

8 December 2025

ASX Release

YUINMERY EXPLORATION UPDATE

HIGHLIGHTS

Empire Resources Limited (ASX: ERL; "Empire" or the "Company") is pleased to announce the results of a rock chip sampling program (66 samples) and soil sampling program (78 samples) at the Yuinmery project conducted between August and October 2025.

New discoveries of high-grade gold rock chips were found at several prospects including:

- 22.86g/t Au and 5.39g/t Au from Smiths Well
- 6.66g/t Au from Marcus
- 2.18 g/t Au and 3.18g/t Au near the YT14 prospect

Rock chips with anomalous Cu-Au VMS mineralisation were also confirmed at B-Zone, C-Zone and along a potential southern extension to the Just Desserts resource zone.

A significant 1000m long Cu-Au soil anomaly was also delineated between YT01 and YT19. This anomaly is also coincident with Aster satellite imagery indicating intense, localised talc alteration. The anomaly remains to be tested.

Non-Executive Chairman, Michael Ruane comments:

"The soil results from YT01-YT19 is a positive result for us and we are already looking forward to drilling there in 2026. We know talc alteration is a key hydrothermal indicator for Cu-Au mineralisation at Yuinmery as it is well documented at Just Desserts.

The rock chip sampling program aimed to prove or disprove several new concepts about Cu and/or Au mineralisation at Yuinmery. There were some good positives from this work with several rock chips returning significant and anomalous Cu and Au. Most of these were from untested outcrops. These results will help plan further work and drilling going forward."

INTRODUCTION

Empire Resources Limited (ASX: ERL; "Empire" or the "Company") is pleased to provide the following update on exploration activities at the Company's Yuinmery Copper-Gold Project.

Empire advises that it has now received the final batch of results from its rock chip and soil sampling program conducted between August and October 2025.

Sixty-six (66) rock chips and seventy-eight (78) soil samples were taken from several established prospects and new areas. Details are shown in Tables 1 and 2. Both sampling programs were part of a strategic review of Yuinmery that aimed to:

- Review the potential for strike extensions or new VMS occurrences centred around Just Desserts.
- 2. Generate fresh new Cu and/or Au targets.
- 3. Validate or dismiss new mineralisation models

YUINMERY COPPER – GOLD PROJECT

LOCATION

The Yuinmery Project is situated approximately 470km northeast of Perth and 80km southwest of Sandstone, Western Australia (Figure 1). Access from Perth is via the Great Northern Highway to Paynes Find and then along the gravel surfaced Paynes Find-Sandstone Road for 152km.

The Yuinmery Project is host to Empire's Just Desserts and A-Zone volcanogenic massive sulphide deposits with a JORC 2012 combined resource of 3.59Mt @1.25% Cu and 0.46g/t using a 0.5% Cu cut-off.

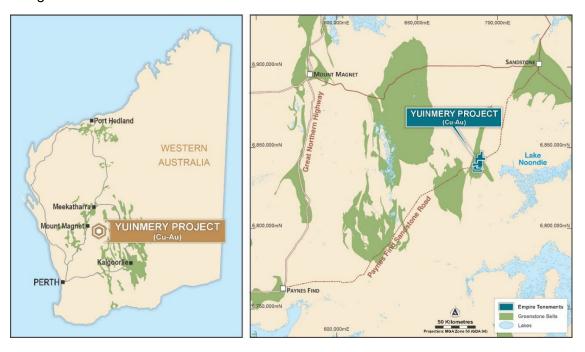


Figure 1. Yuinmery Project location map

GEOLOGY

The Yuinmery project area covers the eastern portion of the Archaean Youanmi greenstone belt with rock types consisting largely of altered chloritic felsic and intermediate volcanic units with minor tholeiltic and ultramafic volcanics, BIF and chert (Figure 2). The volcanic units contain intercalated strongly sulphidic cherty sediments, which are host to Volcanic Massive Sulphide (VMS) copper-gold mineralisation. The project area lies between the Youanmi Shear zone (western boundary) and the Yuinmery Shear zone (eastern boundary) with the southern area covering the southern closure of a northerly plunging syncline. A prominent north-south foliation overprints many of the rocks in the project area.

The Just Desserts mineralisation is hosted by exhalative iron-rich gossans and cherty sediments. They either outcrop or are tightly scattered on the surface and can be easily traced for 200m in the northern half of Just Desserts. These exhalites typically average around 4-8m thick, strike northwest and dip about 50° to 75° to the northeast. Footwall and hanging wall rocks are dominated by tuffaceous felsic rocks, intermediate to mafic volcanics with gabbros and dolerites intruding the sequence.

The mineralisation at YT01 is interpreted to dip steeply to the north and strikes east-west and is hosted in a chlorite-sericite-talc schist probably derived from felsic or mafic volcanics. It lies adjacent to a magnetic gabbro unit. Copper mineralisation occurs as fine disseminated malachite or chalcopyrite (+/-pyrite). Sulphide content is typically <1%.

