ASX ANNOUNCEMENT

9 DECEMBER 2025

WALLBROOK GOLD PROJECT

AIRCORE DRILL RESULTS AND EXPLORATION UPDATE

Exploration Update

- Systematic regional exploration at Wallbrook has delivered exceptional progress, with five prospects now advancing toward Resource Definition drilling
- Prospects represent a material Mineral Resource growth opportunity and include,
 - Branches 1,500m x 300m footprint situated 3km north of the Crusader-Templar Deposit
 - Payns 650m x 250m footprint situated south along strike of operating mines
 - Clement 900m x 750m footprint adjacent to the Crusader-Templar Deposit and immediately north of operating mine
 - // Amand 1,700m x 600m footprint south along strike of historical mines
 - Godfrey 1,200m x 100m footprint forming part of the broader Crusader-Templar system
- These regional discoveries represent a small component of the broader 192km² tenement package, presenting future additional discovery opportunity
- The prospects are situated on granted mining leases adjacent to existing infrastructure and proximal to near-term production optionality at the Crusader–Templar deposit
- Exploration success promotes Wallbrook as an emerging gold camp with significant opportunity for growth
- Resource definition RC drilling planned for first quarter 2026 to progress these high priority prospects

Aircore Drilling - recently completed

- Branches AC drilling confirms strong expansion potential, including:
 - 11 Strike extensions both north and south of previous RC drilling; and
 - 11 New parallel mineralised structures identified to the east, indicating a broader system.
- Results at Branches will be incorporated into future Resource Definition drilling target.
- Target MC3.3 returned no material anomalism

Nexus Minerals Limited (ASX: NXM) (Nexus or the Company) is pleased to provide an exploration update for the Wallbrook Gold Project, 140km northeast of Kalgoorlie, WA.

Systematic regional exploration has delivered five regional prospects which are now progressing to a resource definition stage, offering material potential to add to the projects Mineral Resource Inventory.

Results from the recently completed aircore (AC) drilling campaign at the Wallbrook Gold Project have been received. The drill program consisted of 295 drill holes for a total of 10,113 metres and was completed across two regional targets including Branches extension opportunities and target MC3.3.

The aircore targets were prioritised based on a combination of geological features including structure, lithology, and alteration along with any known gold anomalism. Targets provided shallow discovery opportunities to efficient build the project's near-surface ounce portfolio.

Drilling at Branches has confirmed extensional growth opportunities through both north and south strike extensions to the mineralised system. Drilling has also identified potential for parallel mineralised zones to the east of previous reverse circulation (RC) drilling (Figures 9 and 10). Highlight results include:

- // 4m @ 2.47g/t Au 1m @ 1.01g/t Au to EOH (Within 14m @ 1.15g/t Au)
- 4m @ 1.07g/t Au (Within 16m @ 0.57g/t Au)
- 4m @ 1.56g/t Au (Within 16m @ 0.44g/t Au)

Nexus Managing Director Andy Tudor commented "The Nexus exploration team has delivered an exceptional year of progress, with five regional prospects now advancing toward Resource Definition drilling. These discoveries are the direct result of a disciplined and methodical 18-month program, and they highlight the scale and quality of the emerging gold camp we are uncovering at Wallbrook. With mineralisation defined across multiple corridors—and all prospects remaining open—we see clear potential to expand the project's Mineral Resource inventory.

Importantly, this new growth is emerging in a district already supported by near-term production potential at the Crusader–Templar deposit, with the broader project also situated alongside current gold-producing Northern Star operations. This combination of resource expansion and proximity to existing infrastructure presents a compelling strategic advantage. As we move into the next phase of work, Nexus is well positioned to expand these opportunities into long-term value for shareholders."

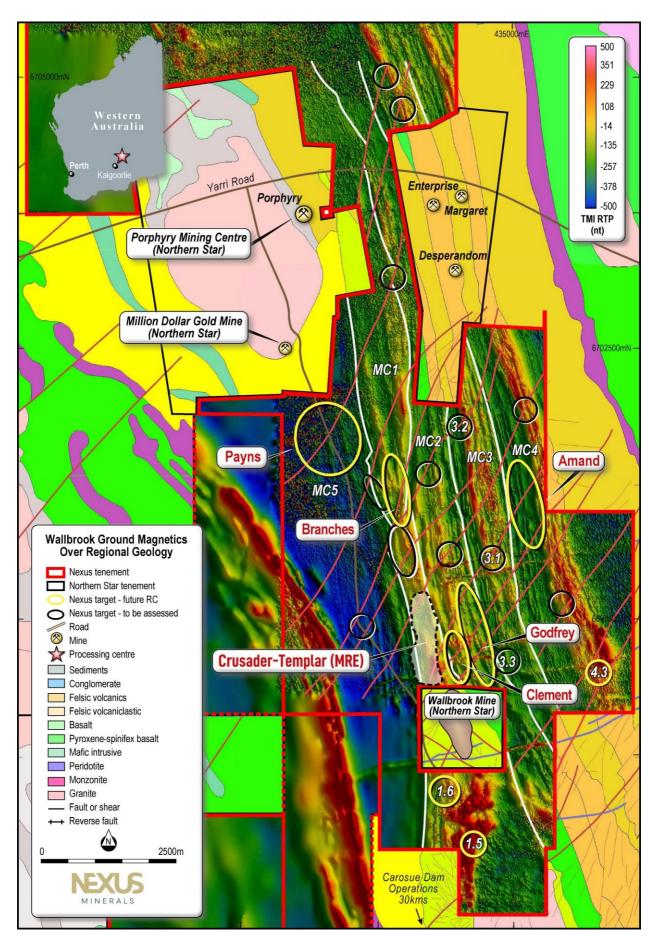


FIGURE 1: NEXUS WALLBROOK REGIONAL PROSPECTS LOCATION MAP

EXPLORATION UPDATE - EMERGING GOLD CAMP

Nexus has been undertaking a systematic exploration strategy at the Wallbrook Gold Project, successfully establishing the foundations of a significant, emerging gold camp in one of Western Australia's premier mining districts. Over the past 18 months, the Company has progressed a regional exploration strategy driven by targeted AC and follow-up RC drilling programs.

This regional effort has now defined five prospects - Branches, Payns, Clement, Amand and Godfrey - each advancing toward a Resource Definition exploration phase. These prospects collectively display large, mineralised footprints, all remaining open along strike and down dip (Table 1).

Table 1: Pi	rospect O	verview	
Prospect	Scale	High light Intercepts	Geology
Branches	1,500m x 300m	5m @ 17.91g/t Au (within 8m @ 11.37g/t Au) from 118m 5m @ 5.45g/t Au (within 36m @ 2.04g/t Au) from 43m 12m @ 5.21g/t Au (within 24m @ 2.23g/t Au) from 25m 8m @ 7.59g/t Au (within 25m @ 2.86g/t Au) from 43m 4m @ 7.23g/t Au (within 10m @ 3.33g/t Au) from 115m 4m @ 7.47g/t Au (within 8m @ 3.96g/t Au) from 73m 4m @ 6.79g/t Au (within 12m @ 3.21g/t Au) from 24m	Hosted within hematite-altered porphyry dykes intruding intermediate volcaniclastic rocks. Mineralisation associated with quartz-goethite veining in oxide and hematite-silica-pyrite alteration in fresh rock. Mineralised trend aligns with a northwest structure and dips east
Payns	900m x 750m	5m @ 8.10 g/t Au including 1m @ 30.05 g/t Au from 39m 8m @ 4.19 g/t Au (within 15m @ 2.37 g/t Au) from 37m 4m @ 6.85 g/t Au (within 16m @ 2.74 g/t Au) from 28m 4m @ 7.12 g/t Au (within 20m @ 1.77 g/t Au) from 8m 4m @ 6.59 g/t Au (within 8m @ 3.44 g/t Au) from 40m 4m @ 5.02g/t Au (within 8m @ 2.60g/t Au) from 20m	Hosted in volcanic sequences intruded by hematite-altered porphyries. Gold associated with quartz-goethite veining in oxide and quartz-sulphide veining in fresh rock. Higher grades occur near redox boundaries and hematite-altered volcanic units. Two opposing mineralised pods interpreted, reflecting structural offsets.
Clement	650m x 250m	15m @ 5.21g/t Au (within 34m @ 2.73g/t Au) from 116m 14m @ 3.00g/t Au (within 50m @ 1.03g/t Au) from 35m 3m @ 5.36g/t Au (within 11m @ 2.00g/t Au) from 112m 8m @ 2.94 g/t Au (within 28m @1.13g/t Au) from 44m 8m @ 2.93 g/t Au (within 28m @1.05g/t Au) from 28m 8m @ 2.33 g/t Au (within 14m @1.37g/t Au to EOH) from 32m	Hosted within felsic porphyries and volcaniclastic rocks adjacent to the Wallbrook Gold Mine. Higher grades linked to silicified porphyries with elevated pyrite and quartz veining. Forms stacked, west-dipping lodes trending northwest and extending from surface to ~200 m depth.
Amand	1,700m x 600m	23m @ 2.52 g/t Au incl. 8m @ 5.41 g/t Au (within 34m @ 1.73 g/t Au) from 5m 6m @ 4.28 g/t Au (within 11m @ 2.60g/t Au) from 76m 7m @ 3.56 g/t Au (within 25m @ 1.17 g/t Au) from 28m 2m @ 8.75 g/t Au (within 7m @ 3.03 g/t Au) from 96m 8m @ 4.00g/t Au (within 21m @ 1.69g/t Au) from 24m 6m @ 3.26 g/t Au incl. 2m @ 8.36 g/t Au (Within 95m @ 0.97 g/t Au) from 15m	Shear-hosted system dominated by altered andesitic volcanic rocks. Gold correlates with quartz-veining, silica flooding, sulphide and sericite-tourmaline alteration. Mineralisation strongly controlled by shear zones with sub-parallel vein sets.
Godfrey	1,200m x 100m	4m @ 4.02 g/t Au (within 15m @ 1.30 g/t Au) from 24m 4m @ 2.17 g/t Au (within 8m @ 1.33 g/t Au) from 24m 5m @ 1.81 g/t Au (within 14m @ 0.76 g/t Au) from 52m 5m @ 1.58 g/t Au (within 13m @ 0.96 g/t Au) from 29m	Hosted in felsic porphyry intrusions within volcanic-volcaniclastic rocks Higher grades correlate with strong silicification, quartz veining and elevated pyrite. Two steep northwest-trending zones are defined, offset along strike.

