

ASX Announcement

2 December 2025 | ASX: CRI

Second High-Grade Mixed Rare Earth Product Achieves Strong Magnet REE and Yttrium Grades

Second MREP from Jupiter delivers 86% TREO, 24.7% Magnet Rare Earths and 2.4% Yttrium

A second higher - Total Rare Earth Oxide (**TREO**) Mixed Rare Earth Product (**MREP**), produced from a different metallurgical domain within the Jupiter resource, confirms substantial and repeatable upgrades of the key magnet rare earths (Nd, Pr, Dy, Tb) and strategic heavy rare earth Yttrium (Y_2O_3) from in-situ grades, through beneficiation, into a final product.

Key Highlights

- Second high-grade MREP produced from Jupiter, delivering **86% TREO (following first MREP at 84% TREO¹)**
- Strong, consistent upgrades of all high-value rare earths – including **Nd, Pr, Dy, Tb and Y_2O_3** – from in-situ grades through beneficiation and into MREP
- Yttrium (Y_2O_3) upgrades more than 30,000%, from 74 ppm in the global resource to 24,275–26,410 ppm across both MREPs
- The four magnet rare earths show >40,000%–60,000% upgrades, confirming extremely robust concentrate chemistry
- Validation now spans all metallurgical scales: 50 kg laboratory sample → 400 kg bulk sample → first MREP → second MREP (different domain)
- Y, Dy, Tb and Ga markets are all >90% controlled by China, highlighting the strategic value of a simple, scalable WA project
- Jupiter remains Australia's largest and highest-grade clay-hosted REE resource, ideally located in a proven Tier-1 mining jurisdiction in Western Australia

1. Refer to ASX announcement dated 28 Oct 2025.

Critica Limited (ASX: CRI) (**Critica or the Company**) is pleased to report results from a second high-grade MREP produced from a different metallurgical domain at the Jupiter Project. The new Mixed Rare Earth Oxide (**MREO**) confirms substantial and repeatable upgrades of Magnet Rare Earths (Nd, Pr, Dy, Tb) and strategic Heavy Rare Earth Yttrium (Y_2O_3) through Critica's beneficiation-first flowsheet. These results further strengthen the technical confidence and scalability of Jupiter's development pathway.

Critica's CEO Jacob Deysel commented:

"Producing a second high-grade MREO at 86% TREO from a different domain within Jupiter is a major validation step for Critica. We are seeing exactly what a scalable project should demonstrate—consistent, repeatable upgrade of the four high-value Magnet Rare Earths and Yttrium from the global resource, through beneficiation, and into final product.

The strong upgrade of Yttrium is notable given China's overwhelming control of supply and its export controls on rare-earth processing technologies. Combined with previously reported by-product potential from the same flowsheet, Jupiter's global relevance is becoming increasingly clear.

Together with the commissioning of our 3,000 kg beneficiation pilot plant and ongoing extraction programs at GAVAQ, ANSTO and Minutech, these results are steadily de-risking the flowsheet and building a clear pathway to a Western-aligned rare earths operation.

Jupiter's scale, very low uranium and thorium, strong yttrium upgrade in a market dominated by China, consistent metallurgical behaviour, and location in Western Australia are defining competitive strengths as we advance Critica towards becoming Australia's next rare earth developer."

Market Context

Recent international policy developments highlight the strategic importance of Critica's upgraded elements:

- Yttrium (Y) – critical for phosphors, lasers, high-temperature alloys and advanced electronics; globally dominated by China
- Magnet REEs (Nd, Pr, Dy, Tb) – essential for EV motors, wind turbines, robotics and defence systems; China controls >90% of supply
- Gallium (Ga) – essential for GaN and GaAs semiconductors; China controls >98% of global supply and has imposed export-licensing controls since 2024¹
- Scandium (Sc) – critical for aerospace alloys, hydrogen systems and clean-energy technologies

These elements sit at the centre of Western supply-chain diversification initiatives, including the Australia–U.S. Critical Minerals Framework.

Note 1 - Source: Center for Strategic & International Studies, article: Beyond Rare Earths: China's Growing Threat to Gallium Supply Chains accessed at www.csis.org accessed on 5 November 2025.

Technical Overview – Mixed Rare Earth Products (MREP)

Two Independent High-Grade Mixed Rare Earth Products Produced

Critica has now produced two high-grade Mixed Rare Earth Products both in the form of an Oxide from two different metallurgical domains within the Jupiter resource. Both were generated using Critica's beneficiation-first flowsheet followed by a standardised hydrometallurgical process route.

Both products delivered high TREO grades (84% and 86%) and strong, repeatable reporting of Magnet Rare Earths (Nd, Pr, Dy, Tb) and Yttrium (Y_2O_3).

