

AMENDED ANNOUNCEMENT

Steam Engine Mineral Resource Estimate Update Major Growth Potential Across 10km Strike

Superior Resources Limited (ASX:SPQ) (Superior, the Company) provides the attached Amended Announcement that amends its announcement titled "Steam Engine Mineral Resource Estimate Update – Major Growth Potential Across 10km Strike", originally lodged on the ASX Market Announcements Platform on 13 November 2025 (Original Announcement).

This Amended Announcement amends the Original Announcement by:

- adding a list of all drill holes and mineralisation intercepts that were used for the modelling and calculation of the updated Steam Engine Mineral Resource Estimate (refer to Appendix 1 to the Amended Announcement); and
- adding cross-references to Superior's ASX announcements that originally reported on results from the 2024 drilling programs, results from earlier metallurgical test work and drill hole and mineralisation information relating to historical (pre-2017) drill holes.

Approved for release by the Board of Directors

For more information:

Registry: MUFG Corporate Markets (1300 554 474)
Email the Company: manager@superiorresources.com.au

Visit: www.superiorresources.com.au

5 December 2025

Amending original announcement dated 13 November 2025

Steam Engine Mineral Resource Estimate Update Major Growth Potential Across 10km Strike

KEY POINTS:

Updated Mineral Resource Estimate completed for the Steam Engine Gold Project:
 Higher tonnage Owner Operated Processing Plant Scenario (lower cut-off grade of 0.25 g/t Au)

4.40 Mt @ 1.37g/t Au for 194,000 oz Au

High Grade Toll Treatment Scenario (higher cut-off grade of 1.0 g/t Au)

2.40 Mt @ 2.06g/t Au for 159,000 oz Au

Total Resource (cut-off grade: 0.25 g/t Au)

MEASURED: 0.87 Mt @ 1.67g/t Au for 47,000 oz Au (24%)

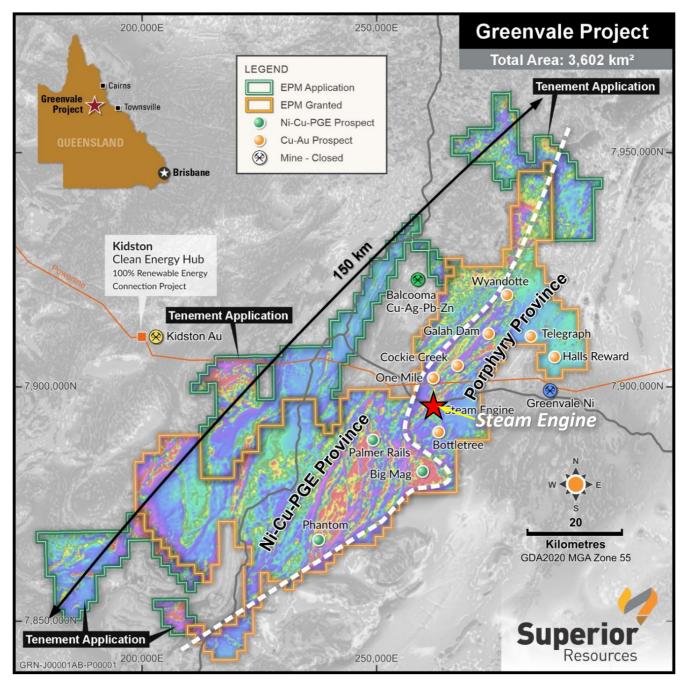
• INDICATED: 1.87 Mt @ 1.36g/t Au for 82,000 oz Au (42%)

• INFERRED: 1.66 Mt @ 1.22g/t Au for 65,000 oz Au (34%)

- Substantial Resource base: Resource envelope defined to 200m depth over 1.5 km of continuous lode strike
- Significant Upside Potential: A further 10 kms of prospective lode extensions identified by recent studies, presenting substantial growth potential
- Growth-Focussed Drilling: Drilling program design underway to drive additional Resource expansion across multiple target zones

Superior Resources Limited (ASX:SPQ) (Superior, the Company) is pleased to provide a Mineral Resource Estimate Update (MRE) for its 100%-owned Steam Engine Gold Project, located 210 km west of Townsville, Queensland (Fig. 1).

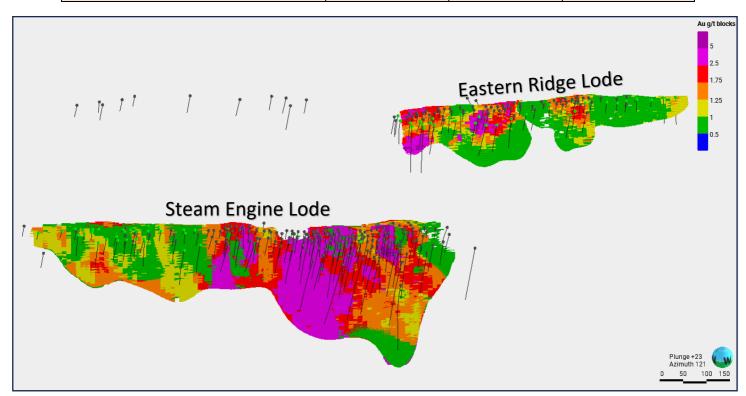
The MRE updates the 2022 MRE¹ and incorporates investigative and Resource expansion drilling conducted during H2 2024. The 2024 drilling² investigated the northern end of the Steam Engine Lode and the northern and southern ends of the Eastern Ridge Lode. Only limited drilling was conducted to extend the Resource envelopes at depth.


The MRE is presented on the basis of two operational scenarios: a toll treatment scenario (block cut-off grade of 1.0 g/t Au and above); and a SPQ-owned and operated processing plant scenario (block cut-off grade of 0.3 g/t Au (0.25 g/t Au cut-off)) (**Table 1**).

Superior's Managing Director, Peter Hwang, said: "The 2025 MRE update gives us a solid platform for the Feasibility Study and reveals exciting new lode structures at Steam Engine's northern end. We've extended the strike length and uncovered a new gold trend with multi-kilometre potential. With gold prices remaining strong and the 2024 Scoping Study showing robust returns, we're accelerating development planning and launching a further along-strike expansion drilling program."

¹ Refer ASX announcement dated 11 April 2022.

² Refer ASX announcements dated 23 September 2024, 3 October 2024, 20 December 2024, 24 March 2025, 10 April 2025.


Figure 1. Plan showing Greenvale Project regional magnetics, granted and new EPM applications and key prospects within porphyry Cu-Au and Ni-Cu-PGE domains.

Summary MRE Update

Table 1. Steam Engine Gold Project Updated 2025 Mineral Resource Estimates

Scenario ³	Classification	Tonnes (Mt)	Grade (g/t Au)	Ounces (Au)
OWNER OPERATOR	MEASURED	0.87	1.67	47,000
SCENARIO (0.25 g/t Au block grade cut-	INDICATED	1.87	1.36	82,000
off)	INFERRED	1.66	1.22	65,000
TOTAL		4.40	1.37	194,000
TOLL TREATMENT	MEASURED	0.53	2.40	41,000
SCENARIO	INDICATED	1.04	2.03	68,000
(1.0 g/t Au block grade cut-off)	INFERRED	0.82	1.88	50,000
TOTAL		2.40	2.06	159,000

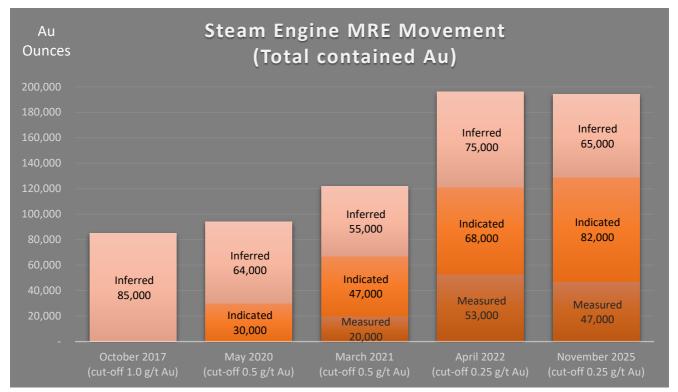


Figure 2. Oblique 3D view (from above GL) of the Steam Engine and Eastern Ridge lode block models (only showing blocks >0.5 g/t to enable visibility of higher grades) viewed towards grid south easterly showing block grade categories.

_

³ Mineral Resource estimates are calculated on the basis of preliminary studies indicating that material of 1.0 g/t Au and above would likely be viable for a **Toll Treatment** operation and material of 0.25 g/t Au and above would likely be viable for an **Owner Operated Processing Plant** operation. Due to rounding to appropriate significant figures, minor discrepancies in calculations of reported tonnes, grades and ounces may occur. Tonnages are dry metric tonnes. The lower grade material above 0.25 g/t cut-off is inclusive of the higher grade cut-off (+1.0 g/t) reported Resource. Mineral Resources are not Ore Reserves and do not have demonstrated economic viability. Inferred Resources have less geological confidence than Indicated Resources and should not have modifying factors applied to them. It is reasonable to expect that with further exploration most of the Inferred Resources could be upgraded to Indicated Resources.

Figure 3. Chart showing changes in the Mineral Resource inventory at the Steam Engine Gold Project. For further information regarding prior Mineral Resource Estimates, refer to the following ASX announcements: "Maiden JORC inferred Mineral Resource Estimate, Steam Engine Gold Deposit", dated 19 October 2017; "Steam Engine Gold Mineral Resource upgraded 11%. Scoping Study planned amid record AUD gold prices", dated 4 May 2020; "Steam Engine revised Mineral Resource Estimate: JORC Measured and Indicated Resources upgraded by 31%", dated 22 March 2021; and "Material upgrade in Steam Engine Resource to 196,000 oz Au with 80.6% increase to Measured and Indicated categories", dated 11 April 2022.

Figure 4. Aerial view of the Steam Engine Gold Project taken during 2021 Resource drilling program, looking southeast.

Superior's Managing Director, Peter Hwang, said:

"The 2025 MRE update and information from the modelling process have delivered a solid foundation to progress the current Feasibility Study and also a better understanding of mineralisation controls to guide efficient Resource expansion drilling programs going forward.

"The key differences between the 2022 MRE and the 2025 MRE are the inclusion of RC drill holes from the modestly sized 2024 RC drilling program and the use of Ordinary Kriging by an independent consulting firm for modelling of the MRE. This was deemed necessary for the purpose of the Feasibility Study.

"Although the overall gold inventory remained very similar to the 2022 MRE, geological modelling of the 2024 drilling data at the northern end of the Steam Engine Lode highlighted significant and important lode characteristics at the northern end. These include the development of multiple, stacked lodes as well as a new lode set that appears to have a different orientation to the main Steam Engine lodes. In particular, the new lode set aligns with a more westerly-oriented gold trend with a south-westerly strike that can be traced for several kilometres.

"The updated MRE has extended the Mineral Resource envelope from 1.3 kilometres to 1.5 kilometres of lode strike. Recent mapping, soil geochemistry and ground magnetics have identified at least another 10 kilometres of additional strike potential with mineralised lode cropping out at surface in several places.

"With the price of gold showing buoyancy above A\$6,000 per ounce and our 2024 Scoping Study indicating robust returns at a gold price assumption of A\$3,250, we will be expediting the Feasibility Study and development planning process, including rolling out a further Resource expansion drilling program. We look forward to updating the market and releasing full details of the programs in due course."

2025 MRE Update

The updated MRE for the Steam Engine Gold Project (**Project**) incorporates data from most of the reverse-circulation (**RC**) and diamond drill holes completed during 2020, 2021 and 2024, including data from historic RC holes⁴. The updated MRE supersedes the earlier 2022 Mineral Resource Estimate announced to the market on 11 April 2022.

Data source - Drill Holes

A total of 148 RC, 18 diamond core and 3 diamond core tails on RC pre-collared drill holes for 24,269m have been used to define Mineral Resources within the Steam Engine and Eastern Ridge lodes.

Prior to Superior's acquisition of the project in 2017 another four companies completed drilling programs: Noranda from 1985 to 1987; Pioneer Resources from 1988 to 1989; Pancontinental in 1994; and Beacon in 2007. Historical drilling was dominantly RC with limited diamond core holes. **Drilling by Superior comprises approximately 80% of the total metres at both deposits**.

Drill hole pierce points in the Steam Engine and Eastern Ridge lodes are spaced at 25m or less, with 10 m spacing in parts of the Steam Engine Lode (**Fig. 2**).

⁴ Refer to Drill Hole and Intercept information set out in Appendix 1 to this announcement.

Estimations for two operating scenarios

The Resource modelling process produced single block models for each of the Steam Engine and Eastern Ridge lodes. Mineral Resource estimations were calculated to suit two operating scenario models:

- 1. High Grade MRE Toll treatment scenario; and
- 2. Low Grade MRE Owner operated processing plant scenario.

The two scenarios were selected on the basis of preliminary studies indicating that lode intersections of 1.0 g/t gold and above would likely be viable for a toll treatment operation and that lode intersections of 0.3 g/t gold and above would likely be viable for a SPQ owned and operated processing plant operation. The low-grade model would only be viable if a sufficient amount of additional open-pit ounces can be defined from further drilling. The purpose for assessing the two scenarios was to assist in determining the most beneficial development pathway for the Project.

The updated Measured, Indicated and Inferred MREs total (Table 1):

- 4.40 Mt @ 1.37 g/t Au for 194,000 oz Au (Owner Operator Scenario @ 0.25 g/t Au cut-off); and
- 2.40 Mt @ 2.06 g/t Au for 159,000 oz Au (Toll Treatment Scenario @ 1.0 g/t Au cut-off).

Comparison to 2022 MRE

Compared to the 2022 MRE, the updated MRE provides good support for the prior estimate, with a total of 194,000 oz Au compared to 196,000 oz Au in the 2022 MRE (**Fig. 3**).

Although the updated MRE includes additional drill hole data from the 2024 drilling program and extended the overall strike length of the Resource envelope by about 200 metres, several factors have contributed to limiting expansion of the Mineral Resource inventory. These factors include:

- the 2024 drilling program was relatively modest in size and mainly investigated the northern ends of the Steam Engine and Eastern Ridge lodes, with limited down-dip drilling;
- whilst significant positive development of mineralisation was encountered at the northern ends of the lodes (e.g. multiple-stacked lodes and new hanging wall lodes), additional dilution was introduced from barren zones between the multiple-stacked lodes; and
- a different modelling and interpretation technique was used for the updated MRE (Ordinary Kriging, instead of inverse distance cubed (ID3)).

Overall, at the 0.25 g/t Au cut-off there has been an increase in tonnes and a slight decrease in grade to give a small increase in ounces (**Tables 2 and 3, Fig. 3**). At the 1.0 g/t Au cut-off there has been an overall decrease in tonnes and no change in grade to give a decrease in ounces.

Most of the loss in ounces at the 1.0 g/t Au cut-off is from the Eastern Ridge model, which is explained by drilling since 2022 that targeted the down-dip and along strike extensions to the lodes. Results of this drilling gave intersections that were both narrower and lower grade than the 2022 modelling had predicted. Although lode volumes were extended along strike, there was still a net loss in tonnes compared to 2022. The results are largely explained by insufficient data to indicate the mineralising fluid pathways. It now appears that the fluid pathways and potential ore shoots are oriented down-dip towards the northwest and that further drilling to investigate the pathways is required in the next drilling program.

There was also a volume loss of about 10% (210 kt) at the Steam Engine Lode system at the 1.0 g/t Au cut-off compared to the 2022 model, accompanied by an increase in average grade of about 9%, resulting in a small overall loss of ounces. At the 0.25 g/t cut-off, tonnes increased by 9% and grade decreased by 7% to give a 4%

increase in ounces. This increase can be mostly attributed to the addition of the hangingwall zone in the north of the system that is mostly below 1.0 g/t Au.

Decreases in grade (and ounces) at the 1.0 g/t Au cut-off is also partly due to the difference in modelling and estimation techniques utilised. The 2022 model used inverse distance cubed (ID3) estimation with a global top cut of 60 g/t Au, which will have increased the influence of higher-grade samples somewhat compared to kriging, especially in those areas with wider spaced drilling.

Differences in Resource categories reflect differing opinions of the Competent Persons regarding the confidence in grade and tonnage estimates.

Table 2. 2025 Mineral Resource Estimate for the Steam Engine Gold Project

0.25 -/-	N	/leasured		li	ndicated			Inferred			TOTAL	
0.25 g/t cut-off	Tonnes (kt)	Au (g/t)	Au (oz)									
Steam Engine	870	1.67	47,000	1,655	1.33	71,000	1,321	1.22	52,000	3,846	1.37	169,000
Eastern Ridge				214	1.62	11,000	342	1.22	13,000	555	1.37	25,000
TOTAL	870	1.67	47,000	1,869	1.36	82,000	1,663	1.22	65,000	4,400	1.37	194,000
1.0 g/t cut-off	N	/leasured		li	ndicated			Inferred			TOTAL	
Steam Engine	534	2.40	41,000	890	2.04	58,000	679	1.88	41,000	2,103	2.08	141,000
Eastern Ridge				152	1.98	10,000	143	1.89	9,000	296	1.94	18,000
TOTAL	534	2.40	41,000	1,042	2.03	68,000	822	1.88	50,000	2,400	2.06	159,000

Table 3. 2022 Mineral Resource Estimate for the Steam Engine Gold Project⁵

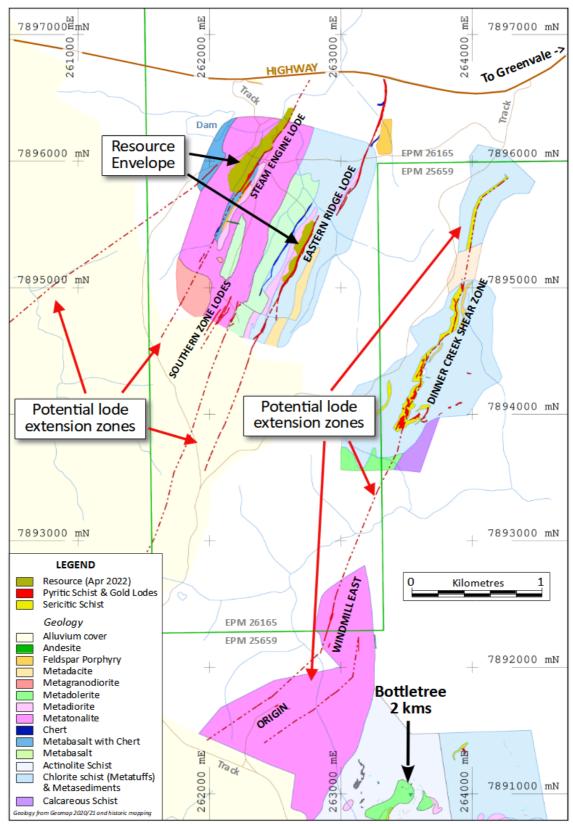
	N	/leasured		I	ndicated			Inferred			TOTAL	
0.25 g/t cut-off	Tonnes (kt)	Au (g/t)	Au (oz)									
Steam Engine	670	2.10	45,000	1,260	1.50	59,000	1,650	1.20	62,000	3,580	1.44	166,000
Eastern Ridge	130	1.90	8,000	160	1.70	9,000	310	1.30	13,000	600	1.56	30,000
TOTAL	800	2.07	53,000	1,420	1.52	68,000	1,960	1.22	75,000	4,180	1.46	196,000
1.0 g/t cut-off	N	/leasured		Indicated			ı	Inferred			TOTAL	
Steam Engine	490	2.70	42,000	910	1.80	54,000	950	1.60	49,000	2,350	1.92	145,000
Eastern Ridge	100	2.20	7,000	110	2.30	8,000	160	2.10	11,000	370	2.19	26,000
TOTAL	590	2.62	49,000	1,020	1.85	62,000	1,110	1.67	60,000	2,720	1.96	171,000

⁵ Refer ASX announcement "Material upgrade in Steam Engine Resource to 196,000 oz Au with 80.6% increase to Measured and Indicated categories", dated 11 April 2022.