These prospects form part of the broader Wallbrook mineralising system, with distinct similarities in alteration styles and mineralisation controls across the project. This is particularly evident in recent RC drilling at the Clement Prospect, located 250 metres east of the Crusader-Templar deposit, which delivered compelling evidence of a connected mineralised system. Alteration and mineralisation styles exhibit pronounced similarities to those observed at Crusader-Templar, suggesting the two systems could merge at depth. The open intercept recorded in drill hole NMWBRC25-818 (15m @ 5.21 g/t Au within 34m @ 2.73 g/t Au from 116m – ASX: NXM 18/11/2025) supports this model, highlighting a plunging mineralised trend with strong scale potential. The Godfrey Prospect, located a further 300 metres east of Clement, extends potential for system connectivity.

Nexus' exploration success confirms Wallbrook as a developing regional gold camp with significant potential to deliver material growth. In combination, these targets highlight the immediate opportunity to grow the Mineral Resource inventory within immediate reach of the Company's near-term production opportunity at the Crusader-Templar deposit. The Company remains focused on efficiently expanding and converting these prospects into resources.

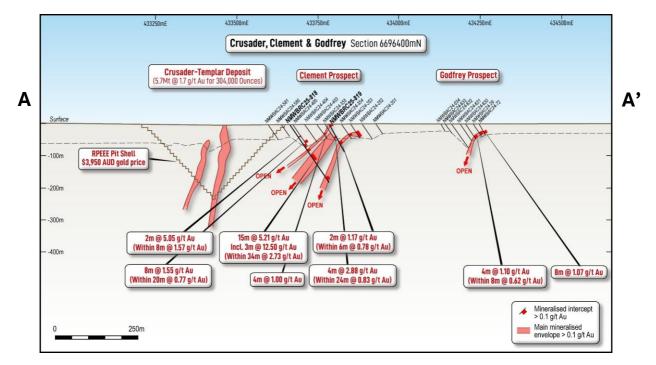


FIGURE 2: CRUSADER-TEMPLAR, CLEMENT AND GODFREY PLAN VIEW (REFER TO FIGURE 3)



FIGURE 3: CRUSADER-TEMPLAR, CLEMENT AND GODFREY PLAN VIEW (REFER TO FIGURE 1)

PROSPECT SUMMARY

BRANCHES PROSPECT

The Branches Prospect is located approximately 3 km north of the Crusader–Templar Deposit and 500 metres east of Payns Prospect. Drilling has outlined strong gold anomalism over a robust and continuous corridor covering some 1,500m x 300m.

The Branches Prospect shares the same geological architecture as Crusader–Templar, with gold hosted primarily within hematite-altered porphyry dykes intruding an intermediate volcaniclastic sequence. In the saprolite, mineralisation is closely associated with the density of quartz and quartz-goethite veining, transitioning into hematite-silica-pyrite altered porphyry in the fresh rock where veining intensity increases.

Branches exhibits a well-defined northwest-trending mineralised corridor situated along the eastern margin of a magnetic feature. The deposit dips shallowly toward the east in the oxide profile before steepening into a near-vertical geometry at depth.

Highlight results from branches include (ASX: NXM 24/05/2022; 28/8/2023):

- 5m @ 17.91g/t Au (within 8m @ 11.37g/t Au) from 118m
- // 5m @ 5.45g/t Au (within 36m @ 2.04g/t Au) from 43m
- 11 12m @ 5.21g/t Au (within 24m @ 2.23g/t Au) from 25m
- // 8m @ 7.59g/t Au (within 25m @ 2.86g/t Au) from 43m
- 4m @ 7.23g/t Au (within 10m @ 3.33g/t Au) from 115m
- 11 4m @ 7.47g/t Au (within 8m @ 3.96g/t Au) from 73m
- // 4m @ 6.79g/t Au (within 12m @ 3.21g/t Au) from 24m

Drilling at the Branches Prospect has demonstrated a mineralised system over a significant footprint with strong gold grade profile. The prospect presents a near-term opportunity to build upon the projects mineral resource inventory.

PHOTO 1: NMWBRC22-416 - 5M @ 17.91G/T AU (WITHIN 8M @ 11.37G/T AU) FROM 118M

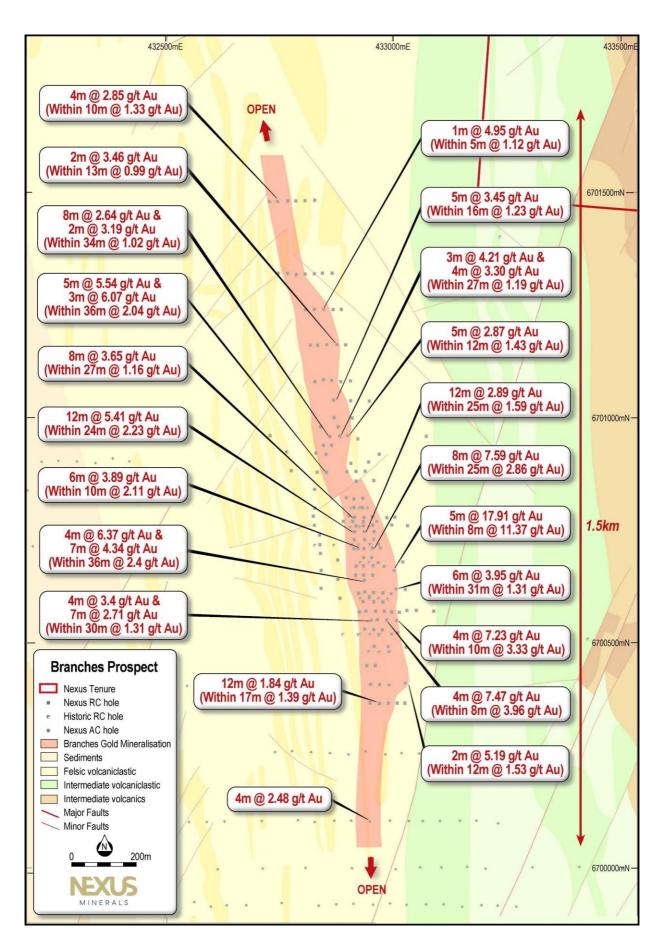


FIGURE 4: BRANCHES PROSPECT PLAN VIEW

PAYNS PROSPECT

The Payns Prospect is a significant gold target within Nexus' Wallbrook Gold Project, situated 4km northwest of the Crusader–Templar Mineral Resource (304koz Au) and south along strike from Northern Star Resources' Porphyry and Million Dollar gold mines. The prospect lies just 500 metres west of the Branches discovery.

Payns hosts a 900m x 750m mineralised footprint defined by broad, near-surface anomalism and strong geological continuity. Mineralisation is extensive across the target and exhibits an emerging higher-grade core, with multiple intercepts demonstrating multi-metre gold intervals at robust grades. Mineralisation remains open along strike and down plunge, supporting the potential for significant lateral and depth extensions. Highlight intercepts include (ASX:NXM 11/11/2024; 31/3/2025; 22/7/2025):

- 5m @ 8.10 g/t Au including 1m @ 30.05 g/t Au (within 15m @ 2.94g/t Au) from 39m
- // 8m @ 4.19 g/t Au (within 15m @ 2.37 g/t Au) from 37m
- // 4m @ 6.85 g/t Au (within 16m @ 2.74 g/t Au) from 28m
- 4m @ 7.12 g/t Au (within 20m @ 1.77 g/t Au) from 8m
- // 4m @ 6.59 g/t Au (within 8m @ 3.44 g/t Au) from 40m
- // 4m @ 5.02g/t Au (within 8m @ 2.60g/t Au) from 20m

Drilling across Payns has confirmed a geology dominated by felsic to intermediate volcanic and associated volcaniclastic units, with felsic volcanics especially evident in the central-northern part of the prospect. These volcanic sequences are intruded by hematite-altered porphyries, with favourable competency contrasts and structural pathways that support fluid movement and gold deposition.

In oxide and transitional zones, gold is typically associated with quartz–goethite veining near redox boundaries. Highest-grade intervals within the fresh rock are typically associated with increased quartz–sulphide (pyrite ± tourmaline) veining, with sulphide content reaching up to 2% in volcanic and volcaniclastic host rocks. Broader zones of mineralisation are associated with hematite alteration and minor veining, with lower-grade gold also noted in areas of competency contrast between volcanic and volcaniclastic units. These geological signatures are consistent with mineralisation observed in neighbouring deposits and nearby operating mines.

Payns represents a compelling opportunity to build near-surface ounces that complement the Company's near-term development pathway at Crusader–Templar. Further drill hole planning is underway including a combination of comprehensive infill drilling of the mineralised envelope identified to date, and targeted extensional drilling both laterally and down dip of the emerging mineralised zones. With strong geological and grade continuity Payns presents a material opportunity to build on the existing project mineral resource inventory.

PHOTO 2: NMWBRC25-763 - 5M @ 8.10 G/T AU (INCLUDING 1M @ 30.05 G/T AU) FROM 39M

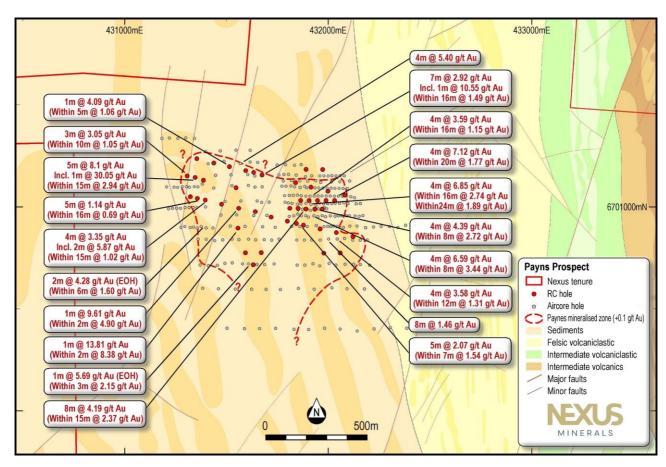


FIGURE 5: PAYNS PROSPECT PLAN VIEW

CLEMENT PROSPECT

The Clement Prospect lies immediately north of Northern Star's Wallbrook Gold Mine and represents a compelling opportunity to extend the mineralised geology that hosts the neighbouring deposit. Drilling has outlined strong gold anomalism over a broad 650m x 250m footprint.