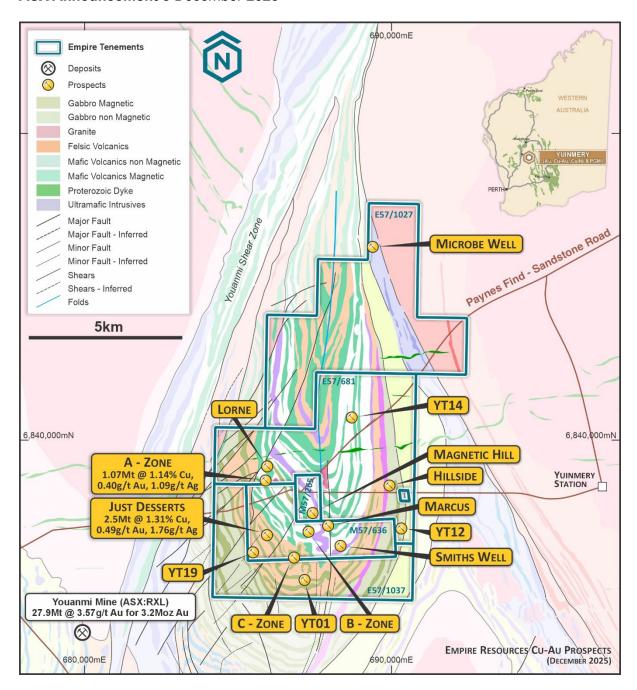


Figure 2. Regional geology of the Yuinmery area and prospect locations

ROCK CHIP PROGRAM

The rock chip sampling comprised 66 samples and tested selected Yuinmery outcrops. High-grade gold in quartz veins was noted at the Smiths Well prospect and nearby workings. The maximum assay returned was 22.86g/t Au. Previous drilling by Empire at Smiths Well had documented patchy zones of anomalous Au at depth. Smiths Well was primarily regarded as a Cu/Ni prospect. The sampling demonstrates that the quartz veining at Smiths Well may have an unrecognised structural and/or mineralisation control and possibly be higher gold grade than previously thought.

At Marcus, a single, outcropping quartz vein up to 1m wide was located north of Empire's recent air core drilling. It assayed an encouraging 6.66g/t Au and lends fresh support to the prospectivity at Marcus.

Further north near YT14, a small undocumented shaft with associated sandy tailings which returned 2.11g/t Au, whilst close-by, scattered occurrences of surficial quartz and banded iron (bif) confirmed the local prospectivity with 3.18g/t Au. There is no effective drilling in this area.

Surface VMS mineralisation was confirmed at B-Zone and C-Zone with several rock chips returning anomalous Cu-Au values. Previous drilling at these prospects failed to test these new locations adequately. At YT12, a new gossan horizon up to 1m wide and 100m length was mapped out and largely appears to be untested by previous drilling. The gossan assayed a maximum 1629 ppm Cu and 325 ppm Zn and is a walk-up drill target.

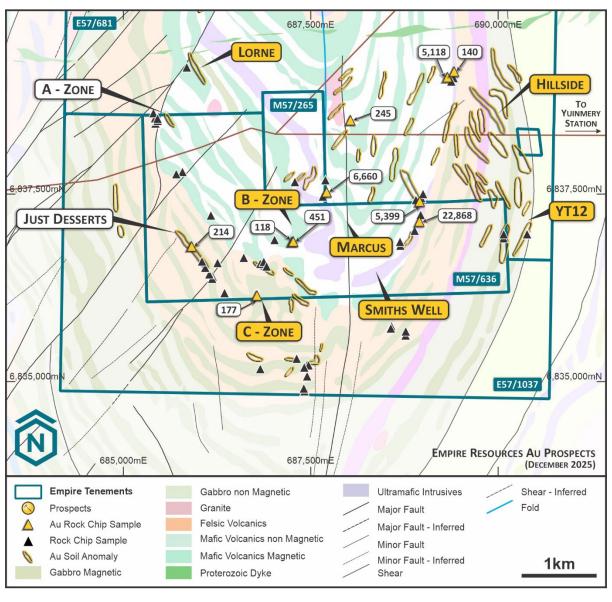


Figure 3. Rock chip samples showing anomalous Au (ppb)