Steam Engine Project Resource expansion potential

The Mineral Resources that have been estimated for the Project relate mainly to infill drilling over a combined 1.5 kilometres of strike length at the Steam Engine and Eastern Ridge lodes and to a maximum vertical depth of approximately 200 metres.

Exploration work conducted by the Company during 2020 and 2022 has identified several corridors totalling over 10 kilometres in length that have significant lode extension and new lode potential (**Fig. 5**).


Considering the updated MRE has been developed over only 1.5 kilometres of lode strike, the Company will focus on drill testing the lode extension zones as soon as possible.

Forward plans

Subject to funding, the key objectives for the Project are currently to:

- 1. Complete a feasibility study on a mining and toll treatment scenario during Q2 2026;
- 2. Establish a maiden Ore Reserve;
- 3. Commence an exploration drilling program to further expand the total Mineral Resources; and
- 4. Progress regulatory approvals processes for the grant of a mining lease, which include environmental and native title matters.

Figure 5. Geology plan showing outcropping gold lodes, Steam Engine and Eastern Ridge Resource envelopes and lode extension corridors as supported by soil geochemistry, historic workings or outcropping lodes.

Summary Resource Estimation and Reporting Criteria

GEOLOGY AND GEOLOGICAL INTERPRETATION

The Steam Engine Gold Deposit is located within the Company's greater Greenvale Project (**Fig. 1**) and is hosted within a belt of metamorphosed volcanic and sedimentary rocks of probable Cambro-Ordovician age.

Government mapping over the Greenvale Project area is covered by the Burges and Conjuboy 1:100,000 sheets. The Greenvale Project covers an area predominantly mapped as units of the Lugano Metamorphics and the Cockie Spring Tonalite with areas of Cambro-Ordovician Eland Metavolcanics and Permo-Carboniferous Bally Knob volcanics in the north of the project area.

Rocks to the west of the Greenvale township were originally considered to be an easterly extension of the Cambro-Ordovician volcanic belt that contains the Balcooma VMS deposit. However, the Greenvale Project area differs significantly from the Balcooma VMS area such that it should be considered as a separate geological domain (Lucky Creek Domain) of the Cambro-Ordovician belt.

The Lucky Creek Domain is interpreted to contain metamorphosed primitive mantle-derived intrusions, volcanics and related sediments with low levels of uranium, thorium and lead. It is likely that some of the serpentinised ultramafic rocks of the Greenvale area are part of a sea floor volcano-sedimentary package rather than injected or intruded rocks.

At the Steam Engine Gold Deposit, gold is mineralised within a number of north-northeast trending, west-dipping pyritic quartz-muscovite-carbonate schist lodes within metamorphosed intermediate to basic intrusives and metasediments (**Fig. 5**). The metamorphosed host rocks have been intensely chlorite—epidote altered in the vicinity of the mineralised shear zones.

Additionally, the mineralisation appears loosely associated with intense sericite altered zones with variable silicification and are generally mappable when surface exposure is good. Initial observations are that the effects of sericite alteration together with visible sulphide content may assist in the extraction of the lode zones and to help reduce dilution effects during mining.

The gold mineralisation is associated with a sulphide mineral assemblage comprising pyrite, minor arsenopyrite, pyrrhotite, and chalcopyrite (all fine grained) (**Figs. 6 to 8**). Gold is mineralised within schistose lodes of which, the Steam Engine Lode is currently the most notable.

The Steam Engine Lode has an outcrop strike length of approximately 500 metres and a further 800 metres that does not crop out at surface has been identified to the north by drill holes. The Eastern Ridge lode is located approximately 500 metres east of the Steam Engine Lode. The Eastern Ridge lode has a surface strike length of approximately 1,400 metres.

The gold mineralisation is interpreted as mesothermal lode type. The Company considers that the gold mineralisation is most similar to the orogenic style.

The gold bearing lodes are developed within shear zones and show strong continuity and a persistent dip to the west. The Steam Engine lode typically dips from 50° to 60° to the West. The Eastern Ridge lode typically dips from 45° to 55° to the West.

Figure 6. Strongly foliated dolerite with biotite-silica-chlorite-pyrite-arsenopyrite alteration associated with quartz veinlets. Refer to ASX announcement dated 5 November 2020 for additional information on SDD005 exploration results.

Figure 7. Quartz chlorite schist, chlorite alteration, with trace pyrite-arsenopyrite and a late cross-cutting quartz-carbonate vein. Refer to ASX announcement dated 5 November 2020 for additional information on SDD006 exploration results.

Figure 8. Strong silica-biotite-pyrite alteration, minor chlorite within a dolerite unit. Refer to ASX announcement dated 5 November 2020 for additional information on SRD001 exploration results.

RESOURCE DRILLING

A total of 317 drill holes for 24,268.88 metres of drilling has been used for this updated Mineral Resource Estimation. Additional historical drilling not utilised includes reconnaissance rotary air-blast (**RAB**) holes and 9 historical RC holes for which sample and assay data was incomplete.

Tables 4 and 5 summarise Resource drilling by lode, drill hole type and by company. About 80% of the drilling used for the Resource estimation was completed by Superior. Appendix 1 sets out the drillhole and intercept information.

The Mineral Resource relates only to parts of the Steam Engine and Eastern Ridge lodes.

Table 4. Summary of Resource drilling by drill hole type

Deposit	Drilling Method	Total Metres	Number of Holes
	DD	2,105.58	15
Steam Fusing	RC	15,578.30	198
Steam Engine	RC/DD	683.10	3
	Total	18,366.98	216
	DD	109.90	3
Eastern Ridge	RC	5,792.00	98
	Total	5,901.90	101
Grand To	otal	24,268.88	317

Table 5. Summary of Resource drilling by company

Deposit	Drilling Method	Total Metres	Number of Holes
	Noranda	1,809.78	18
Steam Frainc	Pioneer	2,475.10	37
Steam Engine	Beacon	288	3
	Superior	13,794.10	158
	Noranda	525	8
Footowa Bidge	Pancontinental	100	2
Eastern Ridge	Beacon	126	2
	Superior	5,150.90	89
Grand To	otal	24,268.88	317

COLLAR SURVEYS

Historical collars were originally surveyed onto a local grid system aligned to an azimuth of 017°. The Company has located and re-surveyed most of these collars with differential GPS.

All Superior drill holes were set up using handheld GPS which were then located by a qualified surveyor using DGPS. Collars are recorded in Map Grid Australia 1994 zone 55 coordinates.

Topographic control is currently from DGPS pickups merged with RL adjusted contours.

DOWN-HOLE SURVEYS

Survey methods for historical drill holes are not recorded and most historic RC holes have only a single collar survey in the database. Recent drilling does not show any significant hole path drift and many of the historic holes are less than 100 metres long.

All Superior holes were surveyed using a Reflex Gyro north-seeking gyroscopic instrument to obtain accurate down-hole directional data.

Figure 9. Reverse Circulation drilling and sampling at the Steam Engine Lode

LOGGING

All drill holes were logged by Terra Search or Pinata geologists having sufficient qualification and experience for the mineralisation style expected and observed at each hole.

All RC drill holes were logged in their entirety at 1 m intervals for the RC drill holes. A spear was used to produce representative samples for the logging of RC holes. RC chip trays were prepared of each RC drill hole. All chip trays were photographed.

Intact entire diamond drill core was used for the logging of the diamond core. The core was also used to record RQD, as well as structural information and geological logging. The core trays were photographed.

SAMPLING AND SUB-SAMPLING TECHNIQUES

Sampling information used in the Resource estimation was derived from both RC and diamond drill holes. Techniques used during various phases of the drilling complied with industry standard procedures. Crosschecking by the Company between the various drilling phases gives consistent results for the different areas drilled.

RC Drill Hole Samples

a) Historical

Sampling methodologies are not recorded for all historical RC drill holes. Diamond core holes were sampled by sawing core in half down the core axis on nominal 1m intervals that were adjusted for changes in geology where necessary.

b) Superior

RC Drilling was conducted by AED (Associated Exploration Drillers) using UDR 650, McCulloch's DR 950, or SCHRAMM 660 drilling rig using a 5.5 inch drill bit. Additional to the on-board air compressor of the drilling rig being used, additional compressed air was available as necessary via a separate booster truck. Sampling was by using a face-sampling hammer bit. Sub-samples were collected from a riffle splitter attached to the drill rig cyclone and collected over 1m intervals. Approximately 1-3 kg of material was collected for every sub-sample and sent for assaying.

Diamond drilling was conducted by AED using a UDR650, or McCulloch's DR 950 drilling rig and NQ drill rods and wireline to retrieve core. Drill core was oriented to allow structural measurements. Deeper drill holes were pre-collared using RC Drilling methods outlined above. Diamond core drill samples were collected by quartering of NQ core. Approximately 1 to 1.5 kg of sample was collected over each one metre interval used for assaying.

Drill bit sizes used in the drilling were consistent in size and are considered appropriate to indicate the degree and extent of mineralisation.

Diamond Core Samples

For all companies core was sub-sampled by cutting core in half longitudinally using a core saw. Samples were nominally 1m in length, with breaks on the main geological contacts (mostly barren dyke contacts). For any QC field duplicate samples the half core was re-cut into two quarter-core pieces.

SAMPLE ANALYSIS

All Superior's samples were submitted to Intertek (2021) or SGS laboratories (2020 and 2024) in Townsville for gold analysis. Mineralised samples were also submitted for multi-element assaying. Samples were crushed, pulverised to ensure a minimum of 85% pulp material passing through 75 microns, then analysed for gold by fire assay method FA50/OE04 (Intertek in 2021) or GO_FA50V10 (SGS in 2020) using a 50-gram sample.

Multi-element analyses used a four-acid digest followed by an OES finish using method 4A/OE33 (Intertek in 2021) or ICPAES finish using method GO_ICP41Q100 (SGS in 2020). The following 33 elements: Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W, Zn were assayed for in 2021 and the following 38 elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, U, V, W, Y, Zn, Zr were assayed in 2020.

DRY BULK DENSITY

Measurements of specific gravity were taken by ALS laboratories on drill core composite samples from Superior's drilling in 2020, using the Archimedian water immersion method. In total 14 samples were tested including fresh and partially oxidised examples of mineralised and unmineralised material. Due to the shallow nature of the top of fresh rock surface there was only limited opportunity to sample partially oxidised rock. Results are summarised in **Table 6**, with data indicating SG's of 2.9 t/m3 and 2.7 t/m3 for fresh and oxidised mineralised material respectively and SG's of 3.0 t/m3 and 2.8 t/m3 for fresh and oxidised waste material.

The Competent Person considers that there are too few specific gravity measurements obtained so far to provide a good indication of the likely variability in densities of mineralised and waste material. The average specific gravity measurements are consistent with descriptions of the mineralogy/geology of rocks in the Project, but further measurements should be completed to provide more confidence in the results.

Table 6. Specific Gravity Measurements by Material Type⁶

Material	Туре	Hole	From (m)	To (m)	Interval (m)	Au (g/t)	Lode	SG t/m ³
	Oxidised	SDD006	21	27	6	1.71	Steam Engine	2.86
	Oxidised	SDD002	13	16	3	1.77	Eastern Ridge	2.54
		SDD004	57	60	3	0.99	Steam Engine	2.90
Mineralised		SDD005	42	48	6	2.09	Steam Engine	2.99
willeralised	sed Fresh		133	141	8	2.46	Steam Engine	2.94
	Fresh	SRD002	195	200	5	1.98	Steam Engine	2.83
		SDD001	29	33	4	1.44	Eastern Ridge	2.89
		SDD003	22	26	4	1.81	Eastern Ridge	2.77
		SDD006	16	19	3	-	Steam Engine	3.05
	Oxidised	SDD001	17	20	3	-	Eastern Ridge	2.74
Linusinonaliaad		SDD003	12	15	3	-	Eastern Ridge	2.60
Unmineralised		SDD004		36	3	-	Steam Engine	3.05
	Fresh	SDD005	38	41	3	0.09	Steam Engine	2.97
		SRD001	112	115	3	0.01	Steam Engine	3.06

QA/QC

Certified reference materials supplied by commercial manufacturers (CRM's) were inserted into the sampling sequence, which included various ore grades and some blank quartz pulps. Based on the results of QC sample analysis, in addition to the internal QA/QC standards, repeats and blanks run by the laboratory, the laboratory was deemed to provide an acceptable level of accuracy and precision. Field duplicates were collected directly at the rigs from a second chute on a riffle splitter. Analysis of the results indicates levels of precision typical for shear-hosted gold deposits with an average relative difference between duplicate pairs of 10%.

METALLURGICAL TEST WORK

Preliminary metallurgical leach test work was undertaken in October and November 2020 by ALS Laboratories to confirm the amenability of the ore to conventional CIP / CIL leaching⁷. Six representative sample composites were generated from mineralised material from the Steam Engine and Eastern Ridge lodes.

Testing parameters were as follows:

- Grind size of P80 (80% passing size of 75 microns);
- Sodium cyanide dosage of 1.5 kg/t, density of 40% solids, pH of 10 to 10.5, with dissolved oxygen at 15 ppm to 20 ppm; and
- Run time of 48 hours with a sample taken after 24 hours to assist in understanding leach kinetics.

Results for the Eastern Ridge samples (5223045 and 5223046) were excellent with 97% and 98% gold recoveries respectively, and with virtually all of this extracted after 24 hours. Results for the Steam Engine lodes were lower, with the average grade samples (5223044, 5223042 and 5223043) having recoveries of 84%, 80% and 73% respectively.

At this stage, no additional test work has been undertaken to investigate options to improve gold recovery in the Steam Engine Lode samples.

⁶ Refer ASX announcement "Positive Steam Engine Gold Scoping Study. Robust economics for Toll Treatment and Stand-Alone Plant scenarios", dated 3 September 2024.

⁷ Refer ASX announcement "Positive Steam Engine Gold Scoping Study. Robust economics for Toll Treatment and Stand-Alone Plant scenarios", dated 3 September 2024.

MINERAL RESOURCE ESTIMATION

Geological Interpretation

The Steam Engine Gold Project hosts mesothermal orogenic style lode-gold deposits associated with quartz-sulphide alteration within strongly foliated shear zones hosted by metabasalt (Steam Engine Lodes) and metasediment/metadiorite (Eastern Ridge lodes). Lodes strike on average to 030° at Steam Engine and 022° at Eastern Ridge, although there is some variation in strike along their length. Both lode systems dip to the northwest at around 55°-60°.

Oxidised to partially oxidised material occurs to an average depth of around 15 m over both Steam Engine and Eastern Ridge.

Estimation Domains

Estimation domains were defined using lower cut-off grades of 0.25 - 0.3 g/t Au for the Steam Engine and Eastern Ridge lodes, with this value selected as a natural break in the global distribution of gold grades on lognormal probability plots. An upper break at around 1 g/t Au was apparent at the Steam Engine Main Lode and was used to define a continuous domain that was flanked by lower grade material. A similar subtle break at 1 g/t Au at the Eastern Ridge Lode was apparent but the resulting domain was considered too small and with less confident spatial continuity to be created separately.

Models were generated in Leapfrog Geo software as "Vein" models, defined as zones where there is a single simple structure with distinct hangingwall and footwall contacts. Vein intersections were manually selected and coded to ensure continuity. Models were allowed to 'pinch out' to zero thickness where drillholes along the central trend of the vein model did not contain any grade. At depth and along strike where there were no controlling holes the vein models were clipped using a polyline representing a maximum distance of approximately 25m from the nearest drill hole.

The Steam Engine Lode system is modelled as four estimation domains (**Fig. 10**). The Main domain is the most continuous and comprises a high-grade zone of >1 g/t Au within a mostly broader lower grade (0.3 - 1 g/t Au) halo. The lower grade zone may either be on the hangingwall or footwall side of the high grade zone or absent altogether. A footwall zone at the southern end and a hangingwall zone at the northern end of the Main zone are both of lower grade and shorter strike extent than of the Main zone.

The Eastern Ridge Lode system comprises two separate veins slightly offset from one another separated by a short gap, named the North and South lodes. The North lode is higher grade than the South lode and contains two north-plunging higher grade and slightly thicker 'shoots'.

Dimensions

Identified mineralisation at the Steam Engine Gold Project is contained within two lode systems approximately 600 metres apart. The Steam Engine Lodes are modelled over a total strike length of 810 metres to a maximum down-dip extent of 275 metres (240 m vertical depth). True width of the Main lode varies from 1 metre to 20 metres with an average of 6.5 metres. Hangingwall and Footwall lodes have a strike extent of 185 metres and 115 metres respectively.

The Eastern Ridge Lodes are modelled over 600 metres along strike to a maximum down-dip extent of 120 metres (100m vertical depth). True width of the North and South lodes varies from <1 metre to 10 metres with an average of 3.5 metres.

The Project database covers drilling that extends beyond the limits of the two modelled lode systems with additional zones of mostly narrow mineralisation that are not included in this Resource estimate.

Drill Hole Spacing

Surface drill hole spacing is variable over the Resource area, with some parts of the Steam Engine Lode system sampled to approximately 10 metre spacing. The maximum drill spacing is 25 metres to 30 metres in the deeper intersections of Steam Engine and Eastern Ridge.

Drill density is adequate to establish geological and grade continuity of the mineralisation at a confidence level that supports at least Inferred Resource classification.

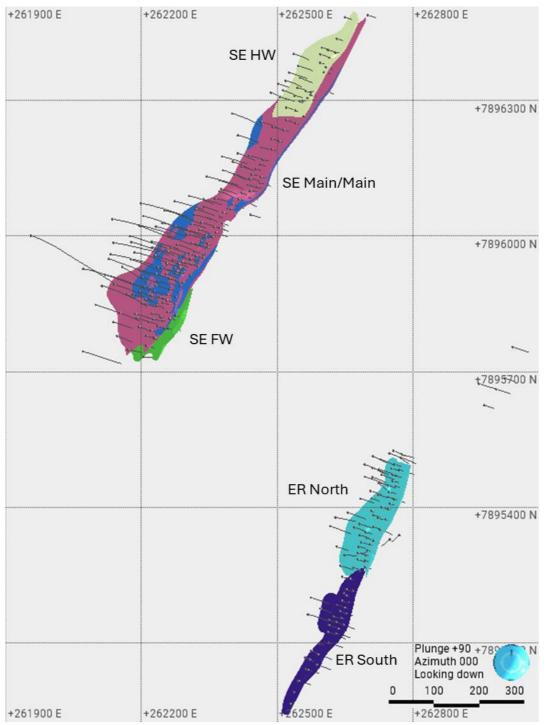


Figure 10. Plan view of Estimation Domains used for the Mineral Resource Estimation process.