Clement hosts a weathering profile extending to 60 metres depth. Felsic intrusives are commonly encountered in intervals up to five metres thick. These intrusives display strong silicification, elevated quartz vein density, and consistent pyrite content (0.5–1%), within an intermediate volcanic–volcaniclastic sequence intruded by a dolerite dyke to the north. Alteration within the host rocks is extensive, comprising hematite–sericite and sericite–rutile–tourmaline assemblages near intrusive contacts.

Gold mineralisation occurs within quartz–goethite veining in the saprolite, transitioning to quartz–hematite–goethite associations and mineralised porphyries at depth. In fresh rock, mineralisation is hosted in hematite-altered porphyry and volcanic units, with grades increasing alongside silicification intensity and pyrite abundance (up to 2%). The highest gold grades occur within volcanic to volcaniclastic rocks containing abundant quartz veining and hematite–sericite–rutile–tourmaline alteration. The mineralisation dips west in a series of stacked lodes traced from surface to around 150 metres depth (extent of drilling to date), trending northwest–southeast.

Most encouragingly, the deepest RC hole completed to date has returned the strongest intercept and offers insight into the strong fresh rock mineralising potential and exploration opportunity (ASX:NXM 18/11/2025):

15m @ 5.21 g/t Au including 3m @ 12.50 g/t Au (within 34m @ 2.73 g/t Au) from 116m

Further highlight intercepts from across the prospect include (ASX:NXM 27/9/2024, 11/11/2024; 18/11/2025):

- 1/1 14m @ 3.00 g/t Au including 2m @ 7.10 g/t Au (within 50m @ 1.03 g/t Au) from 35m
- // 3m @ 5.36 g/t Au (within 11m @ 2.00 g/t Au) from 112m
- # 8m @ 2.94 g/t Au (within 28m @ 1.13 g/t Au) from 44m
- # 8m @ 2.93 g/t Au (within 28m @ 1.05 g/t Au) from 28m
- # 8m @ 2.33 g/t Au (within 14m @ 1.37 g/t Au to EOH) from 32m
- // 2m @ 5.05 g/t Au (within 8m @ 1.57 g/t Au) from 49m

The results confirm Clement as a significant growth opportunity within the Wallbrook Project, with follow-up drilling currently being planned.

PHOTO 3: NMWBRC25-818 – 15M @ 5.21G/T AU FROM 118M

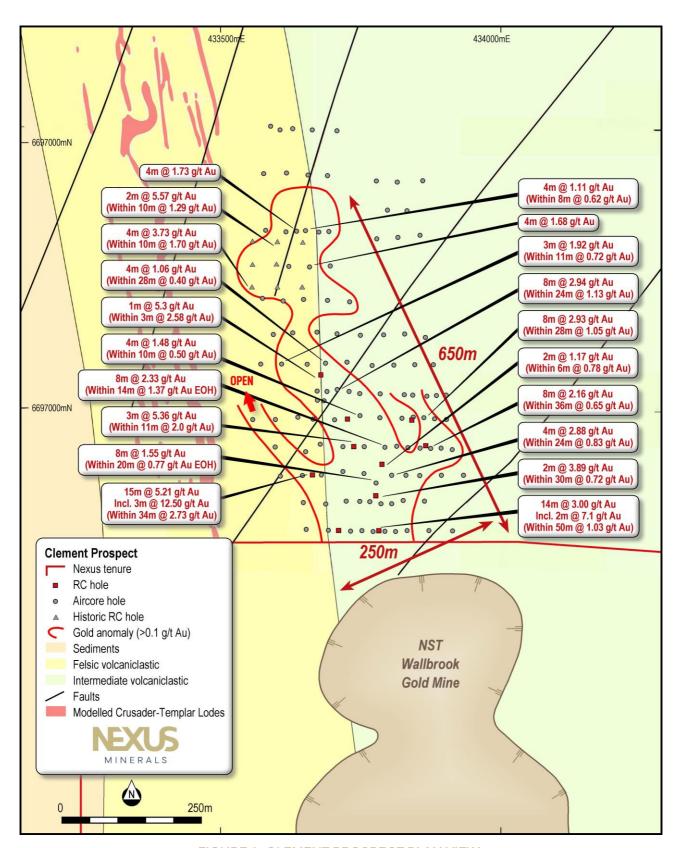


FIGURE 6: CLEMENT PROSPECT PLAN VIEW

AMAND PROSPECT

The Amand Prospect is situated on the eastern side of the Wallbrook Gold Project within Mineralised Corridor 4. Amand falls south along strike of the historic Margaret and Enterprise open pits (Northern Star). The Amand Prospect offers considerable scale upside, covering an approximate 1,700m x 600m footprint and with mineralisation intersected in the northernmost and southernmost drill lines.

The weathering profile at Amand extends to between 30 metres and 90 metres depth. The geology is dominated by sheared andesitic volcanic and volcaniclastic rocks, differing from other Wallbrook prospects where hematite altered porphyries are more common.

Gold mineralisation in the oxide and transitional zones is associated with increased quartz veining and goethite. Mineralisation is closely associated with quartz veining and silica flooding, accompanied by increased pyrite (up to \sim 2%) and strong sericite \pm tourmaline alteration. Parallel to sub-parallel quartz-tourmaline veins indicate a significant shear related control on mineralisation. Hematite alteration also occurs locally, with generally lower sulphide abundances. Increasing silicification, quartz veining and pyrite content correlate positively with gold grade across the system.

Highlight results include (ASX: NXM 8/2/2023; 28/8/2023; 5/11/2025),

- // 23m @ 2.52 g/t Au inc. 8m @ 5.41 g/t Au (within 34m @ 1.73 g/t Au) from 5m
- 11 6m @ 4.28 g/t Au (within 11m @ 2.60g/t Au) from 76m
- 95m @ 0.97 g/t Au from 15m including
 - 2m @ 8.36 g/t Au (within 6m @ 3.26 g/t Au) from 18m
 - 8m @ 1.46 g/t Au from 52m
 - 6m @ 1.65 g/t Au from 84m
 - 10m @ 1.66 g/t Au from 100m
- // 7m @ 3.56 g/t Au (within 25m @ 1.17 g/t Au) from 28m
- // 2m @ 8.75 g/t Au (within 7m @ 3.03 g/t Au) from 96m
- 11 8m @ 4.00g/t Au (within 21m @ 1.69g/t Au) from 24m

Initial interpretation suggests reactivated early shears at Amand have produced dilational zones, consistent with the observed sericite-tourmaline alteration and sulphidic silica flooding at depth. Flexures and bends within this long-lived shear system represent future targets for areas of strongest widths and gold grades. Mineralisation trends northwest to southeast across the shear corridor.

A clear opportunity exists at the Amand Prospect, with mineralisation open at depth and both to the north and south along the current 1.7 kilometre strike extent. Further drill hole planning Is currently underway.

PHOTO 4: NMWBRC23-717 - 8M @ 5.41 G/T AU (WITHIN 34M @ 1.73 G/T AU) FROM 5M

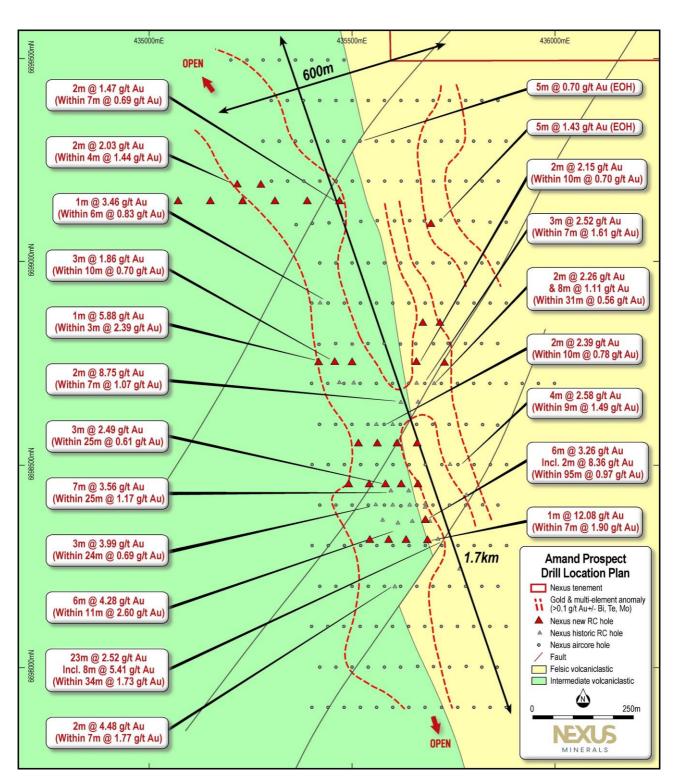


FIGURE 7: AMAND PROSPECT PLAN VIEW

GODREY PROSPECT

The Godfrey Prospect is located approximately 600 metres east of the Crusader–Templar Deposit and northeast of Northern Star's Wallbrook Gold Mine. Drilling has mapped mineralisation across a substantial 1,200m x 100m footprint.

The weathering profile at Godfrey increases from around 15 metres in the south to 40 metres in the north. The geology comprises felsic porphyries intruding an intermediate volcanic–volcaniclastic sequence. In the southern portion, intrusives are narrower but exhibit stronger silicification and higher pyrite content (up to 1%), while northern sections show broader porphyries with reduced alteration.

Alteration is characterised by hematite and silicification within the porphyry, with rutile—sericite—pyrite assemblages extending locally into the volcanic host. Gold mineralisation in the oxide and transitional zones is associated with hematite ± quartz veining and goethite, with several intercepts extending to surface. In fresh rock, gold occurs within the felsic porphyries and along intrusive contacts, where elevated grades correspond to zones of strong silicification, quartz veining, and higher pyrite content.

