	36.2	0.02
RMRC015	445	450	460	0.24	RMRC012	55	60	36.5	0.02
RMRC015	450	455	345	0.18	RMRC012	60	65	30.4	0.02
RMRC015	455	460	361	0.19	RMRC012	65	70	35.5	0.02
RMRC015	460	465	497	0.26	RMRC012	70	75	32.3	0.02
RMRC015	465	470	692	0.37	RMRC012	75	80	29.6	0.02
RMRC015	470	475	527	0.28	RMRC012	80	85	25.7	0.01
RMRC015	475	480	314	0.17	RMRC012	85	90	29.4	0.02
RMRC015	480	485	265	0.14	RMRC012	90	95	34.2	0.02
RMRC015	485	490	299	0.16	RMRC012	95	100	39.4	0.02
RMRC015	490	495	177.5	0.09	RMRC012	100	105	38.7	0.02
RMRC015	495	500	159.5	0.08	RMRC012	105	110	60.1	0.03
RMRC015	500	505	350	0.19	RMRC012	110	115	74.4	0.04
RMRC015	505	510	279	0.15	RMRC012	115	120	37.8	0.02
RMRC015	510	515	269	0.14	RMRC012	120	125	36	0.02
RMRC015	515	520	210	0.11	RMRC012	125	130	44.6	0.02
RMRC015	520	525	286	0.15	RMRC012	130	135	55.2	0.03
RMRC015	525	530	189.5	0.10	RMRC012	135	140	77.9	0.04
RMRC015	530	535	98.8	0.05	RMRC012	140	145	93.1	0.05
RMRC015	535	540	123	0.07	RMRC012	145	150	97.1	0.05
RMRC015	540	545	147	0.08	RMRC012	150	155	72.6	0.04
RMRC015	545	550	235	0.13	RMRC012	155	160	85	0.05
RMRC015	550	555	166.5	0.09	RMRC012	160	165	98.2	0.05
RMRC015	555	560	141	0.08	RMRC012	165	170	113	0.06
RMRC015	560	565	164.5	0.09	RMRC012	170	175	160.5	0.09
RMRC015	565	570	69.6	0.04	RMRC012	175	180	116.5	0.06
RMRC015	570	575	133.5	0.07	RMRC012	180	185	86.8	0.05
RMRC015	575	580	302	0.16	RMRC012	185	190	112	0.06
RMRC015	580	585	1315	0.70	RMRC012	190	195	134	0.07
RMRC015	585	590	516	0.27	RMRC012	195	200	115	0.06
RMRC015	590	595	381	0.20	RMRC012	200	205	93.6	0.05
RMRC015	595	600	285	0.15	RMRC012	205	210	76.3	0.04
RMRC012	0	5	28.7	0.02	RMRC012	210	215	81.8	0.04
RMRC012	5	10	45	0.02	RMRC012	215	220	115	0.06
RMRC012	10	15	42.9	0.02	RMRC012	220	225	49.7	0.03
RMRC012	15	20	52.7	0.03	RMRC012	225	230	51.7	0.03
RMRC012	20	25	36.7	0.02	RMRC012	230	235	51.3	0.03
RMRC012	25	30	38.6	0.02	RMRC012	235	240	36.1	0.02
RMRC012	30	35	36	0.02	RMRC012	240	245	20.3	0.01
RMRC012	35	40	37.6	0.02	RMRC012	245	250	30.4	0.02
RMRC012	40	45	30.4	0.02	RMRC012	250	255	30.2	0.02
RMRC012	45	50	38.5	0.02	RMRC012	255	260	66	0.04

	From		Li			From		Li	
Hole ID	(ft)	To (ft)	(ppm)	LCE (%)	Hole ID	(ft)	To (ft)	(ppm)	LCE (%)
RMRC012	260	265	82.2	0.04	RMRC012	470	475	37.7	0.02
RMRC012	265	270	112	0.06	RMRC012	475	480	20.2	0.01
RMRC012	270	275	72.3	0.04	RMRC012	480	485	34.1	0.02
RMRC012	275	280	41.5	0.02	RMRC012	485	490	31.4	0.02
RMRC012	280	285	33.8	0.02	RMRC012	490	495	37.7	0.02
RMRC012	285	290	28.8	0.02	RMRC012	495	500	37.2	0.02
RMRC012	290	295	23.1	0.01					
RMRC012	295	300	29.3	0.02					
RMRC012	300	305	38.9	0.02					
RMRC012	305	310	43.5	0.02					
RMRC012	310	315	36.6	0.02					
RMRC012	315	320	72	0.04					
RMRC012	320	325	69.9	0.04					
RMRC012	325	330	67.6	0.04					
RMRC012	330	335	48	0.03					
RMRC012	335	340	22.2	0.01					
RMRC012	340	345	22.7	0.01					
RMRC012	345	350	16.5	0.01					
RMRC012	350	355	18.6	0.01					
RMRC012	355	360	35.9	0.02					
RMRC012	360	365	44.6	0.02					
RMRC012	365	370	38.5	0.02					
RMRC012	370	375	49.8	0.03					
RMRC012	375	380	33.3	0.02					
RMRC012	380	385	54.1	0.03					
RMRC012	385	390	29.9	0.02					
RMRC012	390	395	16.7	0.01					
RMRC012	395	400	22.4	0.01					
RMRC012	400	405	64.3	0.03					
RMRC012	405	410	75.3	0.04					
RMRC012	410	415	64	0.03					
RMRC012	415	420	36.1	0.02					
RMRC012	420	425	69.6	0.04					
RMRC012	425	430	57.6	0.03					
RMRC012	430	435	43.1	0.02					
RMRC012	435	440	32.2	0.02					
RMRC012	440	445	38.4	0.02					
RMRC012	445	450	21.3	0.01					
RMRC012	450	455	38.6	0.02					
RMRC012	455	460	31.8	0.02					
RMRC012	460	465	41	0.02					
RMRC012	465	470	38.1	0.02					