Grade Capping

Capping is the process of reducing the grade of an outlier sample to a value that is representative of the surrounding grade distribution. Reducing the value of an outlier sample grade minimises the overestimation of adjacent blocks in the vicinity of that value. The datasets were assessed for extreme outliers, defined as values beyond the expected range of the sample distribution. Three extreme outlier values were discovered, two in the Steam Engine Main High Grade domain and one in the Eastern Ridge North domain. Composite statistics were analysed to determine if grade capping was necessary to reduce the influence of expected outliers on the estimation.

Histograms, log probability plots, interquartile ranges, standard deviations and metal loss are assessed when selecting a grade cap.

Two extreme outlier values in Steam Engine Main High Grade domain were included in the capping analysis, but due to the high number of other data points there was minimal effect on the domain mean grade. The Eastern Ridge North domain has a single very high-grade outlier sample of 115.25 g/t Au, over-influencing the mean and CV statistics. Usual grade capping techniques would apply a top cut to this sample that would largely remove its influence on the global domain estimate at the expense of an extreme reduction in the grade in the local area of the sample. It was decided to create a-top cut value of 40 g/t Au but use an additional spatial restriction of 50 metres to ensure that the outlier had only a localised influence on the estimate.

GRADE ESTIMATION

Ordinary Kriging was used to estimate grades into parent blocks. Results of the kriging estimation were validated against raw informing data and estimates by Nearest Neighbour and Inverse Distance weighting methods. The kriged estimate used a $2 \times 10 \times 5$ discretisation (XYZ), giving discretisation nodes spaced evenly (within the limits of the software) within the block.

Block Modelling

Separate 3D models were created for the Steam Engine and Eastern Ridge lode systems, due to the difference in strike orientation. Both models were created in MGA coordinates with differently rotated Y axes (where Y is parallel to the average strike of the lodes). Block sizes were the same for both models: 2.5 m (X), 10 m (Y) and 5 m (Z), based on average sample spacing and lode dimensions. Sub-blocking to 0.625 m (X), 1.25 m (Y) and 1.25 m (Z) was set to ensure volumes were accurately represented.

Interpreted mineralised lodes were coded to the block models. Sufficient variables were added to allow grade estimation, Mineral Resource classification, and reporting. Blocks above the original topography were coded as air and not estimated.

Informing Data and Search Parameters

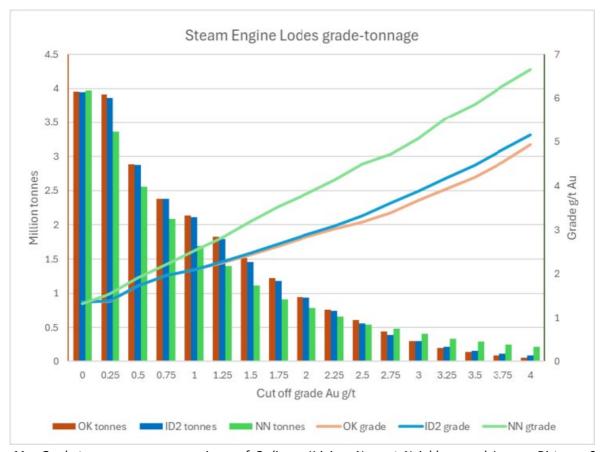
The estimation uses a two-pass strategy, with the first pass using a search radius of 30 metres to 50 metres (depending on estimation domain) with anisotropic ratios of about 1.6-2 and 7-11 respectively for the major/semi major and the major/minor ratio. Search distances were doubled in pass two. Search distances were guided by variogram ranges. Informing samples permitted were between a minimum of 5 and 8, and a maximum of between 15 and 30 composites (domain dependent). No limit was set on the maximum number of samples per hole.

MODEL VALIDATION

The block model was validated by visual and statistical comparison of drill hole and block grades and through grade-tonnage analysis. Initial comparisons occurred visually on screen, using extracted composite samples and

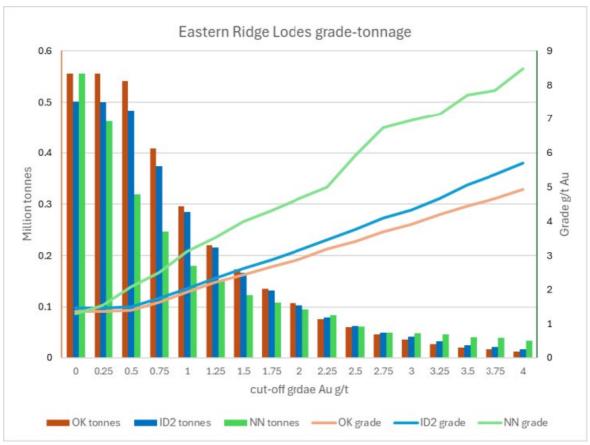
the block model. Further validation used swath plots to compare block estimates with informing sample statistics along parallel sections through the deposits.

Global Validation


The modelled block volumes were compared to mineralisation wireframe volumes for each domain, to ensure the chosen sub-blocks are sufficient to define the volumes. Block model volumes and wireframe volumes reconcile well.

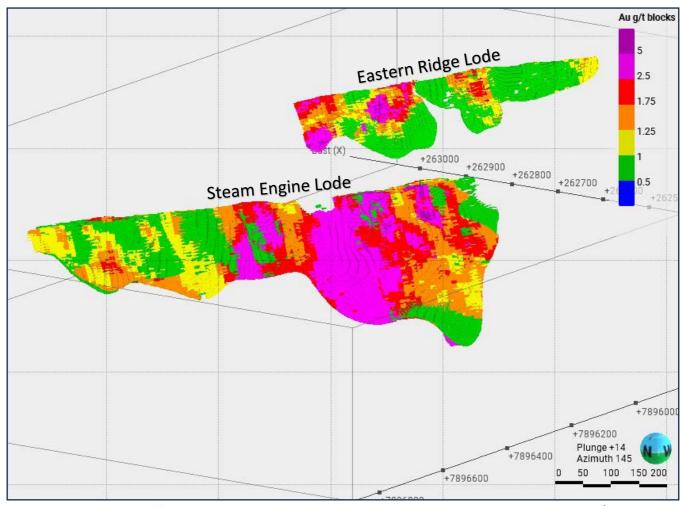
A comparison of global mean values within the grade domains shows a reasonably close relationship between composites and block model values. The comparison of composite and block grade means would normally be expected to show the composite mean being slightly higher than the block grade mean, although it should be noted that clustering effects also influence the degree of difference.

Alternative Estimation Methods


Alternative estimation methods, Nearest Neighbour and Inverse Distance Squared (ID2), were utilised to ensure the kriged estimates (OK) were not reporting a global bias. The alternate estimates provided expected correlations across various cut-off grades (Figs. 11 and 12). Nearest Neighbour shows less tonnes and higher grade (less contained metal) as it does not employ averaging techniques to assign the block grade, with distal blocks being informed by a single closest sample rather than several weighted samples.

The ID2 estimate is closer to kriging as it uses averaging weighted by distance but cannot assign anisotropy, nor can it de-cluster the input data or account for nugget effect. Using the kriging algorithm provides a more reliable, albeit smoother estimate due to the ability of kriging to de-cluster data and weight the samples based on a variogram (which incorporates the nugget effect and anisotropy).

Figure 11. Grade-tonnage curve comparisons of Ordinary Kriging, Nearest Neighbour and Inverse Distance Squared estimates, Steam Engine Lode.


Figure 12. Grade-tonnage curve comparisons of Ordinary Kriging, Nearest Neighbour and Inverse Distance Squared estimates, Eastern Ridge Lode.

FINALISED BLOCK MODEL

The final estimated block model of the Steam Engine and Eastern Ridge lodes is shown in isometric view (**Fig. 13**) and plan view (**Fig. 14**). The isometric view shows only the high grade 'main zone' of the Steam Engine and Eastern Ridge lodes in order to highlight the distribution of higher grades without the low-grade halo obscuring the internal blocks.

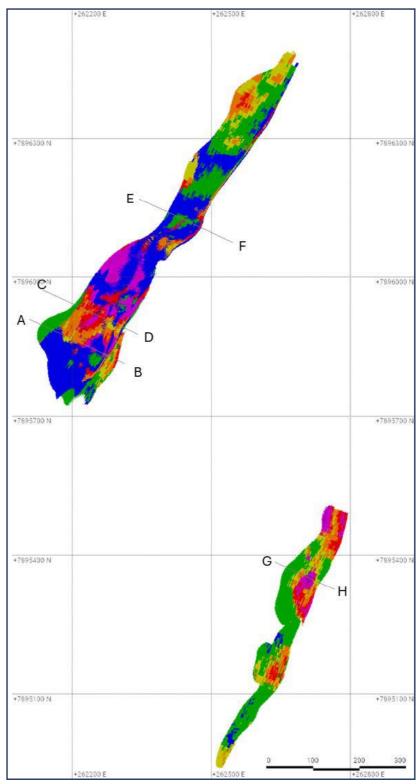

Cross-sections through each of the lodes are also shown (Figs. 15 to 18).

Figure 13. Isometric view of the Steam Engine and Eastern Ridge lodes, looking southeast. Only blocks >0.5 g/t Au shown.

Figure 14. Plan view of the Steam Engine and Eastern Ridge lodes. Location of cross-sections set out in Figures 15 to 18 are also shown.

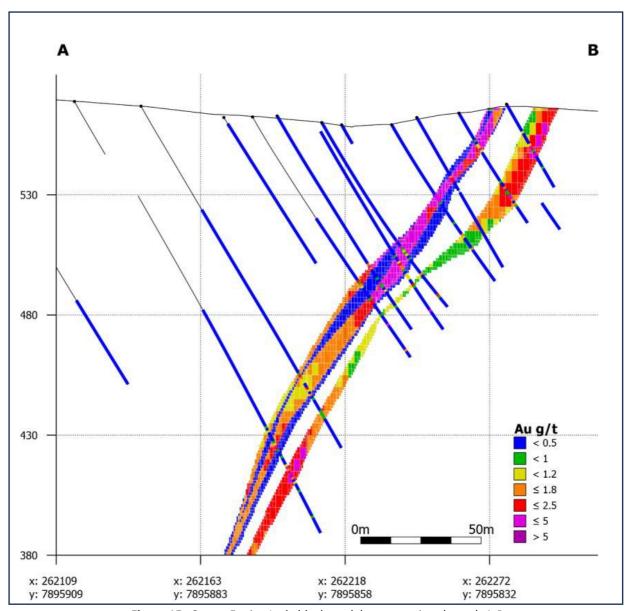
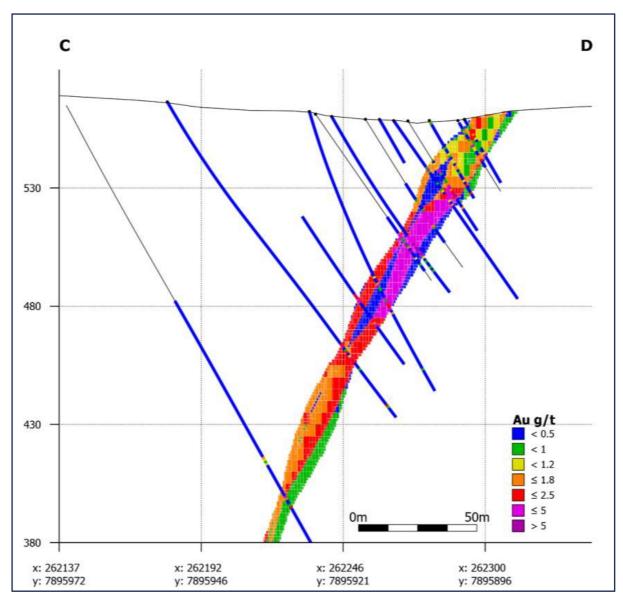



Figure 15. Steam Engine Lode block model cross-section through A-B.

Figure 16. Steam Engine Lode block model cross-section through C-D.

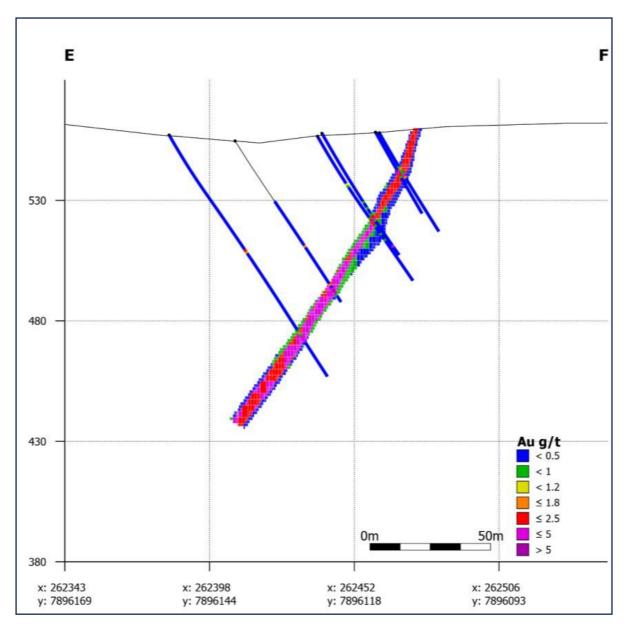


Figure 17. Steam Engine Lode block model cross-section through E-F.

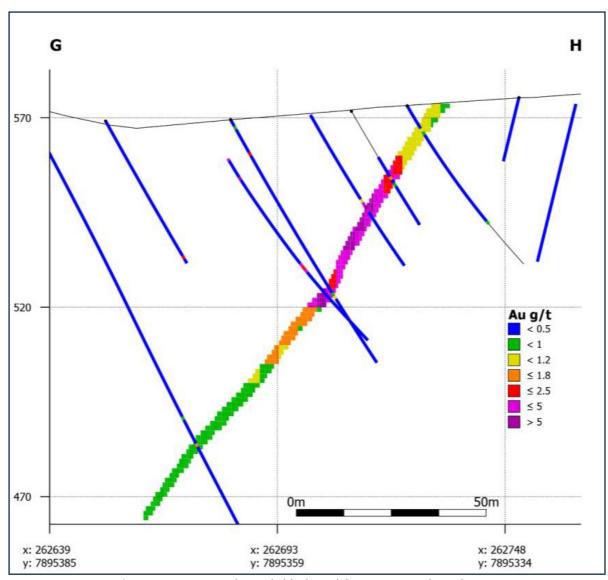


Figure 18. Eastern Ridge Lode block model cross-section through G-H.

REASONABLE PROSPECTS FOR EVENTUAL ECONOMIC EXTRACTION

A Scoping Study for the Steam Engine project was reported in September 2024⁸, based on the 2022 Resource model and with a gold price assumption of A\$3,250/oz. Two scenarios were assessed: off-site toll treatment (1 g/t cut-off) and a stand-alone on-site processing plant (0.25 g/t cut-off). Both options returned positive NPVs that were similar in value, with toll treatment producing a considerably higher IRR and lower payback period.

Given that the current gold price is approximately double the scoping study value, it can be assumed that most of the material at both reported cut-offs has reasonable prospects for economic extraction.

The reported Resource has been restricted to a depth of 200 m below surface, which is intended to approximate a likely maximum pit limit based on a strip ratio of 10:1. However, a pit optimisation has not been undertaken on the current Resource estimate.

⁸ Refer ASX announcement "Positive Steam Engine Gold Scoping Study: Robust economics for Toll Treatment and Stand-Alone Plant scenarios", dated 16 September 2024.

MINERAL RESOURCE CLASSIFICATION

The Mineral Resource Estimates were classified in accordance with JORC 2012. The Resources are classified based on data quality, drill density, number of informing samples, kriging efficiency, average distance to informing samples and vein consistency (geological continuity). Geological continuity has been demonstrated at 25 metre grid spacing over the entire strike of the deposits. Areas of high grade or geological complexity have been infilled to 10 m grid centres.

Areas drilled at the highest density within the Steam Engine Lodes at less than 15 metre average drill spacing have high confidence kriging statistics and are classified as Measured.

Blocks informed by an average sample spacing between 15 metres and 20-25 metres are classified as Indicated and kriging statistics indicate lower confidence.

Remaining areas are classified as Inferred, except for a small part of the Steam Engine Lode below a depth of 200 metres, which is considered not to meet the criteria of RPEEE and is Unclassified.

A Mineral Resource is not an Ore Reserve and does not have demonstrated economic viability. Only limited historic artisanal mining has occurred on the property and no correction has been applied for loss through mining depletion, although it is of negligible impact.

MATERIAL MODIFYING FACTORS CONSIDERED

The Steam Engine Gold Project deposits are moderate to steeply dipping mesothermal orogenic style gold deposits associated with quartz-sulphide veining and alteration hosted by an altered and strongly foliated shear zone in metabasalt and metasediments. The Company foresees mining via open pit, likely to have a moderate strip ratio (less than 12:1) due to the linear near vertical nature of the deposit, with conventional grinding and leach recovery. The Competent Person notes that this is a reasonable assumption for the assessment of Resources.

The Steam Engine mineralisation has been shown to be amenable to direct cyanidation for gold extraction. Limited metallurgical work shows moderate recovery differences between the Steam Engine and Eastern Ridge lodes. Steam Engine recoveries average around 80% and Eastern Ridge 97%, with further test work required to investigate the potential for increasing recoveries at the Steam Engine Lode.

Mineral processing and metallurgical recoveries of gold are considered when determining reasonable prospects for eventual economic extraction, but metallurgical recoveries do not have a significant impact on the Mineral Resource Estimate and have not been applied to the in-situ grades.

Mineralisation below a depth of 200 m is not considered economic at this stage of the Project, although the Steam Engine lodes remain open down plunge. The current Mineral Resource does not include any dilution or ore loss associated with practical mining constraints. No other mining assumptions have been used in the estimation of the Mineral Resource.

<ENDS>

AUTHORISED FOR RELEASE BY THE BOARD OF SUPERIOR RESOURCES LIMITED

For more information:

Peter Hwang Managing Director Tel: +61 7 3847 2887

www.superiorresources.com.au manager@superiorresources.com.au

About Superior Resources

Superior Resources Limited (ASX:SPQ) is an Australian public company exploring for large lead-zinc-silver, copper, gold and nickel-copper-cobalt-PGE deposits in northern Queensland which have the potential to return maximum value growth for shareholders. The Company is focused on multiple Tier-1 equivalent exploration targets and has a dominant position within the Carpentaria Zinc Province in NW Qld and Ordovician rock belts in NE Qld considered to be equivalents of the NSW Macquarie Arc. For more information, please visit our website at www.superiorresources.com.au.

Reporting of Mineral Resources: Information contained in this report that relates to Mineral Resources is based on information compiled by Mr Ian Taylor, an employee of Mining Associates, who is a Chartered Professional and Fellow of the Australasian Institute of Mining and Metallurgy. Mr Taylor has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Taylor consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Reliance on previously reported information: In respect of references contained in this report to previously reported Exploration Results or Mineral Resources, Superior confirms that it is not aware of any new information or data that materially affects the information, results or conclusions contained in the original reported document. In respect of previously reported Mineral Resource estimates, apart from additional data that has been used in the current 2025 MRE Update, the subject of this report, all originally reported material assumptions and technical parameters underpinning the estimates continue to apply and have not been materially changed or qualified. The form and context in which the relevant Competent Person's findings are presented have not been materially modified from the original document.