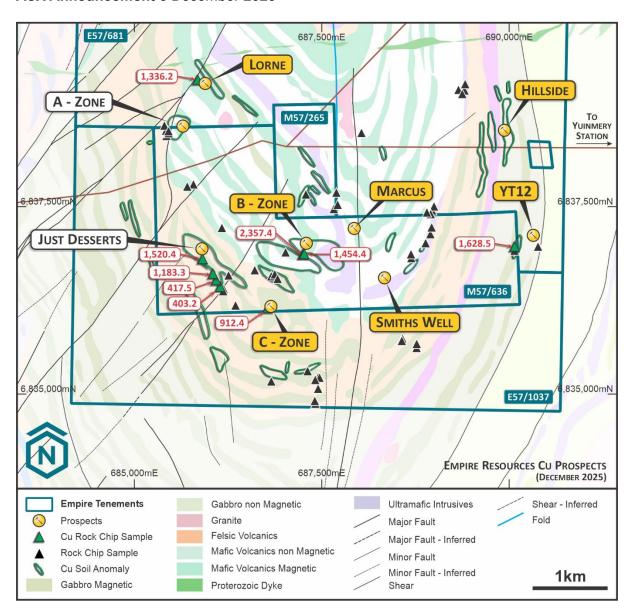


Figure 4. Rock chip samples showing anomalous Cu (ppm)

SOIL SAMPLING PROGRAM

The soil sampling program consisted of 78 samples taken between YT01-YT19 and Microbe Well prospects. Samples were sent for ultrafine multi-element analysis.

At YT01 and YT19, Empire drilling had shown these prospects to have similar geology and mineralisation styles with both having broad zones of low-grade Cu-Au dipping towards the synclinal axis. They have long been speculated to be part of the same mineralisation system.

The soil results for Cu and Au indicate the area between YT01 and YT19 is anomalous with a 200ppm Cu contour extending for over 1000m. Coincident to the Cu and Au, Mg is also anomalous (1-4%) and appears to align with the Aster imagery data from the GSWA. The imagery shown below highlights 3 distinct areas of elevated MgOH group composition, which may be the result of intense talc alteration. Talc alteration is the dominant alteration mineral occurring close to the Cu-Au mineralisation at the Just Desserts deposit. The MgOH signature

between YT01-YT19 is the strongest and most intense from any of the Yuinmery prospect areas.

At Microbe Well, historic RAB drilling had encountered several thinly mineralised oxide Au zones that were either part of the Yuinmery shear or its subsidiary structures. The Yuinmery shear within Empire's tenements, has had little focussed exploration over the last 2 decades. The soil sampling covered one of these RAB lines with a view to confirming the shallow mineralisation and then extending the surface footprint along strike. A prospective gold only area over 600m long was delineated and successfully confirmed the location of the RAB mineralisation. Air Core drilling is planned to follow this up.

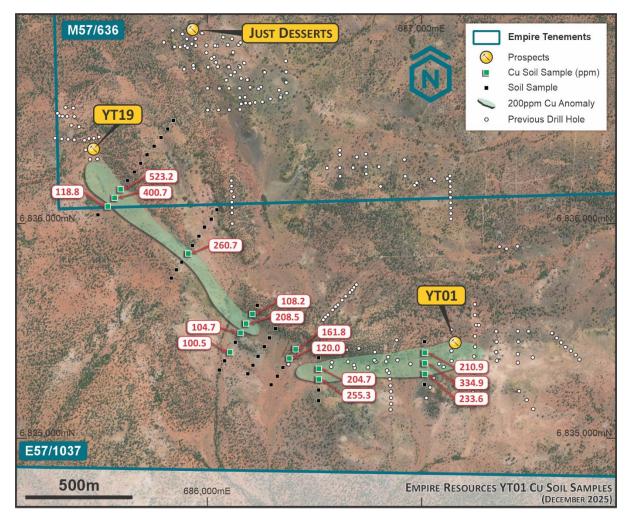


Figure 5. YT01-YT19 soil samples showing anomalous Cu ppm overlaying a google image

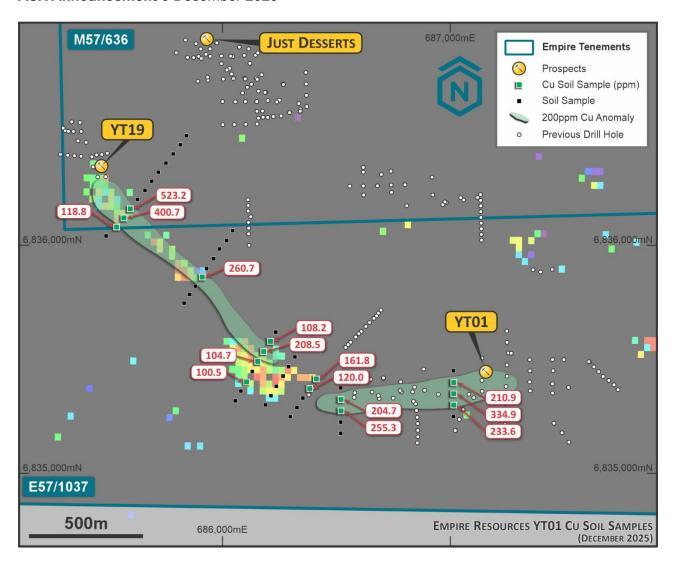


Figure 6. YT01-YT19 soil samples showing anomalous Cu ppm overlaying an Aster image of MgOH group composition