Two higher grade mineralised zones have so far been defined along a northwest–southeast corridor dipping steeply to the west, offset slightly to the northeast along strike. The southern pod currently shows the strongest potential and remains open to the north, south, and at depth.

A systematic progression of AC to RC drilling has been completed at Godfrey. Highlight results include (ASX: NXM 11/11/2024; 18/11/2025):

- // 4m @ 4.02 g/t Au (within 15m @ 1.30 g/t Au) from 24m
- 4m @ 2.17 g/t Au (within 8m @ 1.33 g/t Au) from 24m
- // 5m @ 1.81 g/t Au including 1m @ 5.89 g/t Au (within 14m @ 0.76 g/t Au) from 52m
- 11 2m @ 1.93 g/t Au (within 14m @ 0.61 g/t Au) from surface
- // 5m @ 1.58 g/t Au (within 13m @ 0.96 g/t Au) from 29m
- # 4m @ 3.81 g/t Au from 12m

Godfrey continues to demonstrate potential for higher-grade zones within a broader mineralised system. Further drill planning is underway, targeting infill and extensions to the areas of opportunity.

PHOTO 5: NMWBRC25-799 - 1M @ 5.89 G/T AU (WITHIN 5M @ 1.81 G/T AU) FROM 57M

FIGURE 8: GODFREY PROSPECT PLAN VIEW

AC DRILLING PROGRAM

Results for the recently completed AC drilling campaign at the Wallbrook Gold Project have been received. The drill program consisted of 295 drill holes for a total of 10,113 metres and was completed across two regional targets including Branches extension opportunities and target MC3.3.

Drill holes were four metre composite sampled across the entire hole, with samples submitted for gold analysis. The final metre of each hole is sampled for gold analysis and is also subject to multi-element litho-geochemical analysis to improve target vectoring.

The aircore targets were prioritised based on a combination of geological features including structure, lithology, and alteration along with any known gold anomalism. Targets provided shallow discovery opportunities to efficient build the project's near-surface ounce portfolio.

Drilling at Branches has confirmed extensional growth opportunities through both north and south strike extensions to the mineralised system. Drilling has also identified potential for parallel mineralised zones to the east of previous RC drilling (Figures 9 and 10). Highlight results include,

- # 4m @ 2.47g/t Au 1m @ 1.01g/t Au to EOH (Within 14m @ 1.15g/t Au)
- // 4m @ 1.07g/t Au (Within 16m @ 0.57g/t Au)
- 4m @ 1.56g/t Au (Within 16m @ 0.44g/t Au)

Results will be incorporated into future resource definition drilling at the Branches Prospect

Table 2. Branches	Extension	al Drilling	4 metre C	ompos	site Resu	ılts (se	lected resi	ılts >0.2g	/t Au)		
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1418	Branches	432949	6700061	369	31	-60	90	16	31 (ЕОН)	15	0.28
							inc	30	31 (EOH)	1	0.50
NMWBAC25-1439	Branches	433045	6700457	370	18	-60	270	17	18 (EOH)	1	0.92
NMWBAC25-1463	Branches	432869	6700896	369	67	-60	90	12	40	28	0.27
							inc.	20	24	4	0.56
NMWBAC25-1464	Branches	432847	6700899	369	62	-60	90	44	62 (EOH)	18	0.88
							inc.	48	52	4	1.52
NMWBAC25-1479	Branches	432846	6701000	369	42	-60	270	28	42	14	1.15
							inc.	32	36	4	2.47
							and	41	42 (EOH)	1	1.01
NMWBAC25-1486	Branches	432855	6701050	369	43	-60	270	36	42	6	0.55
							inc.	40	42	2	1.14
NMWBAC25-1493	Branches	432950	6701088	370	67	-60	270	20	36	16	0.57
							inc.	24	28	4	1.07
NMWBAC25-1495	Branches	433028	6701090	371	70	-60	270	16	32	16	0.44
							inc.	28	32	4	1.56
NMWBAC25-1533	Branches	432605	6701598	370	39	-60	270	36	39 (EOH)	3	0.69

Target MC3.3 returned a limited number of anomalous intercepts which fail to form coherent anomalism or geological associations. This target has therefore been assessed and discounted from further exploration work.

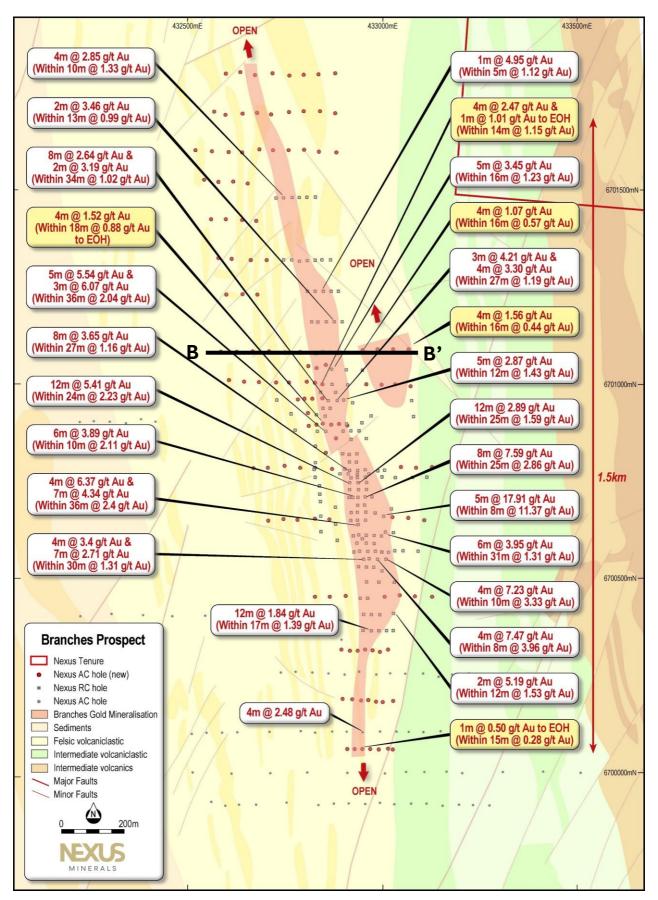


FIGURE 9: BRANCHES PROSPECT PLAN VIEW

(YELLOW LABELS NEW 4M COMPOSITE AC INTERCEPTS, WHITE LABELS PREVIOUS RESULTS)

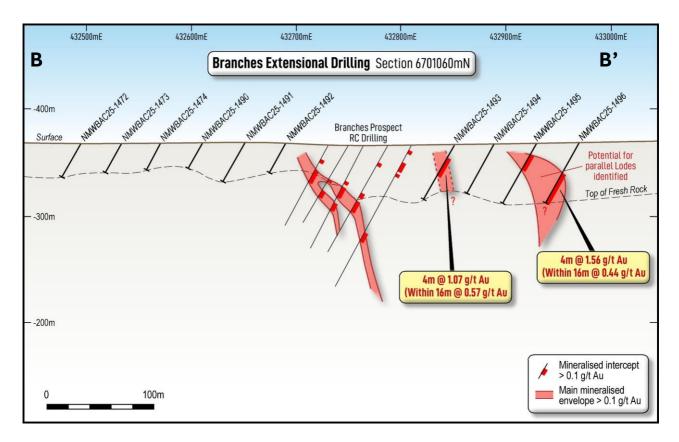


FIGURE 10: BRANCHES PROSPECT CROSS SECTION B-B' 6701060MN

(YELLOW LABELS NEW 4M COMPOSITE RC INTERCEPTS, WHITE LABELS PREVIOUS AC RESULTS)

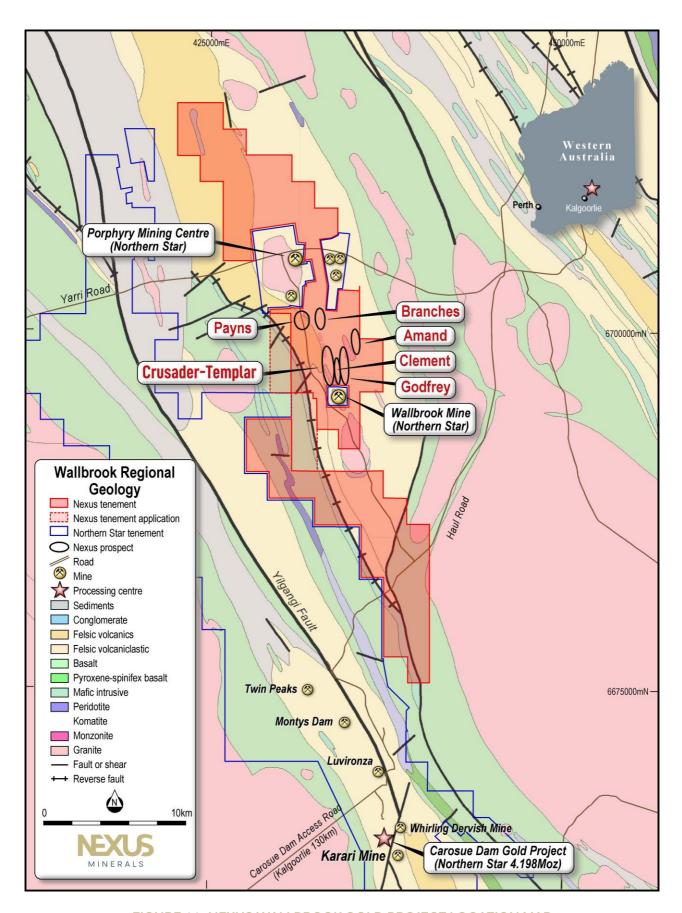


FIGURE 11: NEXUS WALLBROOK GOLD PROJECT LOCATION MAP

This announcement is authorised for release by Mr Andy Tudor, Managing Director, Nexus Minerals Ltd.

ABOUT NEXUS

FIGURE 12: NEXUS MINERALS AUSTRALIAN PROJECT LOCATIONS

Nexus is actively exploring for gold deposits on its highly prospective tenement package in the Eastern Goldfields of Western Australia. In Western Australia, the consolidation of the highly prospective Wallbrook Gold Project by the amalgamation of existing Nexus tenements with others acquired, will advance these gold exploration efforts. Nexus holds a significant 192km2 land package of highly prospective geological terrane within a major regional structural corridor and is exploring for gold deposits.