Forward looking statements: This document may contain forward looking statements. Forward looking statements are often, but not always, identified by the use of words such as "seek", "indicate", "target", "anticipate", "forecast", "believe", "plan", "estimate", "expect" and "intend" and statements that an event or result "may", "will", "should", "could" or "might" occur or be achieved and other similar expressions. Indications of, and interpretations on, future expected exploration results or technical outcomes, production, earnings, financial position and performance are also forward-looking statements. The forward-looking statements in this presentation are based on current interpretations, expectations, estimates, assumptions, forecasts and projections about Superior, Superior's projects and assets and the industry in which it operates as well as other factors that management believes to be relevant and reasonable in the circumstances at the date that such statements are made. The forward-looking statements are subject to technical, business, economic, competitive, political and social uncertainties and contingencies and may involve known and unknown risks and uncertainties. The forward-looking statements may prove to be incorrect. Many known and unknown factors could cause actual events or results to differ materially from the estimated or anticipated events or results expressed or implied by any forward-looking statements. All forward-looking statements made in this presentation are qualified by the foregoing cautionary statements.

Disclaimer: Superior and its related bodies corporate, any of their directors, officers, employees, agents or contractors do not make any representation or warranty (either express or implied) as to the accuracy, correctness, completeness, adequacy, reliability or likelihood of fulfilment of any forward-looking statement, or any events or results expressed or implied in any forward-looking statement, except to the extent required by law. Superior and its related bodies corporate and each of their respective directors, officers, employees, agents and contractors disclaims, to the maximum extent permitted by law, all liability and responsibility for any direct or indirect loss or damage which may be suffered by any person (including because of fault or negligence or otherwise) through use or reliance on anything contained in or omitted from this presentation. Other than as required by law and the ASX Listing Rules, Superior disclaims any duty to update forward looking statements to reflect new developments.

APPENDIX 1

Drill Holes and Intercepts Used in MRE

Historic Drilling (Pre-2017 Drill Holes) – Drill Hole Information – (Listing Rules 5.7, 5.8)

Additional Information For additional drill hole location, design specification and mineralisation information in respect of pre-2017 drill holes that have been used for the purpose of the current MRE update, **refer to ASX announcement** "Results Received From Recent Drilling at Steam Engine Gold Project – High-grade gold assay results highlight potential to extend previously delineated gold lodes", dated 14 August 2017.

hole id	East	North	RL	depth	dip	azimuth	Year	from	to	dh length	approx. true	Au ppm	Intercept Flag
LSRC001	262216	7895811	563	84	-55	108	1985	37	42	5	2.98	2.71	SE Main HG
LSRC001	262216	7895811	563	84	-55	108	1985	42	44	2	1.19		SE main
LSRC001	262216	7895811	563	84	-55	108	1985	48	62	14	8.34	0.83	SE FW
LSRC002	262262	7895906	558	92.3	-55	108	1985	24	27	3	1.79	1.53	SE Main HG
LSRC002	262262	7895906	558	92.3	-55	108	1985	27	36	9	5.36		
LSRC002	262262	7895906	558	92.3	-55	108	1985	36	44	8	4.77	1.76	SE Main HG
LSRC003	262320	7895982	558	89	-55	108	1985	35	41	6	3.58	2.83	SE Main HG
LSRC004	262026	7894713	594	60	-55	108	1985						No sig int
LSRC005	262745	7895423	571	72	-55	108	1985	23	27	4	2.38	2.22	ER north
LSRC006	262683	7895338	571	78	-55	108	1985	34	39	5	2.98	1.05	ER north
LSRC007	262614	7895150	575	72	-60	108	1985	36	41	5	2.98	2.22	ER south
LSRC008	263021	7895755	574	66	-55	108	1985						No sig int
LSRC009	262248	7895852	562	72	-60	108	1985	26	28	2	1.19	0.28	SE main
LSRC009	262248	7895852	562	72	-60	108	1985	28	31	3	1.79	1.97	SE Main HG
LSRC009	262248	7895852	562	72	-60	108	1985	31	32	1	0.60	0.26	SE main
LSRC009	262248	7895852	562	72	-60	108	1985	51	53	2	1.19	0.38	SE FW
LSRC010	262118	7894890	594	54	-55	108	1985						No sig int
LSRC011	262644	7895246	573	72	-60	108	1985	32	36	4	2.38	0.65	ER south
LSRC012	262290	7895943	557	90	-55	108	1985	36	37	1	0.60	0.74	SE main
LSRC012	262290	7895943	557	90	-55	108	1985	37	42	5	2.98	2.94	SE Main HG
LSRC012	262290	7895943	557	90	-55	108	1985	42	53	11	6.56	0.42	SE main
LSRC013	262562	7895067	578	51	-60	108	1985	29	38	9	5.36	0.73	ER south
LSRC014	263088	7895838	576	60	-60	108	1985						No sig int
LSRC015	262984	7895661	570	60	-55	108	1985						No sig int
LSRC016	262775	7895517	569	60	-60	108	1985						No sig int
LSRC017	262310	7894618	600	72	-55	108	1985						No sig int
LSDD001	262231	7895916	561	85.9	-55	108	1985	61.55	64	2.45	1.46	2.64	SE Main HG
LSDD001	262231	7895916	561	85.9	-55	108	1985	64	65	1	0.60	0.7	SE main
LSDD001	262231	7895916	561	85.9	-55	108	1985	65	71.35	6.35	3.78	3.02	SE Main HG
LSDD001	262231	7895916	561	85.9	-55	108	1985	71.35	75	3.65	2.18		SE main
LSDD002	262128	7895950	569	190.6	-55	108		160.55	178	17.45	10.33	1.67	SE Main HG
LSDD002	262128	7895950	569	190.6	-55	108	1986	178	183	5	2.96		SE main
LSRC018	262211	7895758	563	60	-60	108	1986	6	10	4	2.38		SE main
LSRC018	262211	7895758	563	60	-60	108	1986	34	35	1	0.60	0.37	SE FW
LSRC019	262361	7896021	556	66	-60	108	1986	18	20	2	1.19	0.33	SE main
LSRC019	262361	7896021	556	66	-60	108	1986	20	23	3	1.79	4.71	SE Main HG
LSRC019	262361	7896021	556	66	-60	108	1986	23	24	1	0.60	0.51	SE main
LSRC020		7894768		60	-60		1986						No sig int
LSRC021		7894773	594	60	-57		1986						No sig int
LSRC022		7894865	592	60	-60		1986						No sig int
LSRC023		7896504	559	66	-60		1986						No sig int
LSRC024		7896337	557	54	-61		1986						No sig int
LSRC025			557	48	-60		1986						No sig int
LSRC026		7896535	556	52	-60		1986		F-2	2	4 70	0.64	No sig int
LSRC027		7895436	568	72	-60		1987	50	53	3	1.79		ER north
LSRC028	262755	7895472	571	48	-60	108	1987	29	34	5	2.98	1.08	ER north

hole id	East	North	RL	depth	dip	azimuth	Year	from	to	dh length	approx. true	Au ppm	Intercept Flag
LSRC029	262946	7895673	568	84	-60	108	1987						No sig int
LSRC030	262189	7895819	558	100	-60	108	1987	60	62	2	1.19		SE Main HG
LSRC030	262189	7895819	558	100	-60	108	1987	62	63	1	0.60		SE main
LSRC030	262189	7895819	558	100	-60	108	1987	70	91	21	12.51		SE FW
LSRC031	262311	7895985	558	94	-75	108	1987	52	61	9	5.10		SE Main HG
LSDD003	261956	7896001	577	372.98	-60	108	1987	330	331	1	0.60		SE main
LSDD003	261956	7896001	577	372.98	-60	108	1987	331	334	3	1.79		SE Main HG
LSDD003	261956	7896001	577	372.98	-60	108		347	350.5	3.5	2.08		SE FW
LSRC032	262333	7896030	558	77	-60	108	1987	49	50	1	0.60		SE main
LSRC032	262333	7896030	558	77	-60	108	1987	50	52	2	1.19		SE Main HG
LSRC032	262333	7896030	558	77	-60	108	1987	52	56	4	2.38		SE main
LSRC033	262421	7896154	554	96	-60	108	1987	57	58	1	0.60		SE main
LSRC033	262421	7896154	554	96	-60	108	1987	58	59	1	0.60		SE Main HG
LSRC033	262421	7896154	554	96	-60	108	1987	59	61	2	1.19	0.3	SE main
LSRC034	262490	7896242	554	72	-60	108	1987	41	53	12	7.15		
LSRC034	262490	7896242	554	72	-60	108	1987	53	55	2	1.19		SE Main HG
LSRC034	262490	7896242	554	72	-60	108	1987	55	56	1	0.60		SE main
LSRC035	262613	7896412	556	66	-60	108	1987	27	30	3	1.79		SE HW
LSRC035	262613	7896412	556	66	-60	108	1987	39	40	1	0.60	1.24	SE main
LSRC036	262701	7896489	554	36	-60	108	1987	_		_		_	No sig int
LSRC037	262236	7895800	564	44	-60	108		19	22	3	1.79		SE Main HG
LSRC037	262236	7895800	564	44	-60	108	1988	34	43	9	5.36		SE FW
LSRC038	262251	7895796	566	31	-60	108	1988	0	5	5	2.98		SE Main HG
LSRC038	262251	7895796	566	31	-60	108	1988	19	28	9	5.36	0.72	SE FW
LSRC039	262264	7895819	566	40	-60	108	1988						No sig int
LSRC040	262249	7895823	564	30	-60	108	1988						No sig int
LSRC041	262225	7895829	562	76	-60	108	1988						No sig int
LSRC042	262276	7895841	565	25	-60	108	1988						No sig int
LSRC043	262261	7895845	564	31	-60	108	1988						No sig int
LSRC044	262229	7895858	560	60	-60	108	1988						No sig int
LSRC045	262284	7895867	562	30	-60	108	1988						No sig int
LSRC046	262269	7895872	560	37	-60	108	1988						No sig int
LSRC047	262245	7895879	559	75	-60	108	1988				0.00		No sig int
LSRC048	262291	7895897	559	31	-60	108	1988	2	3	1	0.60		SE main
LSRC048	262291	7895897	559	31	-60	108	1988	3	18	15	8.93		SE Main HG
LSRC049	262277	7895901	559	38	-60	108	1988	12	32	20	11.91		SE Main HG
LSRC049	262277	7895901	559	38	-60	108		32	36	4	2.38		
LSRC050		7895914		32	-60		1988	0	10	10	5.96		SE Main HG
LSRC050		7895914	562	32	-60		1988	12	13	1	0.60		SE Main HG
LSRC050		7895914	562	32	-60		1988	13	18	5	2.98		SE main
LSRC051		7895919	557	40	-60		1988	18	32	14	8.34		SE Main HG
LSRC051		7895919	557	40	-60		1988	32	36	4	2.38		SE main
LSRC052		7895925	559	75	-60		1988	46	51	5	2.98		SE Main HG
LSRC052		7895925	559	75	-60		1988	51	59	8	4.76		SE main
LSRC053	262324		560	30	-60		1988	5	14	9	5.36		SE Main HG
LSRC053	262324		560	30	-60		1988	14	17	3	1.79		SE main
LSRC054		7895937	559	31	-60		1988	19	27	8	4.76		SE Main HG
LSRC054		7895937	559	31	-60		1988	27	28	1	0.60		SE main
LSRC055	262271	7895947	559	79	-60		1988	56	57	1	0.60		SE main
LSRC055	262271	7895947	559	79	-60		1988	57	63	6	3.57		SE Main HG
LSRC055		7895947	559	79	-60		1988	63	72	9	5.36		SE main
LSRC056		7895952	559	30	-60		1988	2	4	2	1.19		SE main
LSRC056		7895952	559	30	-60		1988	12	12	8	4.76		SE Main HG
LSRC056		7895952	559	30	-60		1988	12	13	1	0.60		SE main
LSRC057		7895956		38	-60		1988	20	24	4	2.38		SE Main HG
LSRC058	262297		558	75	-60		1988	39	40	1	0.60		SE main
LSRC058	262297	7895963	558	75	-60		1988	40	45	5	2.98		SE Main HG
LSRC059	262346		558	35	-60		1988	10	11	1	0.60		SE main
LSRC059	262346	7895975	558	35	-60	108	1988	11	20	9	5.36	2.49	SE Main HG

hole id	East	North	RL	depth	dip	azimuth	Year	from	to	dh length	approx. true	Au ppm	Intercept Flag
LSRC060	262331	7895979	558	35	-60	108		25	31	6	3.57		SE Main HG
LSRC060	262331	7895979	558	35	-60	108		31	32	1	0.60		SE main
LSRC061	262357	7895997	556	30	-60	108		11	12	1	0.60		SE main
LSRC062	262343	7896001	556	35	-60	108	1988	24	28	4	2.38		
LSRC062	262343	7896001	556	35	-60	108	1988	28	29	1	0.60		SE main
LSRC063	262319	7896009	558	72	-60	108	1988	51	58	7	4.17		SE Main HG
LSRC064	262373	7896018	557	26	-60	108	1988	11	12	1	0.60	0.57	SE main
LSRC065	262322	7894524	601	31	-60	108	1988						No sig int
LSRC066	262307	7894529	601	50	-60	108							No sig int
LSRC067	262099	7893747	597	43	-60	108							No sig int
LSRC068	262102	7893797	595	55	-60	108	1988						No sig int
LSRC069	262131	7893838	594	54	-60	108							No sig int
LSRC070	261941	7893559	593	40	-60	108	1988						No sig int
LSRC071	262243		600	50	-60	108	1988						No sig int
LSRC072		7894339	599	35	-60	108							No sig int
LSRC073	262302	7894411	602	30	-60	108	1988						No sig int
LSRC074	262277	7894419	601	30	-60	108	1988						No sig int
LSRC075	262253	7894426	600	35	-60	108	1988						No sig int
LSDD004	262285	7896047	562	130.2	-59	112	1989	95.4	96.5	1.1	0.62	0.31	SE main
LSDD004	262285	7896047	562	130.2	-59	112	1989	96.5	99.95	3.45	1.96		SE Main HG
LSDD004	262285	7896047	562	130.2	-59	112	1989	99.95	100.2	0.25	0.14	0.55	SE main
LSDD005	262259	7896001	563	130.5	-58	111	1989	99	100	1	0.57	0.79	SE main
LSDD005	262259	7896001	563	130.5	-58	111	1989	100	105.6	5.6	3.21	2.78	SE Main HG
LSDD006	262229	7895957	562	130	-58	109	1989	94.1	102	7.9	4.65	2.82	SE Main HG
LSDD006	262229	7895957	562	130	-58	109	1989	102	108.85	6.85	4.03	0.56	SE main
LSDD007	262197	7895925	563	130.2	-58.2	105	1989	93.4	98	4.6	2.84	3.85	SE Main HG
LSDD007	262197	7895925	563	130.2	-58.2	105	1989	98	106	8	4.95		SE main
LSDD007	262197	7895925	563	130.2	-58.2	105	1989	106	110.1	4.1	2.53		SE Main HG
LSDD008	262168	7895871	562	121.2	-58	119	1989	95.3	104	8.7	4.45	2.02	SE Main HG
LSDD008	262168	7895871	562	121.2	-58	119	1989	108	115	7	3.58	1.46	SE FW
LSDD009	262152	7895830	562	130.2	-59	110	1989	87	89.7	2.7	1.57		SE main
LSDD009	262152	7895830	562	130.2	-59	110	1989	89.7	92.4	2.7	1.57		SE Main HG
LSDD009	262152	7895830	562	130.2	-59	110		92.4	99	6.6	3.84		SE main
LSDD009	262152	7895830	562	130.2	-59	110		105.8	121	15.2	8.84		SE FW
LSDD010	262146	7895779	561	134.5	-59	111	1989	67	75	8	4.59		SE main
LSDD010	262146	7895779	561	134.5	-59	111		89.9	94.4	4.5	2.58		SE FW
LSDD011		7896023	566	180	-59	112		156	161.2	5.2	2.95		SE Main HG
LSDD011		7896023 7895848		180	-59		1989	161.2	162	0.8	0.45		SE main
LSDD012			_	177.3	-60		1989	139	140 142	1	0.59		SE main SE Main HG
LSDD012		7895848 7895848	567	177.3	-60		1989	140 158		2	1.18		SE FW
LSDD012 PRC001		7895350	567 577	177.3 50	-60 -60	109 55		136	167.2	9.2	5.41	0.61	No sig int
PRC002		7895340	576	50	-60	55							No sig int
PRC003		7895325	574	50	-60		1994						
PRC003		7895325	577	50	-60		1994						No sig int No sig int
PRC005		7895236	576	50	-60		1994						No sig int
PRC006		7894604	598	50	-60		1994						No sig int
PRC007		7894578	592	50	-60		1994						No sig int
PRC008		7894422	599	48	-60		1994						No sig int
PRC009		7894198	597	50	-60		1994						No sig int
PRC010		7893926	590	50	-60		1994						No sig int
PRC011		7893866	592	50	-60		1994						No sig int
PRC012		7893959	591	50	-60	55							No sig int
94SERC001		7895329	575	50	-60		1994						No sig int
94SERC002		7895338	575	50	-60	230	1994						No sig int
ORC001	262480	7891754	588	50	-60	306	1994						No sig int
ORC002	262395	7891701	591	66	-60		1994						No sig int
ORC003	262058	7891510	590	50	-60		1994						No sig int
ORC004	262016	7891453	597	50	-60	306	1994						No sig int