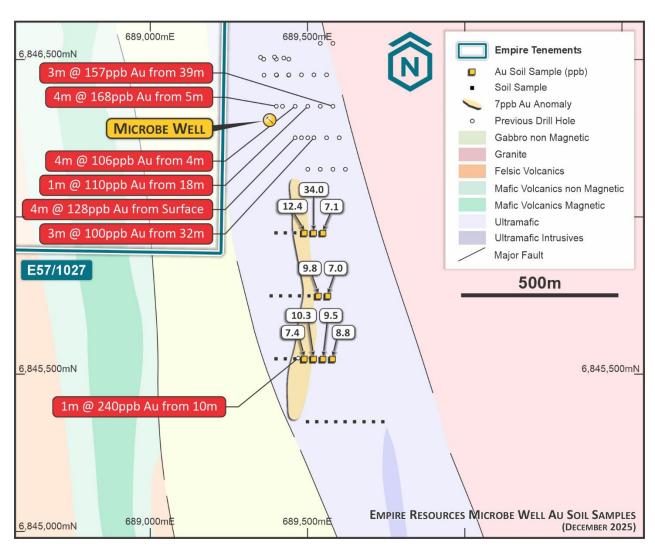


Figure 7. Microbe Well soil samples showing anomalous Au ppb and historic RAB drilling intercepts

NEXT STEPS

- 1. Plan follow up soil sampling programs where required.
- **2.** Lodge Program of Work (POW's) to allow new drilling in 2026.

Michael Ruane Non-Executive Chairman

For further information on the Company Phone: +61 (0)8 6389 1032 www.resourcesempire.com.au

Table 1. Rock Chip Details

Sample	East (94/50)	North (94/50)	Description	Au ppb	Ag ppm	As ppm	Cu ppm	Zn ppm
BR01	686823	6836577	qtz vein	6	0.03	3	499.6	92.0
BR02	686871	6836603	qtz vein	2	0.19	8	122.8	11.0
NO1081	685844	6839195	gossan	8	0.18	2	1336.2	515.0
NO1101	685404	6838590	qtz vein	1	0.03	1	28.5	17.0
NO1141	685428	6838447	qtz vein	5	0.05	1	82.3	39.0
NO1161	685421	6838517	qtz vein	5	0.03	2	100.7	38.0
NO1175	690393	6836968	qtz-ironstone	4	0.03	3	215.9	97.0
NO1181	685400	6838585	qtz vein	2	0.03	1	23.0	36.0
NO1201	685786	6837801	ironstone gossan	33	0.03	136	270.4	23.0
NO1281	685705	6837771	chert rubble	1	0.03	2	116.5	71.0
NO1401	686779	6836153	laterite	177	0.31	21	912.4	124.0
NO1441	686255	6836589	grey chert	8	0.03	5	94.6	48.0
NO1601	685456	6838483	qtz vein	13	0.15	2	532.3	22.0
NO1621	688690	6836820	qtz mullock at shaft	11	0.03	11	355.7	156.0
NO1641	688760	6835624	bedrock	18	0.03	2	210.8	12.0
NO1661	688764	6835677	calcrete	50	0.03	3	68.5	24.0
NO1681	685455	6838510	qtz vein in chert	3	0.03	2	193.1	122.0
NO1755	690390	3836974	qtz-ironstone	4	0.03	5	595.5	210.0
NO1774	690066	6836919	gossan	1	0.03	2	348.9	325.0
NO1775A	690381	6836972	qtz-ironstone	3	0.03	3	207.6	94.0
NO1776	690068	6836971	gossan	3	0.03	16	1628.5	225.0
NO1777	687249	6836870	chert	118	0.56	4	2357.4	111.0
NO1778	687014	6836896	top chert ridge	51	0.07	2	513.6	24.0
NO1779	687265	6836871	qtz vein	451	0.11	4	1454.4	42.0
NO1780	688905	6837430	qtz reef	75	0.06	7	170.6	45.0
P13101	687450	6835232	small dig	39	0.03	1	38.4	3.0
P13121	687468	6835226	qtz vn	4	0.03	1	36.5	5.0
P13141	687308	6835315	sandstone	1	0.03	1	31.4	4.0
P13161	688994	6837507	qtz mullock	1	0.03	1	8.7	6.0
P13201	687449	6835080	qtz vn	1	0.03	1	5.3	6.0
P13221	687410	6835196	qtz vn	1	0.03	1	3.1	3.0
P13261	687412	6834881	qtz vn	3	0.03	1	14.2	5.0
P13281	687403	6834916	qtz vn	5	0.03	1	10.2	8.0
P13301	688882	6837017	qtz tight scatter	2	0.03	2	7.6	15.0
P13321	688946	6837139	qtz tight scatter	22868	1.98	17	60.7	22.0
P13341	688961	6837227	qtz mullock	79	0.44	12	595.0	363.0
P13361	688949	6837406	qtz vein mullock	5399	0.81	2	119.8	51.0
P13381	688686	6836870	qtz in ironstone	247	0.07	10	72.5	149.0
P13901	688571	6835749	schistose bedrock	11	0.03	2	42.3	11.0
P13921	688027	6838488	qtz vein	245	0.03	1	103.7	5.0