Nexus Minerals' tenement package at the Wallbrook Gold Project commences immediately to the north of Northern Star's multi-million ounce Carosue Dam mining operations (CDO), and current operating Karari and Whirling Dervish underground gold mines. The Company's Pinnacles Gold Project is located immediately to the south of CDO and comprises Nexus 100% owned tenure and Nexus-Northern Star Resources JV tenure.

In addition to this, the Company has expanded its existing project portfolio with the addition of the granted tenure over 7,500km² of Gold, Copper and Critical Mineral prospective tenure in NSW, and the Bethanga Porphyry Copper-Gold project in Victoria.

Nexus is actively investing in new exploration techniques to refine the targeting approach for their current and future tenements.

- Ends -

Enquiries Mr Andy Tudor, Managing Director

Contact Phone: 08 9481 1749

Website www.nexus-minerals.com

ASX Code NXM

The information in the report to which this statement is attached that relates to Wallbrook Mineral Resources is based upon information compiled by Mr Paul Blackney, a Competent Person who is a member of the Australian Institute of Geoscientists. Mr Blackney is a full-time employee of Snowden Optiro, consultants to Nexus Minerals Limited. Mr Blackney has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Blackney consents to the inclusion in the report of matters based on his information in the form and context in which it appears. The information is extracted from the announcement dated 01/05/2024 and is available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the original announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement.

The information in this release that relates to Exploration Results, Mineral Resources or Ore Reserves is based on, and fairly represents, information and supporting documentation, prepared, compiled or reviewed by Mr Adam James, who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr James is the Exploration Manager and full-time employee of Nexus Minerals Limited. Mr James has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr James consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. The results are available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

FORWARD LOOKING AND CAUTIONARY STATEMENTS. Some statements in this announcement regarding estimates or future events are forward-looking statements. They include indications of, and guidance on, future earnings, cash flow, costs and financial performance. Forward looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "predict", "foresee", "proposed", "aim", "target", "opportunity", "could", "nominal", "conceptual" and similar expressions. Forward-looking statements, opinions and estimates included in this report are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions. Forward-looking statements are provided as a general guide only and should not be relied on as a guarantee of future performance. Forward-looking statements may be affected by a range of variables that could cause actual results to differ from estimated results and may cause the Company's actual performance and financial results in future periods to materially differ from any projections of future performance or results expressed or implied by such forward-looking statements. So, there can be no assurance that actual outcomes will not materially differ from these forwardlooking statements. No Ore Reserves have currently been defined on the Wallbrook tenements. There has been insufficient exploration and technical studies to estimate an Ore Reserve and it is uncertain if further exploration and/or technical studies will result in the estimation of an Ore Reserve. The potential for the development of a mining operation and sale of ore from the Wallbrook tenements has vet to be established.

CRUSADER-TEMPLAR PROSPECT COMBINED JORC 2012 MINERAL RESOURCE ESTIMATE (0.4G/T AU CUT-OFF)

	Indicated			Inferred			TOTAL	
Tonnes (kt)	Au grade (g/t)	Au ounces (koz)	Tonnes (kt)	Au grade (g/t)	Au ounces (koz)	Tonnes (kt)	Au grade (g/t)	Au ounces (koz)
2,460	1.8	140	3,210	1.6	164	5,670	1.7	304

Northern Star Ltd Carosue Dam Resource Table as at 31/3/2025

	M	EASURED		IN	IDICATED		IN	FERRED		TOTAL	RESOURC	ES
	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
NST ATTRIBUTABLE INCLUSIVE OF RESERVE	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)
Carosue Dam												
Surface	3,518	1.8	205	20,042	1.7	1,098	7,462	1.6	389	31,022	1.7	1,692
Underground	7,178	3.1	713	12,614	2.5	984	8,615	2.8	662	28,407	2.7	2,359
Stockpiles	6,628	1.3	141	-	-	-	-	-	-	6,628	1.3	141
Gold in Circuit	-	-	6	-	-	-	-	-	-	-	-	6
Sub-Total Carosue Dam	17,323	1.9	1,065	32,656	2.0	2,083	16,077	2.3	1,051	66,057	2.1	4,198

Northern Star Ltd Carosue Dam Reserve Table as at 31/3/2025

		P	PROVED		PF	ROBABLE		TOTA	AL RESERVE	
		Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
NST ATTRIBUTABLE RESERVE		(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)
Carosue Dam										
	Surface	-	-	-	3,610	1.9	217	3,610	1.9	21
U	Inderground	2,359	3.0	229	3,297	3.1	325	5,656	3.0	553
Stockpiles		6,628	0.7	141	-	-	-	6,628	0.7	143
Gold in Circuit		-	-	6	-	-	-	-	-	(
Sub-Total Carosue Dam		8,987	1.3	376	6,907	2.4	542	15,894	1.8	91

APPENDIX 2 – BRANCHES EXTENSIONAL DRILLING 4 METRE COMPOSITE AC RESULTS

Branches Extension	onal Drilling	4 metre C	omposite F	Results							
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1414	Branches	433027	6700060	369	37	-60	90			NSI	
NMWBAC25-1415	Branches	433015	6700062	369	47	-60	90			NSI	
NMWBAC25-1416	Branches	432991	6700060	369	26	-60	90			NSI	
NMWBAC25-1417	Branches	432969	6700061	369	27	-60	90			NSI	
NMWBAC25-1418	Branches	432949	6700061	369	31	-60	90	16	31 (EOH)	15	0.28
							inc	30	31 (EOH)	1	0.5
NMWBAC25-1419	Branches	432929	6700061	369	34	-60	90	16	20	4	0.13
NMWBAC25-1420	Branches	432910	6700061	368	13	-60	90			NSI	
NMWBAC25-1421	Branches	433028	6700185	369	27	-60	90			NSI	
NMWBAC25-1422	Branches	433001	6700182	369	27	-60	90			NSI	
NMWBAC25-1423	Branches	432984	6700183	369	26	-60	90			NSI	
NMWBAC25-1424	Branches	432964	6700187	369	31	-60	90			NSI	
NMWBAC25-1425	Branches	432946	6700186	369	36	-60	90			NSI	
NMWBAC25-1426	Branches	432923	6700189	368	36	-60	90			NSI	
NMWBAC25-1427	Branches	432898	6700190	368	30	-60	90			NSI	
NMWBAC25-1428	Branches	433015	6700317	369	12	-60	90			NSI	
NMWBAC25-1429	Branches	432994	6700311	369	21	-60	90			NSI	
NMWBAC25-1430	Branches	432975	6700315	369	34	-60	90			NSI	
NMWBAC25-1431	Branches	432956	6700317	369	31	-60	90			NSI	
NMWBAC25-1432	Branches	432937	6700314	369	36	-60	90	20	32	12	0.29
NMWBAC25-1433	Branches	432917	6700314	368	38	-60	90			NSI	
NMWBAC25-1434	Branches	432895	6700317	368	29	-60	90			NSI	
NMWBAC25-1435	Branches	432827	6700453	368	45	-60	270			NSI	
NMWBAC25-1436	Branches	432865	6700453	368	24	-60	270			NSI	
NMWBAC25-1437	Branches	432906	6700455	369	22	-60	270			NSI	
NMWBAC25-1438	Branches	433006	6700453	369	30	-60	270			NSI	
NMWBAC25-1439	Branches	433045	6700457	370	18	-60	270	17	18 (EOH)	1	0.92
NMWBAC25-1440	Branches	433084	6700454	370	28	-60	270			NSI	
NMWBAC25-1441	Branches	433128	6700453	370	37	-60	270			NSI	
NMWBAC25-1442	Branches	432707	6700649	367	20	-60	270			NSI	
NMWBAC25-1443	Branches	432746	6700653	368	36	-60	270			NSI	
NMWBAC25-1444	Branches	432782	6700651	368	36	-60	270			NSI	
NMWBAC25-1445	Branches	432827	6700654	368	38	-60	270			NSI	
NMWBAC25-1446	Branches	432864	6700652	369	24	-60	270			NSI	
NMWBAC25-1447	Branches	433026	6700658	370	47	-60	270	32	46	14	0.26
							inc.	36	40	4	0.54
NMWBAC25-1448	Branches	433067	6700656	371	50	-60	270			NSI	
NMWBAC25-1449	Branches	433108	6700650	371	70	-60	270			NSI	
NMWBAC25-1450	Branches	432669	6700784	367	22	-60	270			NSI	

Branches Extension	onal Drilling	4 metre C	omposite F	Results	- continu	ıed					
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1451	Branches	432706	6700785	367	27	-60	270			NSI	
NMWBAC25-1452	Branches	432749	6700790	368	36	-60	270			NSI	
NMWBAC25-1453	Branches	432789	6700785	368	42	-60	270		l	NSI	
NMWBAC25-1454	Branches	432871	6700782	369	32	-60	270			NSI	
NMWBAC25-1455	Branches	433048	6700787	371	42	-60	270		I	NSI	
NMWBAC25-1456	Branches	433087	6700785	371	48	-60	270			NSI	
NMWBAC25-1457	Branches	433128	6700787	372	32	-60	270		l	NSI	
NMWBAC25-1458	Branches	432855	6700824	369	30	-60	270	24	29	5	0.13
NMWBAC25-1459	Branches	432827	6700785	369	27	-60	270		l	NSI	
NMWBAC25-1460	Branches	432881	6700861	369	51	-60	270		l	NSI	
NMWBAC25-1461	Branches	432910	6700894	370	62	-60	90			NSI	
NMWBAC25-1462	Branches	432889	6700898	369	66	-60	90			NSI	
NMWBAC25-1463	Branches	432869	6700896	369	67	-60	90	12	40	28	0.27
							inc.	20	24	4	0.56
NMWBAC25-1464	Branches	432847	6700899	369	62	-60	90	12	24	12	0.16
								44	62 (EOH)	18	0.88
							inc.	48 52 4 1.52			1.52
NMWBAC25-1465	Branches	432831	6700896	369	58	-60	90	16 28 12 0.13			0.13
								52	57	3	0.14
NMWBAC25-1466	Branches	432811	6700893	369	39	-60	90		l	NSI	
NMWBAC25-1467	Branches	432809	6700926	369	37	-60	270		l	NSI	
NMWBAC25-1468	Branches	432783	6700961	369	31	-60	270			NSI	
NMWBAC25-1469	Branches	432800	6700963	369	25	-60	270			NSI	
NMWBAC25-1470	Branches	432820	6700963	369	35	-60	270			NSI	
NMWBAC25-1471	Branches	432846	6700964	369	41	-60	270	12	20	8	0.23
								28	36	8	0.49
							inc.	28	32	4	0.51
NMWBAC25-1472	Branches	432606	6701011	368	36	-60	270			NSI	
NMWBAC25-1473	Branches	432645	6701007	368	29	-60	270			NSI	
NMWBAC25-1474	Branches	432683	6701006	368	29	-60	270			NSI	
NMWBAC25-1475	Branches	432727	6701005	368	32	-60	270			NSI	
NMWBAC25-1476	Branches	432760	6701005	369	34	-60	270			NSI	
NMWBAC25-1477	Branches	432806	6701007	369	28	-60	270	24	27	3	0.2
NMWBAC25-1478	Branches	432827	6701004	369	31	-60	270	16	30	14	0.15
NMWBAC25-1479	Branches	432846	6701000	369	42	-60	270	28	42	14	1.15
							inc.	32	36	4	2.47
							and	41	42 (EOH)	1	1.01
NMWBAC25-1480	Branches	432959	6701000	370	66	-60	270			NSI	
NMWBAC25-1481	Branches	432998	6700999	371	59	-60	270	20	24	4	0.11