hala id	Fact	North	DI	donth	din	azimuth	Voor	from	to	dh lonath	annroy truo	Auppm	Intercent Flag
hole id WERC001	East 262921	North 7892463	RL 584	depth 50	dip -60	azimuth 65	Year 1994	from	to	dh length	approx. true	Au ppm	Intercept Flag No sig int
WERC001	262955	7892405	586	50	-60	65	1994						No sig int
WERC002	262838	7892180	576	50	-60	65	1994						No sig int
WERC004	263128	7892200	586	50	-60	65	1994						No sig int
WERC005	263082	7891962	585	50	-60	65	1994						No sig int
SERC001	262202	7895908	563	114	-60	108	2007	82	86	4	2.38	2.48	SE Main HG
SERC001	262202	7895908	563	114	-60	108	2007	86	94	8	4.76		SE main
SERC001	262202	7895908	563	114	-60	108	2007	94	101	7	4.17		SE Main HG
SERC002	262138	7895810	562	132	-60	108	2007	88	91	3	1.79		SE main
SERC002	262138	7895810	562	132	-60	108	2007	91	97	6	3.57		SE Main HG
SERC002	262138	7895810	562	132	-60	108	2007	97	98	1	0.60	0.67	SE main
SERC002	262138	7895810	562	132	-60	108	2007	115	124	9	5.36	0.6	SE FW
SERC003	262071	7895745	566	180	-60	108	2007						No sig int
SERC004	262320	7895935	560	42	-60	108	2007	9	19	10	5.96	3.94	SE Main HG
SERC004	262320	7895935	560	42	-60	108	2007	19	21	2	1.19	0.57	SE main
SERC005	263135	7896029	580	54	-60	108	2007						No sig int
SERC006	263004	7895686	572	48	-60	108	2007						No sig int
SERC007	262959	7895626	567	48	-60	108	2007						No sig int
SERC008	262771	7895483	571	72	-60	108	2007	17	22	5	2.98	4.47	ER north
SERC009	262688	7895297	574	54	-60	70	2007	21	30	9	7.27	2.53	ER north
SSERC001	262671	7895355	569	72	-61.67	108	2017	45	48	3	1.78	3.1	ER north
SSERC002	262713	7895383	570	72	-61.69	108	2017	31	34	3	1.78	2.03	ER north
SSERC003	262724	7895428	569	72	-62.21	108	2017	35	39	4	2.38	1.87	ER north
SSERC004	262731	7895472	569	72	-60.71	108	2017	49	53	4	2.38	2.96	ER north
SSERC005	262338	7896082	560	102	-60.2	108	2017	69	70	1	0.60	0.51	SE main
SSERC005	262338	7896082	560	102	-60.2	108	2017	70	72	2	1.19	1.9	SE Main HG
SSERC005	262338	7896082	560	102	-60.2	108	2017	72	73	1	0.60	0.64	SE main
SSERC006	262372	7896123	557	120	-61.14	108	2017	90	94	4	2.38		SE Main HG
SSERC006	262372	7896123	557	120	-61.14	108	2017	94	95	1	0.59		SE main
SRC001	262763	7895447	572	42	-60	108	2020	16	21	5	2.98		ER north
SRC002	262745	7895448	570	45	-60	108	2020	30	38	8	4.76		
SRC003	262745	7895396	573	25	-60	108	2020	12	15	3	1.79		
SRC004	262731	7895400	571	35	-60	108	2020	23	26	3	1.79		ER north
SRC005	262727	7895351	573	52	-60	108	2020	7	10	3	1.79		ER north
SRC006	262713	7895356	572	35	-60	108	2020	20	23	3	1.79	0.79	ER north
SRC007	262694	7895282	575	25	-60	108	2020	14	19	5	2.98	3.21	ER north
SRC008	262679	7895284	574	40	-60	108	2020	29	32	3	1.79		ER north
SRC009	1	7895190		20	-60		2020	6	11	5	2.98		ER south
SRC010		7895193	576	35	-60		2020	21	24	3	1.79		ER south
SRC011		7895146	577	35	-60		2020	24	30	6	3.57	2.55	ER south
SRC012		7895525	569	60	-60 -72		2020	29	35	6	2.46	2 20	No sig int
SRC013	1	7895998	556	54		108		35		6	3.46		SE Main HG
SRC013 SRC014	262341 262347	7895998 7895983	556 557	54 35	-72 -60	108 108		14	38 17	3	1.73 1.79		SE main SE main
SRC014 SRC014	262347	7895983	557	35	-60	108		17	20	3	1.79		SE Main HG
SRC014	262347	7895983	557	35	-60		2020	20	21	1	0.60		SE main
SRC014 SRC015	1	7895988	556	54	-67		2020	29	30	1	0.59		SE main
SRC015		7895988	556	54	-67	108		30	39	9	5.29		SE Main HG
SRC016	-	7895960	558	30	-60	108		10	21	11	6.55		SE Main HG
SRC017	1	7895967	557	50	-60	108		26	27	1	0.60		SE main
SRC017		7895967	557	50	-60		2020	27	30	3	1.79		SE Main HG
SRC017		7895947	559	30	-60	108		17	23	6	3.57		SE Main HG
SRC018		7895947	559	30	-60		2020	23	25	2	1.19		SE main
SRC019		7895950	558	50	-65	108		27	33	6	3.54		SE Main HG
SRC019	1	7895950	558	50	-65	108		33	34	1	0.59		SE main
SRC020		7895960	557	54	-60	108		30	35	5	2.98		SE Main HG
SRC020		7895960	557	54	-60		2020	35	37	2	1.19		SE main
SRC021	262285		557	70	-60	108		46	52	6	3.57		SE Main HG
SRC022		7895930	558	50	-59		2020	29	30	1	0.60		SE main
				3		1		2	3	_	0.00	3.00	

la a la dal	Foot	Mouth	DI	ما خور ما ام	alta		Vasu	£	4.0	ملحم ما مالم		A	Intereset Floor
hole id	East	North	RL	depth	dip	azimuth	Year	from	to	dh length	approx. true		
SRC022	262284	7895930	558	50	-59	108	2020	30	35	5	2.98	2.94	
SRC022	262284	7895930	558	50	-59	108	2020	35	38	3	1.79	0.2	SE main
SRC022	262284	7895930	558	50	-59	108	2020	38	42	4	2.38	2.5	SE Main HG
SRC022	262284	7895930	558	50	-59	108	2020	42	47	5	2.98	0.39	SE main
SRC023	262274	7895929 7895929	558 558	65 65	-60 -60	108 108	2020	42 48	48 54	6	3.57 3.57		SE Main HG SE main
SRC023 SRC024	262274 262254		559	75		108	2020	40		3	1.79		
SRC024 SRC024	262254	7895916 7895916	559	75	-58 -58	108	2020	40	43 45	2	1.79		SE Main HG SE main
SRC024	262254	7895916	559	75	-58	108	2020	45	54	9	5.37	3.33	SE Main HG
SRC024	262254	7895916	559	75	-58	108	2020	54	57	3	1.79	0.36	SE main
SRC025	262328	7896015	556	60	-60	108	2020	43	50	7	4.17	2.03	SE Main HG
SRC026	262303	7896013	559	90	-60	108	2020	62	67	5	2.98	2.03	SE Main HG
SRC026	262303	7896013	559	90	-60	108	2020	67	70	3	1.79	0.45	SE main
SRC027	262348	7896041	556	75	-60	108	2020	38	41	3	1.79	0.43	SE main
SRC027	262348	7896041	556	75	-60	108	2020	41	43	2	1.19		SE Main HG
SRC028	262374	7896043	556	50	-80	108	2020	27	28	1	0.55		SE main
SRC028	262374	7896043	556	50	-80	108	2020	28	30	2	1.10	1.54	SE Main HG
SRC029	262285	7895890	558	35	-60	108	2020	3	20	17	10.12		SE Main HG
SRC029	262285	7895890	558	35	-60	108	2020	20	21	1	0.60		SE main
SRC030	262265	7895894	558	50	-60	108	2020	21	24	3	1.79		SE Main HG
SRC030	262265	7895894	558	50	-60	108	2020	24	28	4	2.38	0.18	SE main
SRC030	262265	7895894	558	50	-60	108	2020	28	35	7	4.17	1.02	SE Main HG
SRC030	262265	7895894	558	50	-60	108	2020	35	39	4	2.38	0.56	SE main
SRC031	262281	7895876	560	35	-60	108	2020	0	4	4	2.38	2.46	SE Main HG
SRC031	262281	7895876	560	35	-60	108	2020	4	12	8	4.76	0.27	SE main
SRC031	262281	7895876	560	35	-60	108	2020	12	19	7	4.17	1.55	SE Main HG
SRC031	262281	7895876	560	35	-60	108	2020	19	20	1	0.60	0.37	SE main
SRC031	262281	7895876	560	35	-60	108	2020	22	26	4	2.38	1.4	SE FW
SRC032	262262	7895883	559	50	-60	108	2020	18	23	5	2.98	1.31	SE Main HG
SRC032	262262	7895883	559	50	-60	108	2020	23	24	1	0.60	0.46	SE main
SRC032	262262	7895883	559	50	-60	108	2020	24	34	10	5.96	2.25	SE Main HG
SRC032	262262	7895883	559	50	-60	108	2020	34	35	1	0.60	0.47	SE main
SRC032	262262	7895883	559	50	-60	108	2020	39	42	3	1.79	2.44	SE FW
SRC033	262257	7895871	560	60	-60	108	2020	20	25	5	2.98	2.38	SE Main HG
SRC033	262257	7895871	560	60	-60	108	2020	25	28	3	1.79	0.07	SE main
SRC033	262257	7895871	560	60	-60	108	2020	28	34	6	3.57	3.22	SE Main HG
SRC033	262257	7895871	560	60	-60	108	2020	34	35	1	0.60	0.32	SE main
SRC034	262274	7895851	563	35	-60	108	2020	0	2	2	1.19		SE Main HG
SRC034	262274	7895851	563	35	-60	108	2020	2	7	5	2.98		SE main
SRC034	262274	7895851	563	35	-60		2020	7	14	7	4.17		SE Main HG
SRC034	262274	7895851	563	35	-60		2020	24	27	3	1.79	0.67	SE FW
SRC035	262256	7895858	561	50	-60	108		24	30	6	3.57		SE Main HG
SRC036	262242	7895821	564	60	-60	108		14	23	9	5.36		SE main
SRC036	262242		564	60	-60	108		23	26	3	1.79		SE Main HG
SRC036	262242		564	60	-60	108		26	28	2	1.19		SE main
SRC036		7895821	564	60	-60		2020	36	54	18	10.72		SE FW
SRC037a		7895775	563	12	-60		2020	9	10	1	0.60	0.5	SE main
SRC037b		7895774	563	11	-60	108							No sig int
SRC038			562	65	-60	108		23	25	2	1.19		SE Main HG
SRC038	262211		562	65	-60	108		25	26	1	0.60		SE main
SRC038		7895780	562	65	-60		2020	43	46	3	1.79		SE FW
SRC039		7895469	571	35	-60		2020	19	26	7	4.17		ER north
SRC040		7895373	573	20	-60		2020	9	14	5	2.98		ER north
SRC041	262724		571	30	-60	108		21	25	4	2.38		ER north
SRC042	262713		573	25	-60		2020	4	11	7	4.17		ER north
SRC043		7895305	574	30	-60		2020	11	19	8	4.76		ER north
SRC044	262682		575	25	-60		2020	9	12	3	1.79		ER south
SDD001	262759	7895495	570	50	-60		2020	29	33	4	2.38		ER north
SDD002	262759	7895418	573	25	-60	108	2020	13	16	3	1.79	1.77	ER north

holo id	Fact	North	DI	donth	din	azimuth	Voor	from	to	dh lonath	approx true	Auppm	Intercent Flag
hole id SDD003	East 262698	North 7895332	RL 572	depth 34.9	dip -60	108	Year 2020	from 20	to 26	dh length 6	approx. true 3.57		Intercept Flag ER north
SDD003	262323	7895981	558	70	-75	113	2020	43	50	7	3.84		SE Main HG
SDD004	262282	7895939	558	67	-60	108	2020	42	43	1	0.60		SE main
SDD005	262282	7895939	558	67	-60	108	2020	43	48	5	2.98		SE Main HG
SDD005	262282	7895939	558	67	-60	108	2020	48	58	10	5.96		SE main
SDD005	262275	7895917	558	55	-58	108	2020	21	26	5	2.98		SE Main HG
SDD006	262275	7895917	558	55	-58	108	2020	26	29	3	1.79		SE main
SDD006	262275	7895917	558	55	-58	108	2020	29	39	10	5.96		SE Main HG
SDD006	262275	7895917	558	55	-58	108	2020	39	44	5	2.98		SE main
SRC045	262413	7896184	554	80	-58	108	2020	72	73	1	0.60		SE main
SRC045	262413	7896184	554	80	-58	108	2020	73	76	3	1.79		SE Main HG
SRC045	262413	7896184	554	80	-58	108	2020	76	78	2	1.19		SE main
SRC046	262402	7896165	555	90	-60	108	2020	73	77	4	2.38		SE main
SRC046	262402	7896165	555	90	-60	108	2020	77	80	3	1.79		SE Main HG
SRC046	262402	7896165	555	90	-60	108	2020	80	82	2	1.19		SE main
SRC047	262406	7896137	555	80	-58	108	2020	71	76	5	2.98		SE Main HG
SRC047	262406	7896137	555	80	-58	108	2020	76	77	1	0.60		SE main
SRC048	262372	7896099	557	100	-55	108	2020	56	60	4	2.38		SE Main HG
SRC048	262372	7896099	557	100	-55	108	2020	60	62	2	1.19		SE main
SRC049	262391	7896060	557	60	-90	108	2020	31	34	3	1.50		SE Main HG
SRC049	262391	7896060	557	60	-90	108	2020	34	35	1	0.50		SE main
SRC050	262422	7896096	557	70	-68	108	2020	28	35	7	4.10		SE main
SRC050	262422	7896096	557	70	-68	108	2020	35	39	4	2.34	5.04	SE Main HG
SRC050	262422	7896096	557	70	-68	108	2020	39	40	1	0.59	0.26	SE main
SRC051	262669	7895266	574	40	-60	108	2020	33	36	3	1.79	0.37	ER north
SRC052	262661	7895242	575	35	-60	108	2020	17	23	6	3.57	0.96	ER south
SRC053	262667	7895215	577	20	-60	108	2020	2	8	6	3.57	0.73	ER south
SRC054	262653	7895218	576	32	-60	108	2020	15	18	3	1.79		ER south
SRC055	262652	7895165	577	30	-60	108	2020	6	11	5	2.98	1.77	ER south
SRC056	262638	7895170	576	40	-60	108	2020	21	24	3	1.79	1.56	ER south
SRC057	263136	7895947	581	40	-60	108	2020						No sig int
SRC058	263134	7895980	582	50	-60	108	2020						No sig int
SRC059	263151	7896026	580	42	-60	108	2020						No sig int
SRC060	263164	7896074	579	48	-60	108	2020						No sig int
SRC061	262104	7894853	589	60	-60	108	2020						No sig int
SRC062	262129	7894882	594	35	-55	108	2020						No sig int
SRC063	262098	7894896	593	80	-60	108	2020						No sig int
SRC064	262123	7894917	591	60	-60	108	2020						No sig int
SRD001	262185	7895964	565	178.2	-60		2020	133	141	8	5.30	2.46	SE Main HG
SRD002	262199	7896072	564	216.4	-60		2020	195	200	5	3.31	1.98	SE Main HG
SRC065	262195	7895799	561	90	-60	108	2020	44	47	3	1.79		SE main
SRC065		7895799	561	90	-60	108		59	66	7	4.17	0.69	SE FW
SRC066	262221	7895791	563	70	-60	102		22	26	4	2.55		SE Main HG
SRC066	262221	7895791	563	70	-60	102		37	46	9	5.73		SE FW
SRC067		7895813	564	60	-60	102	2020	10	17	7	4.46		SE main
SRC067		7895813	564	60	-60	102		17	22	5	3.18		SE Main HG
SRC067		7895813	564	60	-60	102		33	48	15	9.55		SE FW
SRC068		7895816	563	80	-60	102		28	34	6	3.82		SE main
SRC068		7895816	563	80	-60	102		34	37	3	1.91		SE Main HG
SRC068		7895816	563	80	-60	102	2020	47	63	16	10.19		SE FW
SRC069	262262		566	60	-60	102		2	3	1	0.64		SE main
SRC069	262262		566	60	-60	102		3	5	2	1.27		SE Main HG
SRC069		7895817	566	60	-60	102		5	6	1	0.64		SE main
SRC069	262262		566	60	-60	102		23	39	16	10.19		SE FW
SRC070		7895828	562	90	-60	102		31	35	4	2.55		SE main
SRC070		7895828	562	90	-60	102		35	37	2	1.27		SE Main HG
SRC070		7895828	562	90	-60	102		37	40	3	1.91		SE main
SRC070	262224	7895828	562	90	-60	102		52	62	10	6.37		SE FW
SRC071	262258	7895832	564	54	-60	102	2020	13	19	6	3.82	1.25	SE Main HG

holo id	Fact	North	DI	donth	din	azimuth	Voor	from	+0	dh lanath	anney true	A., 222	Intercent Flag
hole id SRC071	East 262258	North 7895832	RL 564	depth 54	dip -60	azimuth 102	Year 2020	from 33	to 46	dh length	approx. true	Au ppm 1.61	Intercept Flag SE FW
SRC071		7895847	559	78	-60	102	2020	34	38	13	8.28 2.38	3.54	_
	262234	7895847		78				38	43	5	2.38		SE Main HG
SRC072	262234		559	78 78	-60	108 108	2020	54	62	8	4.76	0.33	SE main SE FW
SRC072	262234	7895847	559		-60					6		0.72	_
SRC073	262276	7895865 7895865	562 562	45 45	-60 -60	102 102	2020	7	7 13	6	3.82 3.82	1.76 0.34	SE Main HG SE main
SRC073	262276 262276		562			102	2020	13	22	9	5.73	1.27	
SRC073		7895865		45	-60			28	31	3	1.91		SE Main HG
SRC073	262276	7895865 7895828	562	45 108	-60	102 102	2020	66	67	1	0.64	2.17	SE FW
SRC074	262187	7895828	559		-60	102		67	70	3		0.46	SE main SE Main HG
SRC074	262187		559	108	-60		2020	70	70	1	1.91 0.64	0.86	
SRC074	262187	7895828	559	108	-60	102	2020			13		0.3	SE main SE FW
SRC074	262187	7895828	559	108	-60	102	2020	74	87		8.28	0.26	_
SRC075	262202	7895851	559	100	-60	102	2020	62	66 75	9	2.55 5.73	0.29	SE main
SRC075	262202	7895851	559	100	-60	102	2020	66 77	75 79	2		1.2	SE Main HG
SRC075 SRC076	262202 262221	7895851 7895869	559 559	100 96	-60 -60	102 102	2020	53	54	1	1.27 0.64	1.36 0.29	SE FW SE main
			559	96	-60	102	2020	54	60	6	3.82	23.93	
SRC076	262221	7895869 7895869	559				2020		66	6	3.82		SE Main HG SE main
SRC076	262221	7895877	559	96 84	-60	102	2020	60	53	4	2.55	0.49	
SRC077	262228		559		-60	102		49 53		6	3.82	47.38	SE Main HG SE main
SRC077 SRC078	262228	7895877 7895891	558	84	-60	102 102	2020	49	59 54	5		0.29	SE Main HG
	262231 262231			84	-60	102	2020		55		3.18 0.64	0.73	
SRC078 SRC078		7895891	558 558	84 84	-60	102	2020	54 55	62	1 7	4.46	0.18 1.94	SE main SE Main HG
	262231	7895891 7895891		_	-60	102	2020				_		
SRC078 SRC079	262231 262236	7895900	558 558	84 84	-60 -60	102	2020	62 48	66 54	6	2.55 3.82	0.3 1.7	SE main SE Main HG
SRC079	262236	7895900	558	84	-60	102	2020	54	56	2	1.27	0.41	SE main
				84				56	61	5			
SRC079 SRC079	262236 262236	7895900 7895900	558 558	84	-60 -60	102 102	2020	61	62	1	3.18 0.64	0.36	SE Main HG SE main
SRC079	262244	7895929	560	90	-60	102	2020	60	72	12	7.64		SE Main HG
SRC080	262244	7895929	560	90		102	2020	72	77	5	3.18	0.35	SE main
SRC080	262256	7895929	560	84	-60 -60	102	2020	64	71	7	4.46	3.2	SE Main HG
SRC081	262256	7895939	560	84	-60	102	2020	71	75	4	2.55	0.74	SE main
SRC081	262279	7895981	560	96	-60	102	2020	66	72	6	3.82	1.5	SE Main HG
SRC082	262279	7895981	560	96	-60	102	2020	72	73	1	0.64	0.38	SE main
SRC083	262301	7896004	560	90	-60	102	2020	62	73	11	7.00	3.87	SE Main HG
SRC083	262301	7896004	560	90	-60	102	2020	73	75	2	1.27	0.46	SE main
SRC084	262310	7896027	560	96	-60	102	2020	66	71	5	3.18	3.93	SE Main HG
SRC084		7896027		96	-60		2020	71	73	2	1.27		SE main
SRC085		7896059	560	96	-60		2020	77	78	1	0.64		SE main
SRC085		7896059	560	96	-60		2020	78	80	2	1.27		SE Main HG
SRC085		7896059	560	96	-60		2020	80	85	5	3.18		SE main
SRC086		7896146	_	120	-60	102		97	98	1	0.64		SE main
SRC086		7896146		120	-60	102		98	103	5	3.18		SE Main HG
SRC086				120	-60	102		103	104	1	0.64		
SRC087	262438	7896178		72	-55	102		49	50	1	0.64		SE main
SRC087		7896178		72	-55	102		50	56	6	3.86		SE Main HG
SRC088		7896329		78	-60		2020	38	41	3	1.91		SE HW
SRC088		7896329	_	78	-60	102		56	60	4	2.55		SE main
SRC088		7896329		78	-60	102		60	63	3	1.91		SE Main HG
SRC088		7896329	551	78	-60	102		63	64	1	0.64		SE main
SRC089		7896284		78	-60	102		31	41	10	6.37		SE HW
SRC089		7896284	553	78	-60		2020	50	51	1	0.64		SE main
SRC089		7896284		78	-60		2020	51	52	1	0.64		SE Main HG
SRC089		7896284		78	-60	102		52	56	4	2.55		
SRC090		7896234		48	-60	102		22	28	6	3.82		SE main
SRC090		7896234		48	-60	102		28	29	1	0.64		SE Main HG
SRC090		7896234		48	-60	102		29	31	2	1.27		SE main
SRC091	262465	7896253	552	96	-60	102		71	79	8	5.09		SE main
SRC091	262465	7896253	_	96	-60		2020	79	81	2	1.27		SE Main HG
3110031	_003	. 050255	JJ2	50	00	102	2020	, ,	01		1.2/	5.70	0_ 17.G.II 110