Table 1. Rock Chip Details (continued)

	East	North			Ag	As	Cu	Zn
Sample	(94/50)	(94/50)	Description	Au ppb	ppm	ppm	ppm	ppm
P13941	688564	6835716	schistose bedrock	44	0.03	3	50.4	11.0
P13961	688899	6837427	laterite	84	0.08	6	110.2	345.0
P13981	689452	6845740	aplite dyke	7	0.03	1	6.5	2.0
Y32021	686347	6836189	gossan	5	0.03	4	243.9	23.0
Y32321	687658	6837474	qtz vein_gossan	2	0.03	46	69.1	66.0
Y32361	687692	6837692	gossan	2	0.06	4	199.9	471.0
Y36241	686144	6836439	chert outcrop	2	0.03	4	403.2	55.0
Y36261	686090	6836525	chert outcrop	27	0.65	4	417.5	89.0
Y36281	686048	6836609	gossan	21	0.52	11	1183.3	69.0
Y39901	687688	6837542	qtz vein_gossan	6660	0.29	22	355.0	120.0
Y39981	687286	6837668	qtz vein	6	0.05	41	109.3	13.0
YM01	689401	6839052	qtz vein	65	0.03	2	42.6	27.0
YM02	689320	6839060	drill spoils	5118	80.0	6	168.9	24.0
YM03	689319	6842025	qtz vein	11	0.06	2	108.6	179.0
YM04	689409	6839137	qtz vein	140	0.03	2	78.6	11.0
YM05	685910	6836806	gossan	214	0.40	5	1520.4	260.0
YM06	686188	6836409	black pisolite	16	0.06	5	74.7	13.0
YM07	686823	6835177	qtz veining	7	0.03	4	503.0	228.0
YM08	686604	6836659	chert-gossan	3	0.03	2	168.8	43.0
YM09	689370	6839005	qtz vein	12	0.03	7	202.5	129.0
YM10	686182	6836378	chert-gossan	10	0.03	2	295.0	28.0
YM11	686909	6836541	gossan	11	0.03	1	295.6	62.0
YM12	688769	6841995	small tailings	2111	0.03	9	56.3	3.0
YM13	686166	6837221	chert	8	0.03	7	313.2	246.0
YM14	688776	6841995	qtz veins, bif	3188	0.41	6	169.4	43.0