Branches Extension	onal Drilling	4 metre C	Composite I	Results	- continu	ıed					
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1484	Branches	432810	6701047	369	33	-60	270	32	33 (EOH)	1	0.13
NMWBAC25-1485	Branches	432831	6701042	369	28	-60	270	24	27	3	0.22
NMWBAC25-1486	Branches	432855	6701050	369	43	-60	270	36	42	6	0.55
							inc.	40	42	2	1.14
NMWBAC25-1487	Branches	432585	6701084	368	51	-60	270			NSI	
NMWBAC25-1488	Branches	432626	6701084	368	15	-60	270			NSI	
NMWBAC25-1489	Branches	432667	6701085	368	34	-60	270			NSI	
NMWBAC25-1490	Branches	432709	6701085	369	27	-60	270			NSI	
NMWBAC25-1491	Branches	432750	6701082	369	43	-60	270	40	43 (EOH)	3	0.4
							inc.	42	43 (EOH)	1	0.74
NMWBAC25-1492	Branches	432789	6701083	369	33	-60	270			NSI	
NMWBAC25-1493	Branches	432950	6701088	370	67	-60	270	20	36	16	0.57
							inc.	24	28	4	1.07
NMWBAC25-1494	Branches	432988	6701090	371	56	-60	270			NSI	
NMWBAC25-1495	Branches	433028	6701090	371	70	-60	270	16	32	16	0.44
							inc.	28	32	4	1.56
								69	70 (EOH)	1	0.14
NMWBAC25-1496	Branches	433068	6701090	371	70	-60	270	36	70 (EOH)	34	0.15
NMWBAC25-1497	Branches	432684	6701605	370	46	-60	270			NSI	
NMWBAC25-1498	Branches	432719	6701603	370	54	-60	270	32	36	4	0.15
NMWBAC25-1499	Branches	432759	6701603	371	43	-60	270			NSI	
NMWBAC25-1500	Branches	432799	6701604	371	43	-60	270			NSI	
NMWBAC25-1501	Branches	432837	6701599	371	35	-60	270			NSI	
NMWBAC25-1502	Branches	432882	6701597	371	41	-60	270			NSI	
NMWBAC25-1503	Branches	432597	6701694	370	75	-60	270			NSI	
NMWBAC25-1504	Branches	432641	6701697	370	72	-60	270			NSI	
NMWBAC25-1505	Branches	432678	6701699	370	69	-60	270	28	40	12	0.16
NMWBAC25-1506	Branches	432714	6701695	370	60	-60	270			NSI	
NMWBAC25-1507	Branches	432760	6701701	370	54	-60	270			NSI	
NMWBAC25-1508	Branches	432798	6701703	370	52	-60	270			NSI	
NMWBAC25-1509	Branches	432840	6701703	371	32	-60	270			NSI	
NMWBAC25-1510	Branches	432879	6701698	371	39	-60	270			NSI	
NMWBAC25-1511	Branches	432598	6701800	370	57	-60	270			NSI	
NMWBAC25-1512	Branches	432635	6701804	370	51	-60	270		1	NSI	
NMWBAC25-1513	Branches	432673	6701796	370	58	-60	270	57	58 (ЕОН)	1	0.13
NMWBAC25-1514	Branches	432718	6701801	370	58	-60	270	NSI			
NMWBAC25-1515	Branches	432761	6701795	370	53	-60	270	NSI			
NMWBAC25-1516	Branches	432798	6701797	370	58	-60	270			NSI	
NMWBAC25-1517	Branches	432836	6701798	370	46	-60	270			NSI	

Branches Extensi	onal Drilling	4 metre C	omposite l	Results	- continu	ıed					
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1518	Branches	432879	6701801	371	38	-60	270			NSI	
NMWBAC25-1519	Branches	432599	6701231	369	38	-60	270			NSI	
NMWBAC25-1520	Branches	432641	6701232	369	43	-60	270			NSI	
NMWBAC25-1521	Branches	432679	6701231	369	33	-60	270			NSI	
NMWBAC25-1522	Branches	432579	6701325	370	50	-60	270			NSI	
NMWBAC25-1523	Branches	432613	6701323	370	66	-60	270			NSI	
NMWBAC25-1524	Branches	432662	6701320	370	68	-60	270	44	48	4	0.22
NMWBAC25-1525	Branches	432560	6701425	370	74	-60	270			NSI	
NMWBAC25-1526	Branches	432598	6701425	370	45	-60	270			NSI	
NMWBAC25-1527	Branches	432640	6701423	370	59	-60	270	56	58	2	0.1
NMWBAC25-1528	Branches	432542	6701527	370	61	-60	270			NSI	
NMWBAC25-1529	Branches	432579	6701521	370	55	-60	270			NSI	
NMWBAC25-1530	Branches	432617	6701522	370	51	-60	270	32	44	12	0.13
NMWBAC25-1531	Branches	432520	6701603	370	57	-60	270			NSI	
NMWBAC25-1532	Branches	432562	6701600	370	68	-60	270	44	48	4	0.32
NMWBAC25-1533	Branches	432605	6701598	370	39	-60	270	36	39 (EOH)	3	0.69
NMWBAC25-1704	Branches	432703	6701320	370	45	-60	90			NSI	
NMWBAC25-1705	Branches	432676	6701421	370	51	-60	90			NSI	
NMWBAC25-1706	Branches	432654	6701517	370	45	-60	90			NSI	
NMWBAC25-1707	Branches	432640	6701597	370	47	-60	90	32	36	4	0.1
NMWBAC25-1708	Branches	432568	6701702	370	81	-60	270			NSI	

MC3.3 4 METRE COMPOSITE AC RESULTS

MC 3.34 metre Co	omposite Re	sults									
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1534	MC3.3	435004	6696409	371	22	-60	90			NSI	
NMWBAC25-1535	MC3.3	434966	6696413	372	33	-60	90			NSI	
NMWBAC25-1536	MC3.3	434925	6696412	372	36	-60	90			NSI	
NMWBAC25-1537	MC3.3	434890	6696408	372	12	-60	90			NSI	
NMWBAC25-1538	MC3.3	434845	6696409	373	10	-60	90			NSI	
NMWBAC25-1539	MC3.3	434804	6696408	373	16	-60	90			NSI	
NMWBAC25-1540	MC3.3	434767	6696403	373	22	-60	90			NSI	
NMWBAC25-1541	MC3.3	434727	6696411	373	24	-60	90			NSI	
NMWBAC25-1542	MC3.3	434686	6696414	373	14	-60	90			NSI	
NMWBAC25-1543	MC3.3	434646	6696406	373	38	-60	90			NSI	
NMWBAC25-1544	MC3.3	434615	6696413	374	42	-60	90			NSI	
NMWBAC25-1545	MC3.3	434566	6696412	374	54	-60	90			NSI	
NMWBAC25-1546	MC3.3	434528	6696411	374	50	-60	90			NSI	
NMWBAC25-1547	MC3.3	434487	6696414	374	58	-60	90			NSI	
NMWBAC25-1548	MC3.3	434453	6696411	375	27	-60	90			NSI	
NMWBAC25-1549	MC3.3	434404	6696413	375	25	-60	90			NSI	
NMWBAC25-1550	MC3.3	434367	6696414	376	20	-60	90			NSI	
NMWBAC25-1551	MC3.3	434330	6696414	376	23	-60	90			NSI	
NMWBAC25-1552	MC3.3	434289	6696414	377	39	-60	90			NSI	
NMWBAC25-1553	MC3.3	434928	6696709	372	37	-60	90			NSI	
NMWBAC25-1554	MC3.3	434889	6696708	373	29	-60	90			NSI	
NMWBAC25-1555	MC3.3	434850	6696711	373	23	-60	90			NSI	
NMWBAC25-1556	MC3.3	434809	6696706	373	38	-60	90			NSI	
NMWBAC25-1557	MC3.3	434772	6696706	373	40	-60	90			NSI	
NMWBAC25-1558	MC3.3	434728	6696707	373	16	-60	90			NSI	
NMWBAC25-1559	MC3.3	434689	6696707	374	28	-60	90			NSI	
NMWBAC25-1560	MC3.3	434652	6696717	374	27	-60	90	20	24	4	0.11
NMWBAC25-1561	MC3.3	434612	6696715	374	12	-60	90			NSI	
NMWBAC25-1562	MC3.3	434571	6696713	375	12	-60	90			NSI	
NMWBAC25-1563	MC3.3	434529	6696720	375	6	-60	90			NSI	
NMWBAC25-1564	MC3.3	434489	6696714	375	15	-60	90			NSI	
NMWBAC25-1565	MC3.3	434446	6696717	375	27	-60	90			NSI	
NMWBAC25-1566	MC3.3	434405	6696716	376	47	-60	90			NSI	
NMWBAC25-1567	MC3.3	434365	6696715	376	27	-60	90			NSI	
NMWBAC25-1568	MC3.3	434326	6696719	376	45	-60	90			NSI	
NMWBAC25-1569	MC3.3	434289	6696716	376	30	-60	90			NSI	
NMWBAC25-1570	MC3.3	434244	6696712	377	49	-60	90			NSI	
NMWBAC25-1571	MC3.3	434204	6696717	377	56	-60	90			NSI	
NMWBAC25-1572	MC3.3	434930	6697006	374	55	-60	90			NSI	