hala id	Fact	North	DI	donth	din	azimuth	Voor	from	+0	dh lanath	annrov true	Aurona	Intercent Floa
hole id SRC092	East 262465	North 7896196	RL 555	depth 66	dip -60	azimuth 102	Year 2020	from 38	to 43	dh length 5	approx. true 3.18		Intercept Flag SE main
SRC092 SRC092	262465	7896196	555	66	-60	102	2020	43	45	2	1.27		SE Main HG
			556		-60	102		25			3.18		
SRC093	262453	7896149		48 48	-60	102	2020	30	30 31	5	0.64		SE Main HG SE main
SRC093 SRC094	262453 262440	7896149 7896128	556 557	72	-60	102	2020	40	41	1	0.64		SE main
SRC094 SRC094	262440	7896128	557	72	-60	102	2020	40	41	3	1.91		SE Main HG
SRC094	262440	7896128	557	72	-60	102	2020	41	52	8	5.09		SE main
SRC094 SRC095	262441	7896128	558	48	-60	102	2020	24	30	6	3.82		SE Main HG
SRC095	262441	7896101	558	48	-60	102	2020	30	31	1	0.64		SE main
SRC095	262415	7896081	558	84	-60	102	2020	16	19	3	1.91		SE Main HG
SRC096	262415	7896081	558	84	-60	102	2020	19	25	6	3.82		SE main
SRC097	262365	78960081	556	54	-60	102	2020	11	12	1	0.60		SE main
SRC097	262568	7895162	575	102	-60	103	2020	77	80	3	1.91		ER south
SRC099	262587	7895051	582	60	-60	102	2020	5	10	5	3.18		
SRC100	262590	7895074	579	60	-60	102	2020	7	12	5	3.18		ER south
SRC101	262613	7895099	579	60	-60	102	2020	13	16	3	1.91		ER south
SRC102	262630	7895120	579	54	-60	102	2020	11	16	5	3.18		ER south
SRC103	262611	7895124	577	72	-60	102	2020	30	34	4	2.55		ER south
SRC104	262646	7895140	579	48	-60	102	2020	0	13	13	8.28		ER south
SRC105	262208	7895861	560	93	-60	108	2021	58	66	8	4.76		SE Main HG
SRC105	262208	7895861	560	93	-60	108	2021	66	69	3	1.79		SE main
SRC105	262208	7895861	560	93	-60	108	2021	75	77	2	1.19	1.04	SE FW
SRC106	263959	7895345	591	59	-55	108	2021	,,,			2.23	2.0.	No sig int
SRC107	263895	7895049	595	69	-55	108	2021						No sig int
SRC108	263849	7894908	584	60	-55	108	2021						No sig int
SRC109	263864	7894798	576	60	-55	108	2021						No sig int
SRC110	263838	7894699	583	57	-55	108	2021						No sig int
SRC111	263752	7894621	582	60	-60	108	2021						No sig int
SRC112	263652	7894499	581	63	-55	108	2021						No sig int
SRC113	263601	7894410	582	78	-55	108	2021						No sig int
SRC114	263567	7894321	590	80	-55	108	2021						No sig int
SRC115	263552	7894216	582	80	-60	108	2021						No sig int
SRC116	263496	7894128	583	90	-55	108	2021						No sig int
SRC117	263457	7894035	577	80	-55	108	2021						No sig int
SRC118	263426	7893949	572	80	-55	108	2021						No sig int
SRC119	262196	7895877	563	105	-60	108	2021	72	76	4	2.38	1.57	SE Main HG
SRC119	262196	7895877	563	105	-60	108	2021	76	81	5	2.98	0.35	SE main
SRC119	262196	7895877	563	105	-60	108	2021	81	82	1	0.60	3.63	SE Main HG
SRC119	262196	7895877	563	105	-60	108	2021	82	86	4	2.38	0.71	SE main
SRC119	262196	7895877	563	105	-60		2021	92	94	2	1.19		SE FW
SRC120		7895888	562	108	-60		2021	66	69	3	1.79		SE Main HG
SRC120		7895888	562	108	-60	108		69	76	7	4.17		SE main
SRC120		7895888	562	108	-60	108		76	81	5	2.98		SE Main HG
SRC120		7895888	562	108	-60	108		81	86	5	2.98		SE main
SRC121		7895895	565	138	-60	108		92	100	8	4.76		SE Main HG
SRC121		7895895	565	138	-60	108		100	105	5	2.98		SE main
SRC121		7895895	565	138	-60	108		105	110	5	2.98		SE Main HG
SRC121		7895895	565	138	-60	108		110	115	5	2.98		SE main
SRC121		7895895	565	138	-60	108		116	119	3	1.79		SE FW
SRC122		7895948	566	165	-60	108		126	136	10	5.96		SE Main HG
SRC123	262257	7895966	561	100	-60	102		75	81	6	3.82		SE Main HG
SRC123	262257	7895966	561	100	-60	102		81	82	1	0.64		SE main
SRC124		7895986	567	183	-60	102		149	154	5	3.18		SE Main HG
SRC124		7895986	567	183	-60	102		154	156	2	1.27		SE main
SRC125		7895988	564	144	-60	102		118	119	1	0.64		SE main
SRC125		7895988	564	144	-60	102		119	125	6	3.82		SE Main HG
SRC125 SRC126	262274	7895988	564	144	-60 60	102 102		125 92	128 94	3	1.91		SE main SE main
		7896022	563	126	-60 -60			92		2	1.27		SE Main HG
SRC126	262274	7896022	563	126	-60	102	2021	94	101	7	4.46	3./3	of inigili HP

hala id	Foot	Mouth	DI	ما خرد ما	alia		Vasu	£	4.0	ملحو مرم المالم		A	Intereset Floor
hole id	East	North	RL	depth	dip	azimuth	Year	from	to	dh length	approx. true		
SRC126	262274	7896022	563	126	-60	102	2021	101	103	2	1.27		
SRC127	262251	7896057	565	174	-60	102	2021	128	133	5	3.18		SE Main HG
SRC127	262251	7896057	565	174	-60	102	2021	133	134	1	0.64		
SRC128	262305	7896089	562	132	-60	102	2021	107	111	4	2.55		
SRC129	262274	7896077	563	168	-60	101	2021	125	126	1	0.64		
SRC129	262274	7896077	563	168	-60	101	2021	126	129	3	1.93		
SRC129	262274	7896077	563	168	-60	101	2021	129	132	3	1.93	_	
SRC130	262344	7896132	559	156	-60	102	2021	117	118	1	0.64		SE main
SRC130	262344	7896132	559	156	-60	102	2021	118	124	6	3.82		SE Main HG
SRC130	262344	7896132	559	156	-60	102	2021	124	125	1	0.64	0.47	SE main
SRC131	262379	7896176	556	140	-60	102	2021	99	102	3	1.91	0.53	SE main
SRC131	262379	7896176	556	140	-60	102	2021	102	107	5	3.18	2.93	
SRC131	262379	7896176	556	140	-60	102	2021	107	109	2	1.27		
SRC132	262240	7895864	560	66	-60	108	2021	37	40	3	1.79	0.38	
SRC132	262240	7895864	560	66	-60	108	2021	40	45	5	2.98		
SRC133	262171	7895748	562	66	-60	97	2021	62	63	1	0.67	0.74	
SRC134	262205	7895733	564	66	-60	97	2021				0.50		No sig int
SRC135	262260	7895796	568	48	-55	97	2021	11	25	14	9.53		SE FW
SRC136	262276	7895824	568	40	-60	103	2021	13	27	14	8.82	3.72	
SRC137	262379	7896028	558	30	-60	108	2021						No sig int
SRC138	262381	7896052	557	40	-60	108	2021	20	22	2	1.19		
SRC138	262381	7896052	557	40	-60	108	2021	22	24	2	1.19		
SRC138	262381	7896052	557	40	-60	108	2021	24	25	1	0.60	0.69	SE main
SRC139	262317	7896047	561	96	-60	102	2021	70	75	5	3.18		
SRC139	262317	7896047	561	96	-60	102	2021	75	76	1	0.64	0.51	
SRC140	262339	7896065	560	78	-60	108	2021	64	65	1	0.60	0.33	SE main
SRC140	262339	7896065	560	78	-60	108	2021	65	67	2	1.19		
SRC140	262339	7896065	560	78	-60	108	2021	67	68	1	0.60		SE main
SRC141	262363	7896084	559	84	-60	102	2021	57	59	2	1.27		SE Main HG
SRC141	262363	7896084	559	84	-60	102	2021	59	60	1	0.64		
SRC142	262376	7896104	558	90	-60	102	2021	75	76	1	0.64		SE main
SRC142	262376	7896104	558	90	-60	102	2021	76	78	2	1.27		SE Main HG
SRC143	262398	7896060	558	30	-60	105	2021	13	16	3	1.85		
SRC144	262401	7896071	559	54	-60	108	2021	17	20	3	1.79	0.93	SE Main HG
SRC145	262439	7896085	559	36	-60	102	2021	7	8	1	0.64		
SRC145	262439	7896085	559	36	-60	102	2021	8	12	4	2.55	1.86	SE Main HG
SRC145	262439	7896085	559	36	-60	102	2021	12	16	4	2.55	0.31	SE main
SRC146		7896099		79	-90		2021	36	48	12	6.00		SE main
SRC146	262440		558	79	-90		2021	48	51	3	1.50		SE Main HG
SRC146		7896099	558	79	-90		2021	51	54	3	1.50		SE main
SRC147		7896108	558	39	-60		2021	16	18	2	1.27		SE main
SRC147		7896108	558	39	-60	102		18	22	4	2.55		SE Main HG
SRC147	262457	7896108	558	39	-60	102		22	24	2	1.27		SE main
SRC148		7896113	558	60	-60	102		36	40	4	2.55		SE main
SRC148		7896113	558	60	-60	102		40	42	2	1.27		SE Main HG
SRC148		7896113	558	60	-60	102		42	44	2	1.27		SE main
SRC149		7896117	558	48	-60	102		16	17	1	0.64		SE main
SRC149		7896117	558	48	-60	102		17	22	5	3.18		SE Main HG
SRC149	262463		558	48	-60	102		22	24	2	1.27		SE main
SRC150		7896131	558	42	-60	102		15	16	1	0.64		SE Main HG
SRC151		7896137	557	60	-60	102		27	31	4	2.55		SE main
SRC151		7896137	557	60	-60	102		31	34	3	1.91		SE Main HG
SRC151		7896137	557	60	-60	102		34	35	1	0.64		SE main
SRC152		7896159	557	45	-60	108		22	24	2	1.19		SE main
SRC152	262463		557	45	-60	108		24	28	4	2.38		SE Main HG
SRC152	262463		557	45	-60	108		28	29	1	0.60		SE main
SRC153		7896169	557	48	-60	102		21	22	1	0.64		SE main
SRC153	262469	7896169	557	48	-60	102		22	27	5	3.18		SE Main HG
SRC153	262469	7896169	557	48	-60	102	2021	27	28	1	0.64	0.88	SE main

hole id	Fact	North	RL	donth	din	azimuth	Voor	from	to	dh lonath	annroy true	Au ppm	Intercent Flag
SRC154	East 262538	North 7896311	554	depth 75	dip -60	azimuth 102	Year 2021	36	to 43	dh length 7	approx. true	Au ρρπ 0.84	Intercept Flag SE HW
SRC154	262538	7896311	554	75	-60	102	2021	48	53	5	3.18		SE main
SRC154	262538	7896311	554	75	-60	102	2021	53	58	5	3.18	1.79	SE Main HG
SRC154	262538	7896311	554	75	-60	102	2021	58	59	1	0.64	0.6	SE main
SRC155	262574	7896312	554	45	-55	102	2021	5	7	2	1.29		-
SRC155	262574	7896312	554	45	-55	102	2021	21	24	3	1.93		SE main
SRC155	262574	7896312	554	45	-55	102	2021	24	29	5	3.22		SE Main HG
SRC155	262574	7896312	554	45	-55	102	2021	29	30	1	0.64		SE main
SRC156	262753	7895485	571	50	-60	102	2021	29	37	8	5.09	0.98	ER north
SRC157	262755	7895458	571	48	-60	102	2021	27	31	4	2.55	2.09	ER north
SRC158	262728	7895453	569	84	-60	102	2021	50	58	8	5.09	1.9	ER north
SRC159	262747	7895434	571	48	-60	102	2021	29	39	10	6.37	2.17	ER north
SRC160	262750	7895408	573	42	-60	108	2021	15	18	3	1.79	0.81	ER north
SRC161	262696	7895344	572	48	-60	102	2021	27	32	5	3.18	24.93	ER north
SRC162	262686	7895322	573	54	-60	102	2021	26	32	6	3.82	1.51	ER north
SRC163	262705	7895318	574	33	-60	102	2021	9	18	9	5.73	2.17	ER north
SRC164	262680	7895313	573	60	-60	102	2021	30	37	7	4.46	2.64	ER north
SRC165	262679	7895299	574	54	-60	102	2021	26	34	8	5.09		ER north
SRC166	262696	7895294	575	36	-60	102	2021	12	21	9	5.73		ER north
SRC167	262694	7895267	577	30	-60	102	2021	6	10	4	2.55	1.21	ER north
SRC168	262649	7895294	569	81	-60	97	2021	52	57	5	3.35	0.68	ER north
SRC169	262652	7895204	577	36	-60	102	2021	13	16	3	1.91	0.55	ER south
SRC170	262648	7895178	578	30	-60	102	2021	15	19	4	2.55	0.98	ER south
SRC171	262631	7895184	577	45	-60	102	2021	29	33	4	2.55	0.33	ER south
SRC172	262642	7895154	579	33	-60	102	2021	12	18	6	3.82	0.83	ER south
SRC173	262625	7895158	577	50	-60	102	2021	32	35	3	1.91	0.97	ER south
SRC174	262634	7895131	579	39	-60	102	2021	12	18	6	3.82	1.58	ER south
SRC175	262204	7896044	567	190	-60	102	2021	154	162	8	5.09	2.83	SE Main HG
SRC175	262204	7896044	567	190	-60	102	2021	162	163	1	0.64	0.24	SE main
SRC176	262246	7896029	565	155	-60	102	2021	118	119	1	0.64	0.44	SE main
SRC176	262246	7896029	565	155	-60	102	2021	119	125	6	3.82	3.12	SE Main HG
SRC176	262246	7896029	565	155	-60	102	2021	125	126	1	0.64	0.4	SE main
SRC177	262232	7896021	566	154	-60	102	2021	126	134	8	5.09	2.17	SE Main HG
SRC178	262266	7895973	561	110	-65	102	2021	76	83	7	4.38	2.42	SE Main HG
SRC179	262224	7895975	562	140	-65	102	2021	111	115	4	2.50	1.83	SE Main HG
SRC179	262224	7895975	562	140	-65	102	2021	115	116	1	0.63	0.25	SE main
SRC180	262120	7895914	569	200	-60	102	2021	155	159	4	2.55	2.39	SE Main HG
SRC180	262120	7895914	569	200	-60	102	2021	159	167	8	5.09	0.31	SE main
SRC180	262120	7895914	569	200	-60	102	2021	173	176	3	1.91	0.4	SE FW
SRC181	262157	7895931	567	185	-65	118	2021	139	152	13	6.88	1.56	SE Main HG
SRC181	262157	7895931	567	185	-65	118	2021	155	159	4	2.12		SE FW
SRC182	262140	7895892	567	165	-60	102	2021	129	140	11	7.00	1.05	SE Main HG
SRC182	262140	7895892	567	165	-60	102	2021	140	142	2	1.27	0.47	SE main
SRC182	262140	7895892	567	165	-60	102	2021	148	151	3	1.91	0.73	SE FW
SRC183		7895890	569	205	-60	102		155	158	3	1.91		SE Main HG
SRC183	262113	7895890	569	205	-60	102	2021	158	162	4	2.55	0.18	SE main
SRC183	262113	7895890	569	205	-60	102	2021	162	166	4	2.55		SE Main HG
SRC183		7895890	569	205	-60	102	2021	166	167	1	0.64	0.61	SE main
SRC183	262113	7895890	569	205	-60	102	2021	173	182	9	5.73	3.01	SE FW
SRC184	262181		562	120	-60	102		80	85	5	3.18		SE Main HG
SRC184		7895871	562	120	-60	102		85	90	5	3.18		SE main
SRC184		7895871	562	120	-60	102		90	93	3	1.91		SE Main HG
SRC184		7895871	562	120	-60	102		93	94	1	0.64		SE main
SRC184		7895871	562	120	-60	102		98	99	1	0.64		SE FW
SRC185		7895927	572	240	-60	97		226	229	3	2.01		SE Main HG
SRC185	262072	7895927	572	240	-60	97		229	231	2	1.34		SE main
SRC185	262072	7895927	572	240	-60	97	2021	234	235	1	0.67	0.88	SE FW
SRC186	262132		569	220	-60	97	2021	194	197	3	2.01		SE Main HG
SRC186	262132	7895959	569	220	-60	97	2021	197	202	5	3.35	0.75	SE main