Table 2. Soil Sampling Details

Prospect	Sample ID	East (94/50)	North (94/50)	Ag ppm	As ppm	Au ppb	Cu ppm	Zn ppm
Microbe Well	YS01	689400	6845950	0.054	7.8	4.9	52.6	54.4
Microbe Well	YS02	689430	6845950	0.063	5.8	3.3	78.8	56.3
Microbe Well	YS03	689460	6845950	0.120	6.6	4.3	95.9	71.3
Microbe Well	YS04	689490	6845950	0.081	9.4	12.4	66.6	75.0
Microbe Well	YS05	689520	6845950	0.057	7.1	34.0	45.4	73.5
Microbe Well	YS06	689550	6845950	0.077	5.2	7.1	41.5	76.6
Microbe Well	YS07	689385	6845750	0.028	4.5	3.3	36.0	51.5
Microbe Well	YS08	689415	6845750	0.030	5.7	5.1	54.4	58.8
Microbe Well	YS09	689445	6845750	0.022	5.5	4.3	58.8	60.6
Microbe Well	YS10	689475	6845750	0.030	6.5	5.7	71.3	89.0
Microbe Well	YS11	689505	6845750	0.008	0.8	2.0	16.9	16.1
Microbe Well	YS12	689535	6845750	0.026	5.8	9.8	57.0	63.4
Microbe Well	YS13	689565	6845750	0.032	6.3	7.0	46.2	65.4
Microbe Well	YS14	689400	6845550	0.034	6.4	4.4	44.2	94.8
Microbe Well	YS15	689430	6845550	0.028	6.6	6.2	46.4	74.0
Microbe Well	YS16	689460	6845550	0.027	7.4	4.1	55.9	97.4
Microbe Well	YS17	689490	6845550	0.027	9.4	7.4	46.2	83.1
Microbe Well	YS18	689520	6845550	0.028	10.9	10.3	48.0	82.9
Microbe Well	YS19	689550	6845550	0.034	8.8	9.5	46.6	75.6
Microbe Well	YS20	689580	6845550	0.030	8.5	8.8	47.4	91.9
Microbe Well	YS21	689500	6845350	0.031	6.8	5.0	45.0	63.4
Microbe Well	YS22	689530	6845350	0.031	9.0	3.2	45.8	68.9
Microbe Well	YS23	689560	6845350	0.027	9.0	4.1	45.2	85.2
Microbe Well	YS24	689590	6845350	0.022	8.1	4.0	44.7	74.6
Microbe Well	YS25	689620	6845350	0.021	8.7	3.7	40.6	90.5
Microbe Well	YS26	689650	6845350	0.023	7.8	3.6	40.2	80.0
Microbe Well	YS27	689680	6845350	0.021	5.6	2.4	47.6	64.2
Microbe Well	YS28	689710	6845350	0.023	5.0	2.2	40.8	62.5
Microbe Well	YS29	689740	6845350	0.022	6.3	2.1	42.1	58.1
YT01	YS30	687015	6835450	0.023	4.9	4.4	83.3	52.9
YT01	YS31	687015	6835400	0.052	4.6	30.7	210.9	85.4
YT01	YS32	687015	6835350	0.031	2.9	7.6	334.9	51.8
YT01	YS33	687015	6835300	0.032	2.5	8.8	233.6	67.8
YT01	YS34	687015	6835250	0.018	2.6	36.4	61.3	28.2
YT01	YS35	686520	6835375	0.031	3.5	12.5	53.9	44.5
YT01	YS36	686520	6835325	0.040	3.9	8.7	204.7	55.4
YT01	YS37	686520	6835275	0.025	0.8	12.4	255.3	78.8
YT01	YS38	686520	6835225	0.052	4.7	2.7	52.0	58.5
YT01	YS39	686520	6835175	0.031	3.8	5.9	70.7	34.9

Table 2. Soil Sampling Details (continued)

Prospect	Sample ID	East (94/50)	North (94/50)	Ag ppm	As ppm	Au ppb	Cu ppm	Zn ppm
YT01	YS40	686412	6835415	0.044	7.4	8.4	161.8	55.2
YT01	YS41	686383	6835373	0.056	6.1	5.1	120.0	75.1
YT01	YS42	686354	6835330	0.038	5.2	3.2	80.6	90.5
YT01	YS43	686328	6835289	0.041	4.1	5.6	66.7	64.1
YT01	YS45	686319	6835511	0.039	5.1	8.6	64.5	62.1
YT01	YS46	686291	6835468	0.038	7.0	17.1	87.7	59.6
YT01	YS47	686267	6835427	0.033	5.9	4.6	56.8	63.3
YT01	YS48	686238	6835382	0.047	7.8	3.7	29.0	61.7
YT01	YS49	686214	6835340	0.035	1.6	6.3	89.1	44.9
YT01	YS50	686190	6835300	0.031	3.5	4.5	68.3	60.2
YT01	YS51	686235	6835620	0.035	4.3	5.8	60.2	54.1
YT01	YS52	686210	6835580	0.029	2.3	10.1	108.2	88.2
YT01	YS53	686181	6835535	0.046	5.4	23.6	208.5	70.4
YT01	YS54	686155	6835492	0.041	3.5	6.8	104.7	49.1
YT01	YS55	686132	6835447	0.046	5.6	17.0	53.1	43.1
YT01	YS56	686106	6835402	0.040	4.7	8.0	100.5	51.9
YT01	YS57	686082	6835361	0.043	0.3	5.2	71.0	65.9
YT01	YS58	686058	6835318	0.021	0.9	3.8	69.7	55.3
YT19	YS59	686046	6836065	0.015	2.6	4.0	34.1	42.6
YT19	YS60	686019	6836021	0.021	3.0	3.1	47.6	59.0
YT19	YS61	685988	6835984	0.026	2.4	3.5	55.7	40.3
YT19	YS62	685962	6835942	0.033	3.9	4.2	60.2	43.5
YT19	YS63	685932	6835898	0.056	7.3	9.2	46.2	47.6
YT19	YS64	685911	6835862	0.037	1.5	4.9	260.7	37.9
YT19	YS65	685882	6835821	0.022	0.8	3.7	50.2	56.9
YT19	YS66	685857	6835785	0.030	4.4	5.2	94.1	38.9
YT19	YS67	685833	6835746	0.021	5.6	10.5	96.0	47.1
YT19	YS68	685843	6836481	0.017	3.4	3.3	35.0	47.5
YT19	YS69	685816	6836441	0.017	2.2	0.3	26.7	22.3
YT19	YS70	685785	6836401	0.013	2.5	4.9	25.3	22.2
YT19	YS71	685753	6836361	0.012	2.2	0.3	20.5	21.8
YT19	YS72	685720	6836321	0.022	3.7	1.8	26.1	39.2
YT19	YS73	685690	6836281	0.019	3.1	0.8	30.4	43.6
YT19	YS74	685661	6836241	0.042	6.3	0.3	30.2	63.8
YT19	YS75	685629	6836201	0.053	6.3	0.3	48.8	56.0
YT19	YS76	685595	6836161	0.065	6.3	23.2	523.2	52.0
YT19	YS77	685567	6836121	0.061	7.0	11.2	400.7	47.0
YT19	YS78	685535	6836081	0.046	7.5	1.1	118.8	62.8
YT19	YS79	685491	6836041	0.043	3.0	3.7	73.0	58.1