MC 3.3 4 metre Co	omposite Re	sults - cor	ntinued								
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1573	MC3.3	434901	6697011	374	61	-60	90			NSI	
NMWBAC25-1574	MC3.3	434858	6697012	374	69	-60	90			NSI	
NMWBAC25-1575	MC3.3	434815	6697014	374	45	-60	90			NSI	
NMWBAC25-1576	MC3.3	434775	6697013	374	16	-60	90			NSI	
NMWBAC25-1577	MC3.3	434736	6697014	375	23	-60	90			NSI	
NMWBAC25-1578	MC3.3	434703	6697015	375	19	-60	90			NSI	
NMWBAC25-1579	MC3.3	434662	6697014	375	14	-60	90			NSI	
NMWBAC25-1580	MC3.3	434620	6697011	376	23	-60	90			NSI	
NMWBAC25-1581	MC3.3	434580	6697016	376	15	-60	90			NSI	
NMWBAC25-1582	MC3.3	434542	6697019	377	30	-60	90			NSI	
NMWBAC25-1583	MC3.3	434500	6697016	377	15	-60	90			NSI	
NMWBAC25-1584	MC3.3	434455	6697020	377	9	-60	90			NSI	
NMWBAC25-1585	MC3.3	434419	6697017	377	10	-60	90			NSI	
NMWBAC25-1586	MC3.3	434378	6697011	377	18	-60	90			NSI	
NMWBAC25-1587	MC3.3	434336	6697015	378	17	-60	90			NSI	
NMWBAC25-1588	MC3.3	434295	6697020	378	30	-60	90			NSI	
NMWBAC25-1589	MC3.3	434254	6697017	378	14	-60	90			NSI	
NMWBAC25-1590	MC3.3	434215	6697019	378	15	-60	90			NSI	
NMWBAC25-1591	MC3.3	434172	6697022	378	12	-60	90			NSI	
NMWBAC25-1592	MC3.3	434138	6697024	378	22	-60	90			NSI	
NMWBAC25-1593	MC3.3	434874	6697307	376	71	-60	90	44	56	12	0.13
NMWBAC25-1594	MC3.3	434834	6697306	376	60	-60	90	36	40	4	0.73
NMWBAC25-1595	MC3.3	434793	6697305	376	9	-60	90			NSI	
NMWBAC25-1596	MC3.3	434755	6697304	376	10	-60	90			NSI	
NMWBAC25-1597	MC3.3	434710	6697306	377	9	-60	90			NSI	
NMWBAC25-1598	MC3.3	434677	6697308	378	21	-60	90			NSI	
NMWBAC25-1599	MC3.3	434634	6697306	379	8	-60	90			NSI	
NMWBAC25-1600	MC3.3	434589	6697300	379	17	-60	90			NSI	
NMWBAC25-1601	MC3.3	434552	6697301	379	15	-60	90			NSI	
NMWBAC25-1602	MC3.3	434515	6697307	380	8	-60	90			NSI	
NMWBAC25-1603	MC3.3	434474	6697310	380	15	-60	90			NSI	
NMWBAC25-1604	MC3.3	434432	6697305	379	14	-60	90			NSI	
NMWBAC25-1605	MC3.3	434394	6697308	379	6	-60	90			NSI	
NMWBAC25-1606	MC3.3	434351	6697309	379	16	-60	90			NSI	
NMWBAC25-1607	MC3.3	434312	6697314	379	20	-60	90			NSI	
NMWBAC25-1608	MC3.3	434272	6697310	379	20	-60	90			NSI	
NMWBAC25-1609	MC3.3	434227	6697309	379	30	-60	90			NSI	
NMWBAC25-1610	MC3.3	434189	6697306	379	21	-60	90			NSI	
NMWBAC25-1611	MC3.3	434144	6697308	379	25	-60	90			NSI	

MC 3.34 metre Co	omposite Re	sults - coi	ntinued								
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1612	MC3.3	434897	6697150	375	58	-60	90			NSI	
NMWBAC25-1613	MC3.3	434862	6697149	375	62	-60	90			NSI	
NMWBAC25-1614	MC3.3	434819	6697156	375	29	-60	90			NSI	
NMWBAC25-1615	MC3.3	434776	6697153	375	22	-60	90			NSI	
NMWBAC25-1616	MC3.3	434738	6697157	375	30	-60	90			NSI	
NMWBAC25-1617	MC3.3	434698	6697158	376	47	-60	90			NSI	
NMWBAC25-1618	MC3.3	434662	6697157	377	25	-60	90			NSI	
NMWBAC25-1619	MC3.3	434617	6697156	377	9	-60	90			NSI	
NMWBAC25-1620	MC3.3	434578	6697155	378	22	-60	90			NSI	
NMWBAC25-1621	MC3.3	434538	6697155	378	33	-60	90			NSI	
NMWBAC25-1622	MC3.3	434500	6697156	378	28	-60	90			NSI	
NMWBAC25-1623	MC3.3	434459	6697160	379	20	-60	90			NSI	
NMWBAC25-1624	MC3.3	434418	6697154	379	13	-60	90			NSI	
NMWBAC25-1625	MC3.3	434379	6697154	379	11	-60	90			NSI	
NMWBAC25-1626	MC3.3	434334	6697157	379	10	-60	90			NSI	
NMWBAC25-1627	MC3.3	434298	6697160	379	17	-60	90			NSI	
NMWBAC25-1628	MC3.3	434257	6697160	379	21	-60	90			NSI	
NMWBAC25-1629	MC3.3	434219	6697161	379	13	-60	90			NSI	
NMWBAC25-1630	MC3.3	434179	6697159	379	20	-60	90			NSI	
NMWBAC25-1631	MC3.3	434141	6697161	379	30	-60	90			NSI	
NMWBAC25-1632	MC3.3	434912	6696859	373	47	-60	90			NSI	
NMWBAC25-1633	MC3.3	434878	6696858	373	26	-60	90			NSI	
NMWBAC25-1634	MC3.3	434836	6696854	373	35	-60	90			NSI	
NMWBAC25-1635	MC3.3	434796	6696860	373	22	-60	90			NSI	
NMWBAC25-1636	MC3.3	434756	6696859	374	51	-60	90			NSI	
NMWBAC25-1637	MC3.3	434716	6696863	374	29	-60	90			NSI	
NMWBAC25-1638	MC3.3	434675	6696864	374	35	-60	90			NSI	
NMWBAC25-1639	MC3.3	434635	6696860	375	26	-60	90			NSI	
NMWBAC25-1640	MC3.3	434594	6696860	375	11	-60	90			NSI	
NMWBAC25-1641	MC3.3	434551	6696862	375	12	-60	90			NSI	
NMWBAC25-1642	MC3.3	434511	6696869	376	20	-60	90			NSI	
NMWBAC25-1643	MC3.3	434473	6696861	376	15	-60	90			NSI	
NMWBAC25-1644	MC3.3	434433	6696860	376	39	-60	90			NSI	
NMWBAC25-1645	MC3.3	434394	6696863	376	34	-60	90			NSI	
NMWBAC25-1646	MC3.3	434354	6696861	377	50	-60	90			NSI	
NMWBAC25-1647	MC3.3	434313	6696869	377	27	-60	90			NSI	
NMWBAC25-1648	MC3.3	434273	6696867	377	29	-60	90			NSI	
NMWBAC25-1649	MC3.3	434235	6696867	377	37	-60	90	28	32	4	0.36
NMWBAC25-1650	MC3.3	434190	6696868	377	34	-60	90			NSI	

MC 3.34 metre Co	omnosite Re	sults - co	ntinued								
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1651	MC3.3	435016	6696556	372	37	-60	90	110	.0	NSI	greria
NMWBAC25-1652	MC3.3	434977	6696559	372	37	-60	90	NSI			
NMWBAC25-1653	MC3.3	434936	6696560	372	33	-60	90	NSI			
NMWBAC25-1654	MC3.3	434895	6696555	373	22	-60	90			NSI	
NMWBAC25-1655	MC3.3	434860	6696542	373	46	-60	90			NSI	
NMWBAC25-1656	MC3.3	434816	6696556	373	54	-60	90	NSI			
NMWBAC25-1657	MC3.3	434781	6696554	373	8	-60	90	NSI			
NMWBAC25-1658	MC3.3	434736	6696552	373	7	-60	90			NSI	
NMWBAC25-1659	MC3.3	434692	6696560	374	13	-60	90			NSI	
NMWBAC25-1660	MC3.3	434657	6696549	374	12	-60	90			NSI	
NMWBAC25-1661	MC3.3	434613	6696559	374	13	-60	90			NSI	
NMWBAC25-1662	MC3.3	434576	6696562	374	8	-60	90			NSI	
NMWBAC25-1663	MC3.3	434538	6696562	374	30	-60	90			NSI	
NMWBAC25-1664	MC3.3	434496	6696563	375	44	-60	90			NSI	
NMWBAC25-1665	MC3.3	434455	6696570	375	45	-60	90	NSI			
NMWBAC25-1666	MC3.3	434414	6696570	376	54	-60	90			NSI	
NMWBAC25-1667	MC3.3	434370	6696566	376	36	-60	90	20	24	4	0.16
NMWBAC25-1668	MC3.3	434335	6696565	376	33	-60	90	28	32	4	0.85
NMWBAC25-1669	MC3.3	434292	6696564	376	24	-60	90	NSI			
NMWBAC25-1670	MC3.3	434526	6696475	374	51	-60	90	NSI			
NMWBAC25-1671	MC3.3	434484	6696483	375	43	-60	90	NSI			
NMWBAC25-1672	MC3.3	434451	6696481	375	61	-60	90			NSI	
NMWBAC25-1673	MC3.3	434408	6696485	375	28	-60	90			NSI	
NMWBAC25-1674	MC3.3	434369	6696486	376	21	-60	90	NSI			
NMWBAC25-1675	MC3.3	434325	6696485	376	5	-60	90			NSI	
NMWBAC25-1676	MC3.3	434289	6696485	377	12	-60	90	0	4	4	0.11
NMWBAC25-1677	MC3.3	434869	6697236	375	45	-60	90			NSI	
NMWBAC25-1678	MC3.3	434833	6697236	375	5	-60	90			NSI	
NMWBAC25-1679	MC3.3	434871	6697078	374	68	-60	90	NSI			
NMWBAC25-1680	MC3.3	434834	6697077	374	66	-60	90	NSI			
NMWBAC25-1681	MC3.3	434787	6697084	375	33	-60	90	NSI			
NMWBAC25-1682	MC3.3	434752	6697081	375	15	-60	90	NSI			
NMWBAC25-1683	MC3.3	434717	6697080	375	11	-60	90	NSI			
NMWBAC25-1684	MC3.3	434914	6696935	373	88	-60	90	NSI			
NMWBAC25-1685	MC3.3	434872	6696933	373	44	-60	90	NSI			
NMWBAC25-1686	MC3.3	434829	6696937	374	35	-60	90	NSI			
NMWBAC25-1687	MC3.3	434797	6696936	374	19	-60	90	NSI			
NMWBAC25-1688	MC3.3	434752	6696935	374	36	-60	90	NSI			
NMWBAC25-1689	MC3.3	434712	6696935	374	22	-60	90			NSI	