hala id	Foot	Mouth	DI	ما خرو ام	alta		Vasu	£	A.c.	ملخم مرما عالم		A	Intereset Floor
hole id SRC187	East 262139	North 7895985	RL 569	depth 230	dip -60	azimuth 97	Year 2021	from 208	to 214	dh length 6	approx. true 4.01		Intercept Flag SE Main HG
SRC187	262139	7895985	569	230	-60	97	2021	214	214	9	6.02		SE main
		7895985	569	230		97		223			2.01		-
SRC187 SRC188	262139		567	200	-60 -60	102	2021	160	226 167	3 7	4.46		SE Main HG
	262175	7896000								6			SE Main HG
SRC188 SRC188	262175 262175	7896000 7896000	567 567	200 200	-60 -60	102 102	2021	167 173	173 181	8	3.82 5.09		SE main SE Main HG
		7896038	569	288.5		97	2021	233	238	5	3.35		SE Main HG
SRD189 SRC190	262136 262593	7895038	578	50	-60 -70	108	2021	34	37	3	1.75		ER south
SRC190 SRC191	262614	7895139	576	55	-60	108	2024	36	39	3	1.79	1.37	ER south
SRC191	262595	7895176	572	75	-60	108	2024	56	59	3	1.79	0.78	ER south
SRC192	262575	7895200	576	109	-60	108	2024	79	83	4	2.39	0.78	ER south
SRC194	262641	7895271	570	80	-60	108	2024	57	61	4	2.39	0.01	ER north
SRC194 SRC195	262632	7895313	572	100	-70	108	2024	82	85	3	1.75	0.93	ER north
SRC195	262618	7895358	572	110	-61	108	2024	94	99	5	2.94	0.09	ER north
SRC190	262629	7895378	572	130	-61	103	2024	98	101	3	1.87	0.73	ER north
SRC197	262657	7895388	569	120	-61	103	2024	80	83	3	1.79		ER north
SRC199	262682	7895364	570	75	-61	103	2024	52	55	3	1.80		ER north
SRC200	262685	7895419	569	85	-61	107	2024	58	62	4	2.38		ER north
SRC200	262694	7895467	568	105	-61	108	2024	36	UZ	4	2.30	1.11	No sig int
SRC201	262711	7895487	568	100	-61	110	2024	73	78	5	2.89	7.65	ER north
SRC203	262730	7895506	569	95	-61	109	2024	59	64	5	2.94		ER north
SRC204	262576	7895082	578	50	-62	107	2024	27	30	3	1.81		ER south
SRC205	262571	7895063	580	45	-61	109	2024	22	25	3	1.75	1.12	ER south
SRC206	262489	7896191	556	35	-56	108	2024	16	19	3	1.79		SE main
SRC206	262489	7896191	556	35	-56	108	2024	19	23	4	2.39	2.1	SE Main HG
SRC207	262504	7896210	555	40	-61	108	2024	16	20	4	2.39	0.69	SE main
SRC207	262504	7896210	555	40	-61	108	2024	20	22	2	1.19		SE Main HG
SRC207	262504	7896210	555	40	-61	108	2024	22	23	1	0.60		SE main
SRC208	262488	7896216	555	60	-66	110	2024	33	38	5	2.88		SE main
SRC208	262488	7896216	555	60	-66	110	2024	38	40	2	1.15	1.4	SE Main HG
SRC209	262541	7896250	556	35	-56	109	2024	12	13	1	0.59		SE main
SRC209	262541	7896250	556	35	-56	109	2024	13	16	3	1.76	0.87	SE Main HG
SRC209	262541	7896250	556	35	-56	109	2024	16	18	2	1.17	0.42	SE main
SRC210	262521	7896257	555	55	-60	108	2024	32	35	3	1.78	0.41	SE main
SRC210	262521	7896257	555	55	-60	108	2024	35	38	3	1.78	1.19	SE Main HG
SRC210	262521	7896257	555	55	-60	108	2024	38	39	1	0.59	0.27	SE main
SRC211	262560	7896265	556	30	-61	109	2024	9	10	1	0.59	0.48	SE main
SRC211	262560	7896265	556	30	-61	109	2024	10	13	3	1.76	0.68	SE Main HG
SRC211	262560	7896265	556	30	-61	109	2024	13	15	2	1.17	0.4	SE main
SRC212	262540	7896278	554	55	-60	109	2024	11	24	13	7.61	0.57	SE HW
SRC212	262540	7896278	554	55	-60	109	2024	31	33	2	1.17	0.86	SE Main HG
SRC212	262540	7896278	554	55	-60	109	2024	33	35	2	1.17	0.46	SE main
SRC213	262608	7896374	555	35	-56	108	2024	4	8	4	2.40	0.81	SE HW
SRC213		7896374	555	35	-56	108		24	28	4	2.40		SE main
SRC213		7896374	555	35	-56	108		28	30	2	1.20		SE Main HG
SRC213		7896374	555	35	-56		2024	30	31	1	0.60		SE main
SRC214		7896383	554	60	-70		2024	23	29	6	3.48		SE HW
SRC214		7896383	554	60	-70	108		47	50	3	1.74		SE main
SRC214		7896383	554	60	-70	108		50	51	1	0.58		SE Main HG
SRC214		7896383	554	60	-70	108		51	53	2	1.16		SE main
SRC215	262557		554	50	-61		2024	9	24	15	8.91		SE HW
SRC215	262557	7896299	554	50	-61	108		30	31	1	0.59		SE main
SRC215	262557	7896299	554	50	-61		2024	31	36	5	2.97		SE Main HG
SRC216	262563		554	60	-61	109		18	21	3	1.76		SE HW
SRC216	262563		554	60	-61		2024	37	41	4	2.35		SE main
SRC216	262563		554	60	-61	109		41	45	4	2.35		SE Main HG
SRC216	262563		554	60	-61	109		45	46	1	0.59		SE main
SRC217	262487	7896317	557	140	-62	109		82	90	8	4.67		SE HW
SRC217	262487	7896317	557	140	-62	109	2024	94	99	5	2.92	0.5	SE main

January 191	Foot	Manuals	DI	al a sable	alt.	and the state	V	C		alle Leve and a		A	Internation Flori
hole id	East	North	RL	depth	dip	azimuth	Year	from	to	dh length	approx. true		Intercept Flag
SRC217	262487	7896317	557	140	-62	109	2024	99	104	5	2.92		SE Main HG
SRC217	262487	7896317	557	140	-62	109	2024	104	105	1	0.58		SE main
SRC218	262526	7896362	556	135	-61	107	2024	76	79	3	1.81		SE HW
SRC218	262526	7896362	556	135	-61	107	2024	90	92	2	1.21		
SRC218	262526	7896362	556	135	-61	107	2024	92	95 137	3	1.81 2.41		SE Main HG
SRC219	262401	7896271	558	180	-61	107	2024	133		4			SE Main HG
SRC219	262401	7896271	558	180	-61	107	2024	137	141	4	2.41		
SRC220	262537	7896403	555	135	-66	106	2024	79	87	8	4.81		SE HW
SRC220	262537	7896403	555	135	-66	106	2024	103	108	5	3.01		SE main
SRC221	262414	7896223	555	125	-61	105	2024	98	103	5	3.06		SE Main HG
SRC221	262414	7896223	555	125	-61	105	2024	103	105	2	1.22	0.62	SE main
SRC222	262647	7895209	576	50	-89	73	2024	26	29	3	1.54	0.29	ER south
SRC223	262709	7895392	570	80	-84	111	2024	43	45	2	1.05		ER north
SRC224	262710	7895420	570	70	-71	109	2024	46	49	3	1.72	0.33	ER north
SRC225	262710	7895467	568	90	-61	109	2024	64	71	7	4.10		ER north
SRC226	262724	7895453	570	85	-61	126	2024	44	51	7	3.27		ER north
SRC227	262725	7895484	569	75	-51	109	2024	54	57	3	1.75	0.87	ER north
SRC228	262694	7895495	567	135	-71	108	2024						No sig int
SRC229	262712	7895512	568	125	-76	109	2024						No sig int
SRC230	262748	7895519	570	90	-61	107	2024						No sig int
SRC231	262774	7895510	571	70	-61	109	2024						No sig int
SRC232	262550	7896298	554	70	-69	119	2024	17	27	10	5.25	1.15	SE HW
SRC232	262550	7896298	554	70	-69	119	2024	37	39	2	1.05	0.71	SE main
SRC232	262550	7896298	554	70	-69	119	2024	39	41	2	1.05	2.44	SE Main HG
SRC232	262550	7896298	554	70	-69	119	2024	41	42	1	0.53		SE main
SRC233	262567	7896305	554	50	-51	110	2024	3	13	10	5.72		SE HW
SRC233	262567	7896305	554	50	-51	110	2024	22	23	1	0.57	0.47	SE main
SRC233	262567	7896305	554	50	-51	110	2024	23	27	4	2.29		SE Main HG
SRC233	262567	7896305	554	50	-51	110	2024	27	28	1	0.57		SE main
SRC234	262575	7896318	553	80	-50	72	2024	6	11	5	4.27		SE HW
SRC234	262575	7896318	553	80	-50	72	2024	23	36	13	11.09		SE main
SRC234	262575	7896318	553	80	-50	72	2024	36	40	4	3.41		SE Main HG
SRC234	262575	7896318	553	80	-50	72	2024	40	42	2	1.71		SE main
SRC235	262550	7896350	553	125	-50	107	2024	44	47	3	1.79	0.74	SE HW
SRC235	262550	7896350	553	125	-50	107	2024	56	59	3	1.79		SE main
SRC235	262550	7896350	553	125	-50	107	2024	62	65	3	1.79	0.47	SE main
SRC235	262550	7896350	553	125	-50	107	2024	65	67	2	1.19	2.05	SE Main HG
SRC235		7896350		125	-50		2024	67	68	1	0.60		SE main
SRC236		7896344	556	110	-61		2024	72	76	4	2.46		SE HW
SRC236		7896344	556	110	-61	105		84	89	5	3.08		SE Main HG
SRC236		7896344	556	110	-61		2024	89	90	1	0.62		SE main
SRC237		7896308	554	100	-57	107		55	63	8	4.80		SE HW
SRC237		7896308	554	100	-57	107		69	71	2	1.20		SE main
SRC237		7896308	554	100	-57	107		71	75	4	2.40		SE Main HG
SRC237		7896308	554	100	-57	107	2024	75	76	1	0.60		SE main
SRC238		7896323	555	110	-66	105		66	70	4	2.42		SE HW
SRC238		7896323	555	110	-66	105		74	79	5	3.03		SE main
SRC238		7896323	555	110	-66	105		79	82	3	1.82		SE Main HG
SRC238		7896323	555	110	-66	105		82	83	1	0.61		SE main
SRC239		7896376	555	110	-60	106		60	63	3	1.82		SE HW
SRC239		7896376		110	-60		2024	76	79	3	1.82		SE main
SRC239	262547		555	110	-60		2024	79	81	2	1.22		SE Main HG
SRC239			555	110	-60		2024	81	84	3	1.82		SE main
SRC240		7896484	554	40	-55	105		25	28	3	1.86		SE HW
SRC241	262632		555	42	-55		2024	22	26	4	2.49		SE HW
SRC241	262632		555	42	-55		2024	31	35	4	2.49		SE main
SRC242		7896417	554	80	-80	100		53	56	3	1.71		SE HW
SRC242	262599		554	80	-80	100		59	68	9	5.12		SE main
SRC243	262629	7896406	555	35	-50	95	2024	11	14	3	2.12	0.5	SE HW

hole id	East	North	RL	depth	dip	azimuth	Year	from	to	dh length	approx. true	Au ppm	Intercept Flag
SRC243	262629	7896406	555	35	-50	95	2024	18	26	8	5.64	0.45	SE main
SRC244	262596	7896402	554	60	-60	106	2024	32	36	4	2.42	0.44	SE HW
SRC244	262596	7896402	554	60	-60	106	2024	49	53	4	2.42	0.66	SE main
SRC245	262615	7896394	555	40	-55	105	2024	5	13	8	4.97	1.06	SE HW
SRC245	262615	7896394	555	40	-55	105	2024	21	30	9	5.59	0.63	SE main
SRC245	262615	7896394	555	40	-55	105	2024	30	32	2	1.24	1.47	SE Main HG
SRC246	262603	7896363	554	40	-55	106	2024	3	6	3	1.84	0.62	SE HW
SRC246	262603	7896363	554	40	-55	106	2024	24	26	2	1.23	0.38	SE main
SRC246	262603	7896363	554	40	-55	106	2024	26	28	2	1.23	1.8	SE Main HG
SRC246	262603	7896363	554	40	-55	106	2024	28	30	2	1.23	0.32	SE main
SRC247	262235	7895932	562	130	-74	102	2024	75	82	7	4.16	0.98	SE Main HG
SRC247	262235	7895932	562	130	-74	102	2024	82	85	3	1.78	0.3	SE main
SRC247	262235	7895932	562	130	-74	102	2024	85	93	8	4.76	2.17	SE Main HG
SRC248	262529	7894965	583	65	-90	99	2024	5	13	8	4.03	1.27	ER south
SRC249	262537	7894990	583	60	-90	190	2024	13	23	10	4.94	0.94	ER south
SRC250	262545	7895016	582	61	-79	109	2024	12	20	8	4.40	0.44	ER south
SRC251	262547	7895015	582	45	-51	104	2024	5	12	7	4.39	0.83	ER south
SRC252	262563	7895041	582	60	-85	103	2024	29	30	1	0.53	0.72	ER south
SRC253	262568	7895040	582	40	-50	104	2024	16	17	1	0.63	0.23	ER south
SRC254	262868	7892233	584	42	-55	96	2024						No sig int
SRC255	262866	7892341	578	60	-60	105	2024						No sig int
SRC256	262919	7892426	584	46	-55	108	2024						No sig int
SRC257	262896	7892489	582	57	-59	110	2024				-		No sig int
SRC258	262951	7892578	585	40	-54	108	2024						No sig int

APPENDIX 2

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 No new work is reported in this release. Current Sampling (2017 to 2024) Reverse Circulation (RC) drill samples are collected as drilled via a riffle splitter attached to the drill rig cyclone and collected as 1m riffle split samples. Approximately 1-3kg of sample was collected over each 1m interval used for assaying. Diamond core drill samples are collected by quartering of the NQ core from Diamond drilling. Approximately 1 to 1.5 kg of sample was collected over each one metre interval used for assaying. Drill bit sizes used in the drilling were consistent in size (5.5") and are considered appropriate to indicate the degree and extent of mineralisation. 1m representative samples from RC and DD were pulverised to produce a 50 gram charge for fire assay for gold. Samples of the gold mineralisation were also submitted for multi-element assaying using a four-acid digest and ICP finish. Historic Sampling (pre-2017) Information relating to historic results relies on data contained in reports submitted to the Queensland Department of Natural Resources and Mines as part of the Company Report System attaching to granted Exploration Permits. The sampling techniques, where reported, used standard industry approaches. These include: 1. splitting off a sample of material delivered to the top of the hole during RC drilling to produce a sample for assay accompanied by geological logging of the sample. 2. Halving of drill core from diamond drilling to produce an assay sample accompanied by geological logging of the core.

Criteria	JORC Code explanation	Commentary
		 Assaying of samples was completed by commercial laboratory methods that were appropriate at the time the samples were collected. Sample intervals of 4m were commonly used for initial determination of the presence of gold by a geochemical method followed by more detailed sampling of mineralised intervals at usually 1m intervals using a more precise method.
		 Whilst it is not possible to determine the reliability of historic assay results, no issues arose during compilation and interpretation of the results that would suggest that the assay results were not reasonable. Additional to this, the recent sampling and assaying completed during 2020 and 2021 by Superior shows that the various previous drilling phases have given consistently similar results when compared to those of the more recent sampling.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 No new work is reported in this release. Current Drilling (2017 to 2024) Drilling from surface was performed using standard RC and diamond core drilling techniques as applicable to the hole drilled. RC Drilling was conducted by AED (Associated Exploration Drillers). Different rigs (UDR 650, McCulloch's DR 950, and Schramm 660 drilling rig) were used over several different programs but all used a 5.5 inch drill bit. Additional to the on-board air compressor of the drilling rig being used, additional compressed air was available as necessary via a separate booster truck. Sampling was by the use of a face-sampling hammer bit.
		 Diamond drilling was conducted by AED (Associated Exploration Drillers) using a UDR 650 or McCulloch's DR 950 drilling rig and NQ drill rods and wireline to retrieve the core. Drill core was oriented to allow structural measurements. The deeper drill holes were first pre-collared using the RC Drilling methods outlined above.
		 All holes were surveyed using a Reflex Gyro north-seeking gyroscopic instrument to obtain accurate down-hole directional data.
		 Historic Drilling (pre-2017) RC and diamond drilling are the only drilling techniques relied on in the historical drilling. Historical open hole percussion and RAB holes have only been used in terms of constraining the extent of the mineralisation, where applicable, and not for any

Criteria	JORC Code explanation	Commentary
		estimation purposes (Note: Where recent drilling is available this has been used instead of historical open hole percussion and/or RAB holes in determining the extents of the mineralisation).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	No new work is reported in this release. Current Drilling (2017 to 2024) Sample recovery was visually estimated by contract logging geologists.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	 The volume of sample collected for assay is considered to be representative of each 1m interval.
	preferential loss/gain of fine/coarse material.	 RC drill rod string delivered the sample to the rig-mounted cyclone which is sealed at the completion of each 1m interval. The riffle splitter is cleaned with compressed air at the end of each 1m interval and at the completion of each drill hole.
		 For diamond core drilling a wireline was used to retrieve core samples that are then placed in core trays.
		 No relationship is evident between sample recovery and grade.
		 Historic Drilling (pre-2017) Recoveries for the historic RC drill holes were not recorded.
		 Recoveries for historic diamond drill core samples were recorded for most holes drilled at Steam Engine. These recoveries were usually of the order of 100% indicating that recoveries should not be an issue if the results are used for estimating resources.
		 No relationship is evident between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections 	 No new work is reported in this release. Current Drilling (2017 to 2024) Geological logging was conducted during the drilling of each hole by a Pinata or Terra Search geologist having sufficient qualification and experience for the mineralisation style expected and observed at each hole. All holes were logged in their entirety at 1m intervals for the RC drill holes. A spear
	logged.	was used to produce representative samples for the logging of RC holes.
		Intact entire diamond drill hole core was use for the logging of diamond core. The core

Criteria	JORC Code explanation	Commentary
		was used to record RQD, as well as structural information and the geological logging.
		 All logging data is digitally compiled and validated before entry into the Superior database.
		 The level of logging detail is considered appropriate for resource drilling.
		The RC chip trays and diamond core trays were all photographed.
		 Historic Drilling (pre-2017) Geological logging of most of the historic drill holes is available in the Company Report System. Logs for holes drilled at the infill 25m sections have not been located at this stage. The available logging is of a good standard. No geotechnical logs have been reported and it is assumed that these were not done. Diamond drill hole logs usually include structural data that has been compiled in digital form.
		 The logging is generally of a qualitative nature. No core or chip photography is available in the reports.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No new work is reported in this release. Current Sampling (2017 to 2024) The sample collection methodology is considered appropriate for RC and diamond core drilling and was conducted in accordance with standard industry practice. RC drill hole samples are split with a riffle splitter at 1m intervals as drilled. Split 1 metre samples are regarded as reliable and representative. Approximately 1-3kg of sample was collected over each 1m interval. Samples were collected as dry samples. For 2020-21 drilling, field duplicate samples were collected and assayed at a rate of at least one sample in each batch processed. Due to miscommunication, there were no field duplicate samples collected during the 2024 drilling program. Analysis of RC field duplicate samples showed no indication of bias and a level of assay variability typical for orogenic-style gold mineralisation.
		 Diamond core drill hole samples were collected from quartered core over 1 metre intervals. Approximately 1 to 1.5 kg of sample was collected over each one metre interval used for assaying. Quartered NQ core samples are regarded as reliable and