Additional Information

Further details relating to the information in this release can be found in the following ASX announcement:

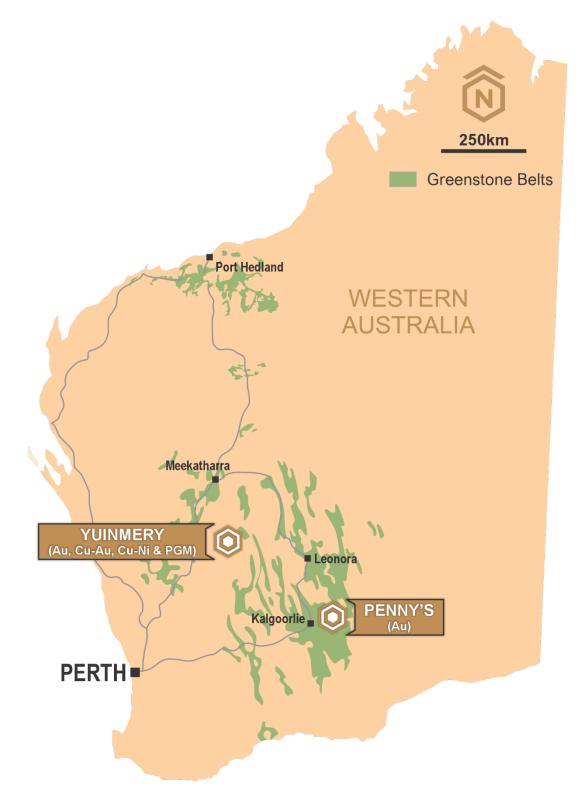
- 1. ASX: ERL "Yuinmery June RC drilling program results" 11 August 2025.
- 2. ASX: ERL "Yuinmery Aircore Drilling Program Progress Update" 20 October 2025.

Competent Person Statements

The information in this report that relates to Exploration Results is based on information compiled and/or reviewed by Mr David O'Farrell, who is a Member of the Australian Institute of Mining and Metallurgy. Mr O'Farrell is a consultant to Empire Resources and has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr O'Farrell consents to the inclusion in this presentation of the matters based on this information in the form and context in which they appear.

New Information

Information concerning the current mineral resource estimate relating to the Just Desserts and A-Zone deposits are extracted from the ASX Announcements dated 17 May 2016 and 15 October 2025 respectively.


Empire Resources Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the Resource estimate in the relevant market announcement continue to apply and have not materially changed. Empire Resources Limited confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

About Empire

Empire Resources Limited (ASX: ERL) is a gold and copper focussed exploration and development company. Empire owns two highly prospective projects. The Yuinmery Copper-Gold Project 470km northeast of Perth in the Youanmi Greenstone Belt and the Penny's Gold Project 45km northeast of Kalgoorlie in the prolific Eastern Goldfields Region of Western Australia.

Empire has an experienced team of exploration, development and financial professionals who are committed to developing a sustainable and profitable mineral business. Empire seeks to extract value from direct exploration of its existing projects as well as identifying value accretive investment opportunities that complement the Company's development objectives.

EMPIRE RESOURCES PROJECT LOCATIONS

JORC TABLE 1 FOR THE YUINMERY COPPER - GOLD PROJECT

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information 	 Rock chip samples were typically 1-2kg and taken from outcrops, sub-outcrops, mullock dumps, rubble. Soil samples were taken at approximately 30cm depth, sieved to -2mm, 250g was then collected and sent to Labwest in Malaga. Soil sampling sieves and pans were cleaned and brushed after every sample All rocks chip samples were analysed by Aqua regia digestion with ICP-MS/OES finish Jinnings code (AR25M-ICP-OES). Soils were analysed by Labwest using ultrafine analysis. Lab code (UFF-PE-Au+ME)
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Not Applicable. No drilling was completed.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Not Applicable. No drilling was completed.

	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Brief descriptions for the rock chips are included in table 1.
Sub-sample techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Not Applicable. No drilling was completed.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The assaying and laboratory procedures used are appropriate for the material tested. No geophysical or portable analysis tool were used to determine assay values. Internal laboratory control procedures involve duplicate assaying of randomly selected assay pulps as well as internal laboratory standards. All these data are reported to the Company.