MC 3.3 4 metre Composite Results - continued											
SiteID	Prospect	East	North	mRL	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC25-1690	MC3.3	434673	6696938	375	17	-60	90	NSI			
NMWBAC25-1691	MC3.3	434641	6696937	375	34	-60	90	NSI			
NMWBAC25-1692	MC3.3	434594	6696942	376	11	-60	90	NSI			
NMWBAC25-1693	MC3.3	434559	6696940	376	6	-60	90	NSI			
NMWBAC25-1694	MC3.3	434917	6696785	373	28	-60	90			NSI	
NMWBAC25-1695	MC3.3	434876	6696784	373	37	-60	90			NSI	
NMWBAC25-1696	MC3.3	434829	6696786	373	25	-60	90			NSI	
NMWBAC25-1697	MC3.3	434796	6696786	373	17	-60	90			NSI	
NMWBAC25-1698	MC3.3	434746	6696795	373	9	-60	90			NSI	
NMWBAC25-1699	MC3.3	434432	6696636	375	34	-60	90			NSI	
NMWBAC25-1700	MC3.3	434388	6696634	376	32	-60	90			NSI	
NMWBAC25-1701	MC3.3	434347	6696634	376	54	-60	90			NSI	
NMWBAC25-1702	MC3.3	434313	6696635	376	32	-60	90			NSI	
NMWBAC25-1703	MC3.3	434266	6696633	377	32	-60	90			NSI	

Appendix 3 9/12/2025

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	The sampling was carried out using Aircore Drilling (AC). AC chips provide representative samples for analysis. Sampling was carried out in accordance with Nexus Minerals protocols and QAQC procedures which Nexus considers to be industry best practice. AC holes were drilled to refusal, with 1m samples collected in buckets through a cyclone and upended on the ground in rows of 10m. All samples had 4 consecutive 1m samples composited to form a 4m composite sample which was sent to the laboratory for analysis. The bottom of hole sample was collected as a 1m sample and sent to the laboratory for analysis. All 4m composite samples were crushed at the laboratory to -2mm, to produce a 500g charge for gold Photon Assay. All 1m bottom of hole samples were crushed at the laboratory to -2mm, to produce a 500g charge for gold Photon Assay. All 1m bottom of hole samples are split to produce a separate sample which was pulverized at the laboratory to -75um, to produce a 50g charge for four acid digest multi element (48 elements + 12 rare earth elements) analysis undertaken on the sample pulps by the laboratory (assays not received).
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	An AC drilling rig was used to undertake the AC drilling and collect the samples. Drilling was completed using a 3.5 inch (90mm) diameter bit.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	All samples were dry with no significant ground water encountered.

Criteria	JORC Code explanation	Commentary		
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	No sample bias is believed to have occurred during the sampling process.		
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	AC face sampling bits and dust suppression were used to minimise sample loss. Average AC metre sample weight recovered was 10kg with minimal variation between samples.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral	All AC chip samples were geologically logged by Nexus Minerals Geologists, using the approved Nexus Minerals logging code.		
	Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of AC chips: Lithology, mineralogy, alteration, mineralisation, colour, weathering and other characteristics as observed. All AC samples (except clays) were wet sieved.		
	The total length and percentage of the relevant intersections logged.	All AC holes and all metres were geologically logged.		
Sub-	If core, whether cut or sawn and whether quarter, half or all core taken.	AC holes were drilled to refusal, with 1m samples collected in buckets		
sampling techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	through a cyclone and upended on the ground in rows of 10m. All samples had 4 consecutive 1m samples composited to form a 4m composite sample which was sent to the laboratory for analysis. The bottom of hole sample was collected as a 1m sample and sent to the laboratory for analysis.		
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	For composite samples four consecutive metres were sampled using an aluminium scoop which penetrates the entire sample with multiple slices taken from multiple angles to ensure a representative sample is collected. These are combined to produce a 4m composite sample of 2-3kg.		
		All samples submitted for analysis were dry.		
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Samples were prepared at an accredited laboratory in either Perth or Kalgoorlie. Samples were dried, and the sample crushed to ~2mm (photon assay) with ~500g sample retained and analysed. The 1 metre bottom of hole samples are also pulverized to 85% passing 75um (four acid digest), with a sub-sample of ~200g retained and a nominal 50g		
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field	used for analysis. This is best industry practice.		
	duplicate/second-half sampling.	Duplicate composite scoop field samples were collected at 1:25 samples.		
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sampling methods and company QAQC protocols are best industry practice.		

Criteria	JORC Code explanation	Commentary		
		Sample sizes are considered appropriate for the material being sampled and the sample size being submitted for analysis.		
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were analysed at an accredited laboratory in either Perth or Kalgoorlie. 4m and 1m samples were analysed for gold using Photon Assay technique. This method is considered appropriate for the material being assayed. Independent comparison test work has found this method of analysis to be superior on the project compared to traditional fire assay owing to benefits of larger sample size and presence of coarse gold.		
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	All 1m bottom of hole samples are also analysed at an accredited laboratory in Perth using four acid digest multi element (48 elements + 12 rare earth elements) technique (assays not received). This method is considered appropriate for the material being assayed.		
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	No other geophysical tools, spectrometers etc were used in this drill program.		
		Nexus Minerals protocol provides for Certified Reference Material (Standards and Blanks) to be inserted at a rate of 4 standards and 4 blanks per 100 samples. Field duplicates are inserted at a rate of 1 per 25 samples.		
Verification of sampling	The verification of significant intersections by either independent or alternative company personnel.	Results and significant intersections were verified by the Exploration Manager.		
and assaying	The use of twinned holes.	No twin holes were drilled as part of this program.		
accaymg	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All field logging is carried out on a laptop computer. Data is submitted electronically to the database manager in Perth. Assay files are received electronically from the laboratory and added to the database. All data is managed by the database geologist.		
	Discuss any adjustment to assay data.	No adjustment to assay data has occurred.		
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole locations were determined using a handheld GPS, with an accuracy of 3m. Drill holes were lined up using a sighting compass – no down hole surveys were completed.		
	Specification of the grid system used.	Grid projection is GDA94 Zone51.		
	Quality and adequacy of topographic control.	The drill hole collar RL is allocated from a handheld GPS.		
		Accuracy is +/- 3m.		

Criteria	JORC Code explanation	Commentary		
Data spacing and	Data spacing for reporting of Exploration Results.	AC drilling took place at Branches Prospect (extension opportunities) and Target MC3.3. All targets are discussed in this release.		
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is not sufficient to establish the degree of geological and grade continuity appropriate for any Mineral Resource and Ore Reserve estimation procedure(s) and classifications to be applied.		
	Whether sample compositing has been applied.	Yes as stated above.		
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of the drill lines is considered to be roughly perpendicular to the strike of the regional structures controlling the mineralisation (0 degrees).		
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	AC holes were drilled at a dip of -60 degrees. Drill hole azimuth was 090 or 270 degrees for Branches Prospect (extension opportunities), and 090 for Target MC3.3.		
		The relationship between the drilling orientation and the orientation of key mineralised structures is not considered to have introduced a sampling bias.		
Sample security	The measures taken to ensure sample security.	For the AC drilling program pre-numbered calico bags were placed into green plastic bags, sealed and transported to the laboratory in Kalgoorlie by company personnel or established transport company.		
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All sampling, logging, assaying and data handling techniques are considered to be industry best practice.		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary		
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	AC drilling was undertaken on tenements M31/190 and M31/188. Tenure is held by Nexus 100% There are no other known material issues with the tenements.		
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing with the Western Australian Mines Department (DMP).		
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	In the areas targeted, the tenements have been subject to minimal prior exploration activities by other parties.		
Geology	Deposit type, geological setting and style of mineralisation.	Gold mineralisation in the Wallbrook area is known to be closely associated with quartz +/- pyrite and brick-red coloured hematitic alteration of high level porphyry intrusives and their volcanic / sedimentary host rocks.		
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to ASX announcement for full tables.		
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 			
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No top cuts have been applied to the reported assay results. No aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results.		

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No metal equivalent values were reported.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisatio n widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The orientation of the drill lines is considered to be roughly perpendicular to the strike of the regional structures controlling the mineralisation (0 degrees). Holes were drilled at -60 degrees towards 090 or 270 degrees. All reported intersections are down-hole length – true width not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the maps included in the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Clearly stated in body of release
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data to be reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Post full assessment of recent drill results and integration with existing data sets, future work programs may include RC/Diamond drilling to follow up on the results at Branches Prospect. No further work is planned for MC3.3.