Criteria	JORC Code explanation	Commentary
		representative. Samples were collected as dry samples.
		 The sample sizes are considered appropriate to the style of mineralisation being assessed.
		 Historic Sampling (pre-2017) The diamond drill core hole samples were collected from halved core obtained from sawing.
		 Details of the approach taken for sampling of RC drill holes are not available, but it is expected to be of industry standard for the time.
Quality of	The nature, quality and appropriateness of the assaying and	No new work is reported in this release.
assay data and laboratory	laboratory procedures used and whether the technique is considered partial or total.	Current Assaying (2017 to 2024)
tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 All samples were submitted to a reputable laboratory for the gold assays (ALS in 2017, Intertek in 2021 and 2024, and SGS laboratories in 2020, 2022 and 2024). Samples of the gold mineralisation were also submitted for multi-element assaying using a four- acid digest.
	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision 	 Samples were crushed, pulverised to ensure a minimum of 85% pulp material passing through 75 microns, then analysed for gold by fire assay method FA50/OE04 (Intertek in 2021) or GO_FA50V10 (SGS in 2020) using a 50-gram sample.
	have been established.	• Multi-element analyses were conducted on the gold mineralisation using a four acid digestion followed by an OES finish using method 4A/OE33 (Intertek in 2021) or ICP-AES finish using method GO_ICP41Q100 (SGS in 2020 and 2024). The following 33 elements: Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W, Zn were assayed for in 2021 and the following 38 elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sn, Sr, Te, Th, Ti, U, V, W, Y, Zn, Zr were assayed in 2020.
		 Certified gold, multi-element standards and blanks were included in the samples submitted to the laboratories for QAQC. Laboratory assay results for these quality control samples are within 5% of accepted values.
		 During the 2024 program, some quality control issues were identified from check assaying of standards. This required the re-assay of mineralised zones for Au to assure quality control. The re-assayed results passed quality control QAQC, and whilst not

Criteria	JORC Code explanation	Commentary
		varying considerably from the original assays assured confidence in the reported results. The re-assaying was conducted by Intertek Australia Laboratories (Townsville) using a 50-gram sample by method FA50/OE04 for Au.
		 Additionally, the laboratories used a series of their own standards, blanks, and duplicates for internal quality control.
		 Historic Assaying (pre-2017) Sampling and assaying techniques used during various phases of the previous drilling were done by commercial laboratories using industry standard procedures used at the time of drilling.
		 Assay data reviewed within the historic reports include some duplicate assaying. It is unknown in detail what other quality control procedures were adopted.
		 The recent sampling and assaying completed in 2020 and 2021 by Superior shows that the various historical drilling phases show consistent results when compared to those from the recent drilling.
Verification of	The verification of significant intersections by either	No new work is reported in this release.
sampling and assaying	independent or alternative company personnel.	Current Drilling (2017 to 2024)
ussuying	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The reported significant intersections have been verified by Pinata or Terra Search and Superior geologists against the representative drill chips and diamond drill core collected and the drill logs.
	Discuss any adjustment to assay data.	No Superior holes were twinned.
		 Logs were recorded by Pinata or Terra Search field geologists on hard copy sampling sheets which were entered into spreadsheets for merging into a central database.
		 Laboratory assay files were merged directly into the database.
		The data is routinely validated when loading into the database.
		No adjustments to assay data were undertaken.
		Historic Drilling (pre-2017)
		 Close spaced recent drilling by Superior Resources (2020 and 2021) to the historic drill holes confirms the order of the drill gold intersections obtained by the historic drilling.

Criteria	JORC Code explanation	Commentary
		 To date, no dedicated twinned holes have been drilled by Superior on the historic drill holes, however very close spaced recent drill holes to the historic drilling has resulted in very similar results both in terms of widths and grades and there is no difference in overall grade statistics between historical and current drilling.
		 Most of the historic drill hole data was captured and stored on paper. The compilation of that data in digital form has been completed by Superior.
		 No adjustments have been made to historic sample assay data as there was no apparent reason for such adjustment.
		 A total of six (6) historical RC drill holes were excluded from use in this resource estimate due to gaps in sampling arising from incomplete reporting of composite intersections in historical reports. All holes were from an area of the deposit well drilled by Superior.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	No new work is reported in this release. Current Drilling (2017 to 2024) Drill hole collars have been recorded in the field using handheld GPS with three metre or better accuracy. The locations have also been further defined using DGPS to give sub one metre accuracy.
		 The drill hole spacing and drilling technique are appropriate to establish the degree of geological and grade continuity for the Mineral Resource estimation procedures that have been applied. The gold mineralised system remains open and further infill, depth and strike extension drilling is required to confirm the full extent of the ore bodies.
		 All collars are recorded in Map Grid Australia 1994 Zone 55 coordinates.
		 Topographic control is currently from DGPS pickup that has been merged with RL adjusted contours.
		 Historical Drilling (pre-2017) Noranda Australia (and subsidiaries) controlled exploration of the Steam Engine area using a local grid. As the property was advanced, a surveyor was used to provide a more accurate local grid control with a local height datum being implemented. Their data has been originally compiled using the local grid coordinates.

Criteria	JORC Code explanation	Commentary
		 Drill holes completed by Beacon Minerals Limited were reported using handheld GPS collar coordinates with a likely accuracy of about ± 5m. An accurate translation from GPS coordinates to local grid coordinates has been used to convert the Beacon drill hole data to local coordinates.
		 Many of the historic drill hole collars are still evident at the prospect. Superior completed surveying of most of the previous drill hole collars using a DGPS system. The DGPS surveying validates the accuracy of Noranda's reported collar locations and provided an additional level of location confidence to the historic drill hole data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 No new work is reported in this release. Drill hole spacing is variable over the Resource area, with some parts of the Steam Engine Lode system samples to approximately 10m spacing. The maximum drill spacing is 25m to 30m in the deeper sections of the lodes. Drill density is adequate to establish geological and grade continuity of the mineralisation at a confidence level that supports at least Inferred resource classification.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No new work is reported in this release. Almost all drilling has been oriented near-perpendicular to the strike of mineralisation and intersection angles are generally around 60°. No sampling bias is considered to have been introduced from drill orientation.
Sample security	The measures taken to ensure sample security.	 No new work is reported in this release. For Superior's sampling programs, sub-samples selected for assaying from RC and diamond core were collected in heavy-duty polyweave bags which were immediately sealed.
		 These bags were delivered directly to the Townsville laboratories (Intertek in 2021 and SGS in 2020) by Terra Search and Superior's employees.
		 Sample security measures within Intertek and SGS laboratories are considered adequate.

Criteria	JORC Code explanation	Commentary
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews of the sampling techniques and data have been undertaken to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint	 The areas reported lie within Exploration Permit for Minerals 26165 and is held 100% by Superior.
land tenure status	 ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Superior holds much of the surrounding area under granted exploration permits.
		• Superior has agreements or other appropriate arrangements in place with landholders and native title parties with respect to work in the area.
		• No regulatory impediments affect the relevant tenements or the ability of Superior to operate on the tenements.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Small-scale historic mining occurred in the area from 1903 to 1912 in the ungazetted Lucky Creek Goldfield. The Lucky Surprise mine (part of what is now named Steam Engine) reportedly extended over 15 m strike length to a maximum depth of 30 m underground (Withnall et al 1996). The exact extent of underground workings is unknown but given the likely size the impact on the current resource is considered to be negligible.
		• The main significant historical work on the project was undertaken by Noranda (1985-1987), Pioneer (1988-1989), Pancontinental Mining (1994), and Beacon Minerals (2007). All four companies completed drilling programs within the current resource area: Noranda 26 holes for 2335 m, Pioneer 37 holes for 2475 m, Pancontinental 2 holes for 100 m and Beacon 5 holes for 414 m. Comparison of the most of this historic work to newer drilling shows the same overall grade distribution with no noticeable bias. Some of the earlier work by Pioneer was early stage exploration in style and unsuited for detailed resource definition and where necessary holes have been excluded from the current resource estimate.
Geology	Deposit type, geological setting and style of mineralisation.	The deposits occur within a northeast trending belt of Palaeozoic-age gneiss, mica schist and mafic/ultramafic metamorphic rocks located along on the easterly margin of

Criteria	JORC Code explanation	Commentary
		the older Georgetown Inlier.
		 Gold mineralisation occurs within several north-northeast trending, west dipping pyritic quartz-muscovite-carbonate schist lodes within metamorphosed intermediate to basic intrusive and metasedimentary rocks. Lodes are contained within shear zone that are broadly parallel to foliation and lithological banding in the host rocks. Significant chlorite—epidote and sericite type alteration zones exist in the shear zones with the mineralisation appearing to be mostly linked with heavily sericite altered sections of the host rock.
		 The gold mineralisation phase itself consists of a predominant pyrite sulphide assemblage +/- minor arsenopyrite, pyrrhotite, and chalcopyrite (all fine grained).
		 Several gold bearing lodes occur in the area, of which the Steam Engine Lode zone is the most notable. The Eastern Ridge Lode zone is located some 500m east of the Steam Engine Lode zone.
		 Recent studies undertaken by Superior Resource suggest the Steam Engine gold mineralisation is most similar to mesothermal orogenic style.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 to this report.
		The reporting of Exploration Results does not form the basis of this announcement.
		Specific drill hole information is determined as non-material to the understanding of the MRE because:
		 - the combined historic and current drill hole database contains 317 drill holes for ove 24,000 metres. All information was viewed in 3D to facilitate the interpretation and inform the MRE;
		- no new, previously unreported drill holes were used in the modelling and estimation of the MRE; and
		- the listing of individual drill hole details is not material for the understanding of Mineral Resource Estimate reports.

Criteria	JORC Code e	xplanation	Cor	nmentary
Data aggregation methods	technique cutting of and should where aggrade resprocedure typical ex	ng Exploration Results, weighting averaging es, maximum and/or minimum grade truncations (e.g. f high grades) and cut-off grades are usually Material ed be stated. Igregate intercepts incorporate short lengths of high cults and longer lengths of low grade results, the es used for such aggregation should be stated and some amples of such aggregations should be shown in detail. Inputions used for any reporting of metal equivalent could be clearly stated.		Refer to Appendix 1 to this report. The reporting of Exploration Results does not form the basis of this announcement. Grade aggregation and grade range moderating information is discussed in JORC Table 1, Section 3, Estimation and modelling techniques. No metal equivalent values are reported or used for the purpose of calculating the Mineral Resource Estimate.
Relationship between mineralisation widths and intercept lengths	 These relocation If the geocation hole angle If it is not there sho 	ationships are particularly important in the reporting of on Results. metry of the mineralisation with respect to the drill e is known, its nature should be reported. known and only the down hole lengths are reported, uld be a clear statement to this effect (e.g. 'down hole we width not known').		Any reference to mineralisation widths relate to true widths as determined by 3D modelling of the lodes. The reporting of Exploration Results does not form the basis of this announcement. Mineral Resource Estimation does not rely on the relationship between mineralisation true width and reported intercept lengths.
Diagrams	 Approprior intercepts reported 	nte maps and sections (with scales) and tabulations of s should be included for any significant discovery being These should include, but not be limited to a plan view le collar locations and appropriate sectional views.		Refer to Figures included in the body of this release.
Balanced reporting	Where co practicab grades ar	mprehensive reporting of all Exploration Results is not le, representative reporting of both low and high ad/or widths should be practiced to avoid misleading of Exploration Results.		No new work relating to exploration results reported in this release. The reporting of Exploration Results does not form the basis of this announcement. Grade aggregation and grade range moderating information has been provided in the body of this report.
Other substantive exploration data	reported geophysic samples - results; bo	oloration data, if meaningful and material, should be including (but not limited to): geological observations; cal survey results; geochemical survey results; bulk - size and method of treatment; metallurgical test culk density, groundwater, geotechnical and rock cistics; potential deleterious or contaminating	•	Specific gravity measurements were undertaken on 14 composite core samples within mineralised and non-mineralised material. Three batches of metallurgical tests from composited samples have been conducted between 2020 to 2022 involving a total of 31 samples (24 for Steam Engine and 7 from Eastern Ridge). A summary of the metallurgical test work undertaken concludes an average gold

Criteria	JORC Code explanation	Commentary
		recovery for the Steam Engine Lode of 82% and for the Eastern Ridge Lode of 95%.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Subsequent to this Updated Mineral Resource Estimate, additional work programs will now include: Additional density measurements Pit optimisation studies Further Metallurgical studies Geotechnical studies Economic studies including processing options Preliminary mining and rehabilitation planning Preliminary environmental studies Permitting

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Mining Associates (MA) has undertaken limited independent first principal checks using hard copies of results and sectional interpretations. Basic database validation checks were run, including collar locations, drill holes plot on topography, checks for missing intervals, overlapping intervals and hole depth mismatches. All data up to 20th of July 2025 was used in the preparation of this Mineral Resource Estimate.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The Competent Person (CP, Mr I.Taylor) visited site from the 13th to 14th August 2025 to review the geology and drill core. Selected drill holes were laid out and reviewed by the CP. Data collection and discussions with the Superior Staff and the core review were the primary focus of the visits to provide a greater understanding of the geological setting, style of mineralisation and appreciation of logging and sampling procedures.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. 	 Confidence in the geological interpretation is considered moderate to high, depending on the differing drill hole spacing in parts of the deposit. The southern part of the Steam Engine lode zone is most densely drilled in the upper 100m and grades are a

Criteria	JORC Code explanation	Commentary
	 The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	clear guide to defining the boundaries of the lodes. At Eastern Ridge the drilling in 2024 targeting down-dip extensions of the lodes resulted in narrower and lower grade zones that was expected from earlier drilling, highlighting the lower confidence in the interpretation in places.
		 Interpretations are based solely on drill hole data: there is limited outcrop in the area covering the deposit. 90% of drill metres are RC, which limits the available information on structures.
		 Drill core and RC chip logging has been used to define the main geological units and weathering profile boundaries.
		 Alternative interpretations of mineralised domain boundaries would affect tonnage and grade, although the CP is confident that the current model is the best representation of the deposit based on available data.
		 Minor cross faulting likely exists at the project, indicated by sudden displacements in the lode position between drill sections. Any offsets are considered too small to be significant at a resource scale.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral.	• The Steam Engine lodes are modelled over a total strike length of 810m to a maximum down-dip extent of 275m (240m vertical depth). True width of the Main lode varies from 1m to 20m with an average of 6.5m. Hangingwall and Footwall lodes have a strike extent of 185m and 115m respectively.
		 Eastern Ridge lodes are modelled over 600m along strike to a maximum down-dip extent of 120m (100m vertical depth). True width of the North and South lodes varies from <1m to 10m with an average of 3.5m.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource 	 Separate block models were created for Steam Engine and Eastern Ridge with the Y axis parallel to the average strike of the lodes: 30° at Steam Engine and 22° at Eastern Ridge.
		 Block sizes were chosen to reflect the average sample spacing mineralisation width and, likely mining bench height: 2.5 in X (across strike), 10m in Y (along strike) and 5m in Z (vertical). Sub-blocking to 0.625m, 1.25m and 1.25m respectively was selected to ensure accurate volume definition.
	estimate takes appropriate account of such data.	Modelling of mineralised lodes in 3D was used to create hard boundaries for resource

Criteria	JORC Code explanation	Commentary
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Tonnages are based on dry tonnes. Dry bulk density has been assigned to the host rock.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The resource is reported at two cut-off grades: above 0.25 g/t Au and above 1 g/t Au, which are intended to reflect two different potential scenarios for project development being considered by Superior. The lower cut-off relates to an on-site processing option whereas the 1 g/t Au relates to toll-treatment at an existing plant.
Mining factors	Assumptions made regarding possible mining methods,	 No mining factors or assumptions have been applied to the resource.
or assumptions	minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the JORC Code explanation Commentary process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made	 MA considers the Steam Engine project amenable to open pit mining methods and assumes the likely mining scenario will have 5m benches and 2.5m flitches. These assumptions have influenced, composite length, block size and resource cut-off parameters. No dilution factors are included in the resource estimate.
	regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The Steam Engine lode is reported to a depth cut-off of 200m vertical depth below surface. This is considered the maximum reasonable depth for a potential pit, given the width and grade of mineralisation and consideration of approximate strip ratios.
Metallurgical	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	No metallurgical factors have been applied to the in-situ grade estimates.
factors or assumptions		 Preliminary metallurgical leach test work was undertaken in October and November 2020 by ALS Laboratories to confirm the amenability of the ore to conventional CIP / CIL leaching. Six sample composites were generated from material which was of ore grade and considered representative of the ore to be mined, with two samples of each of the three main ore zones.
		 Grind size for the test work was P80 (80% passing size of 75 microns).
		• The leach test conditions comprised sodium cyanide dosage of 1.5 kg/t, density of 40% solids, pH of 10 to 10.5, with dissolved oxygen at 15 to 20 ppm.
		 Leach tests were run for 48 hours with a sample taken after 24 hours to assist in understanding the leach kinetics.
		 The results for the Eastern Ridge samples (5223045 and 5223046) were excellent with 97% and 98% of the gold being extracted respectively, and with virtually all of this extracted after 24 hours.

Criteria	JORC Code explanation	Commentary
		 The results for the Steam Engine lode were lower with the average grade samples (5223044, 5223042 and 5223043) seeing total gold extraction of 84%, 80% and 73% respectively.
		 At this stage, no test work has been done to investigate options to improve the gold recovery in the Steam Engine Lode samples.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	These factors have yet to be studied and some preliminary assumptions for this have been adopted based on the known geology of the ore and waste. Ore and waste characterisation tests are due to be carried out soon and will include acid generation tests.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. 	 Laboratory tests of the SG used diamond core from the oxide and sulphide zones. The tests to date give an average for the oxide ore zone of SG 2.7 and for the sulphide ore zone of SG 2.9. The mineralization rock types encountered in the drilling are very low porosity/non-porous rocks including metamorphic/magmatic rocks. The SG's have been based on dry core samples weighing between 1 to 4 kgs and tested for SG by ALS laboratories using method OA_GRA08.
	 Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e., relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). 	 Confidence levels for classification were based on similar classifications that have been made on similar deposits and by the degree of continuity of the lode zone, the density of the existing drilling, and the apparent reliability of the historical data (having been confirmed by the recent 2020/2021 drilling). The additional infill drilling in 2020/2021/2024 has led to an improved level of classification, of the areas previously estimated. Further additional exploration drilling has also led to new resource at the northern end and at depth at the Steam Engine

Criteria	JORC Code explanation	Commentary
	Whether the result appropriately reflects the Competent Person's view of the deposit.	Lode. The drilling continues to confirm the continuity of the additional mineralisation that is being outlined.
		The result appropriately reflects the competent person's current view of the deposit.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	There has been no independent audit of the data or mineral resource.
		Principal Geologists from MA have peer reviewed the mineral resource estimate.
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 No geostatistical confidence limits have been estimated. The relative accuracy and confidence in the Mineral Resource Estimate is reflected in the Resource Categories.
		 A small part of the Steam Engine lode resource is classified as Measured, based on the average drill spacing around 10 m and higher confidence kriging statistics. Indicated resources have lower confidence kriging statistics, and sample spacings of 15 m-25 m.
		 The ordinary kriging result, due to the moderate to high level of smoothing, should only be regarded as a global estimate, and is suitable as a life of mine planning tool. High grade domains and search parameters were used to restrict the high-grade material.
		 Inferred Mineral Resources have a lower level of confidence than that applying to Measured or Indicated Mineral Resources and must not be converted to an Ore Reserve.
		 Should local estimates be required for detailed mine scheduling, techniques such as Uniform conditioning or conditional simulation should be considered. Ultimately grade control drilling is required.
		 Comparison with the previous estimate in 2022 indicates that the changes implemented in the current Mineral Resource Estimate produced results that are in line with expectations.
		 Minor historic artisanal mining has occurred at the project but it's impact on the current resource is considered negligible.