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Primary data was collected in the field using A4 log sheets and later transferred to a Microsoft Access database. No adjustments or calibrations have been made to any assay data.
Location of Data points	 Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations used a handheld Garmin GPS 84, nominal accuracy is 3m. Grid system is GDA94 MGA Zone 50
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Rock chips were spread over specific areas and prospects. the tenement Holes were spaced around 20-40m apart along strike and drilled parallel to the historic holes. Soil samples were not regularly gridded, however a nominal 50x 400m grid was used between YT01 and YT19.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Not Applicable. No drilling was completed.
Sample Security	The measures taken to ensure sample security.	Samples for submission to the laboratory are collected in pre-numbered calico bags and taken to the Perth laboratories by Empire staff
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits were undertaken. The program was completed and, data processed by the competent person who is a consultant to Empire.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Company's' Yuinmery Copper-Gold Project comprises five granted tenements: M57/265, M57/636, E57/1037, E57/681 and, E57/1027. Tenements M57/265, M57/636 and E571037 are 100% owned by ERL Tenements E57/681 and E57/1027 are 91.89% owned by Empire and are subject to a Net Smelter Royalty (NSR) of 1.25% All tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Western Mining Corporation Ltd commenced base metal exploration in the area in 1969 and continued until 1981. Soil sampling, ground magnetics, IP and EM were exploration methods used to target their vacuum, percussion and diamond drilling programs. Esso Australia Ltd explored the area between 1979 and 1984 using EM, RAB and diamond drilling in the search for Golden Grove - Scuddles type base metal deposits. Black Hill Minerals Ltd explored part of the area for base metals between 1986 and 1991. This involved rock chip sampling and limited percussion drilling. Meekal Pty Ltd commenced an exploration program in 1985 by remapping parts of the syncline and rock chip sampling. In 1986 Meekal introduced Arboyne NL into the project who carried out gold exploration by drilling reverse circulation holes under old gold workings. Between 1989 and 1991 RGC Exploration Pty Ltd explored the area concentrating on the potential for gold mineralization. This exploration consisted of geological mapping, rock chip sampling and some RAB drilling. In 1992 Meekal Pty Ltd joint ventured the project to Giralia Resources NL, who brought in CRAE as a partner in1993. CRAE completed a ground EM survey and drilled three diamond holes in its search for base metals. Gindalbie Gold NL then explored the area for gold between 1995 and 2000. This work entailed a wide spaced soil sampling program but although several

		 anomalous zones were identified no drilling was undertaken. Mineral Resources Australia / La Mancha explored the northern end of the project area between 2002 and 2010 completing; extensive soil sampling (Auger), reconnaissance (RAB / Aircore) drilling and geophysical surveys (VTEM and aeromagnetic surveys). Empire Resources Ltd commenced exploration in the area during 2006. To date a number of RAB, RC and diamond drilling programmes have been completed as well as aerial, surface and downhole electromagnetic (EM) surveys.
Geology	Deposit type, geological setting and style of mineralisation.	 The Yuinmery project area covers the eastern portion of the Archaean Youanmi greenstone belt with rock types consisting largely of altered mafic and ultramafic volcanic and intrusive rocks with chloritic felsic and intermediate volcanic units. The volcanic units contain a number of intercalated strongly sulphidic cherty sediments which are host to VMS copper-gold mineralization. In the project area these rocks lie on the eastern side of the regional Youanmi Fault and form the southern closure of a northerly plunging syncline. The volcanic rocks have been intruded by dolerites, gabbros, pyroxenites and other ultramafic rocks which probably form part of the layered Youanmi Gabbro Complex. Several zones of copper - gold mineralization have been identified within the project area by previous surface sampling and drilling. The volcanogenic massive sulphide style mineralization is associated with cherts, felsic volcanic breccias and tuffs. Copper-gold mineralisation is interpreted to be associated with lower order shears subsidiary to either the Youanmi or Yuinmery Shear zones. Gold sits in subvertical shears, and forms narrow, steep plunging high grade shoots at minor flexures in the shears as quartz-sulphide
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar 	 Not Applicable. No drilling was completed.

Page | 20

	 elevation or RL (elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. 	No cutoff grades were applied to the samples as shown in Tables 1 and 2. Nominal cutoff grades for display purposes was nominally 400ppm Cu and 100ppb Au. No metal equivalent values have been used or reported
Relationship between mineralisation widths and intercept lengths	 If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect. 	Not Applicable. No drilling was completed. No channel sampling to estimate mineralised widths were undertaken.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Refer to Figures and Tables in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All data from the rock chip and soil sampling is provided in the report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material information has been included in the body of the announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work planned includes additional sampling and/or drilling.