Consistent Upgrade Behaviour Across Domains

Despite different feed domains, both MREOs consistently show:

- High and consistent concentrations of Nd, Pr, Dy, Tb and Y
- Strong alignment with the bulk-sample upgrade trends
- Predictable mineralogical behaviour within the flowsheet

This repeatability supports robustness across Jupiter's geometallurgical variability.

Table 1 – MREP 1 and MREP 2 Resource to Average MREP Upgrade (ppm and %)

Element	Resource Grade (ppm) ^A	MREP 1 (ppm) ^B	MREP 2 (ppm)	Average across MREP 1 & 2 (ppm)	% Upgrade (Resource → Avg MREP 1 & 2)
Nd₂O₃	284	141,841	184,775	163,308	57,420%
Pr₆O₁₁	81	46,035	52,873	49,454	61,046%
Dy₂O₃	14	4,315	7,102	5,709	40,564%
Tb₄O₇	3	1,320	2,075	1,698	56,500%
Y₂O₃	74	26,409	24,275	25,342	34,114%

Notes:

A. Refer to ASX release 11 February 2025.

B. Refer to ASX release 28 October 2025.

Table 2 – MREP Oxide Distribution (ppm and %)

	MREP 1 (PPM)	MREP 1 (%)	MREP 2 (PPM)	MREP 2 (%)
TREO	836,015	83.6%	863,252	86.3%
MagREO	193,513	19.3%	246,826	24.7%
HREO	48,777	4.9%	61,574	6.2%
Nd₂O₃	141,841	14.2%	184,775	18.5%
Pr₆O₁₁	46,035	4.6%	52,873	5.9%
Dy₂O₃	4,315	0.43%	7,102	0.71%
Tb₄O₇	1,320	0.13%	2,075	0.21%
Y₂O₃	26,409	2.6%	24,275	2.4%

Notes:

1. Assaying conducted under supervision of GAVAQ (as per Appendix One).

Why This Matters – Flowsheet Confirmed as Repeatable and Scalable

1. Repeatability of Hydrometallurgical Performance

- Same conventional acid-bake flowsheet
- Same GAVAQ laboratory
- Consistent high-grade outcome

2. Systematic Upgrade Pathway is Now Further Validated

Critica has demonstrated a continuous metallurgical line-of-sight from:

1. 50 kg laboratory testwork (Jan 2025)
2. 400kg Bulk sample beneficiation (May 2025)
3. Intermediate concentrate hydromet at GAVAQ, ANSTO, Minutech-AMML
4. First high-grade MREO (Oct 2025)
5. Second high-grade MREO (this update)
6. By-product potential from the same flowsheet
7. 3,000 kg closed-circuit pilot plant commissioning ongoing

3. Robust Behaviour of Magnet REEs and Yttrium

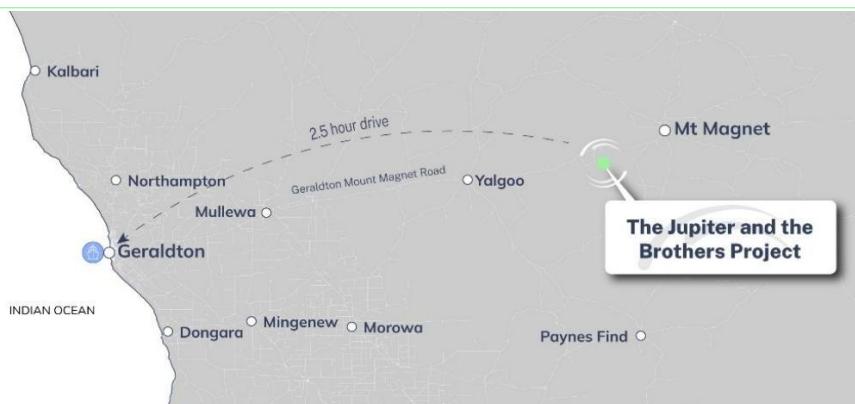
Upgrades are strongly aligned with previous results, confirming:

- Stability of concentrate chemistry
- Consistent extraction
- Predictable rare-earth behaviour across the flowsheet

4. Reinforces Western Supply-Chain Relevance

- Nd, Pr, Dy, Tb and Y are central to magnets, EVs, robotics, defence and advanced electronics
- China maintains dominant control of downstream refining and magnet production for these elements
- Jupiter offers scale, simplicity, low U/Th and a Western-aligned development pathway

Next Steps


- Commission and operate the 3,000 kg closed-circuit pilot plant at GAVAQ. (Q4 2025 – H1 2026)
- Optimise extraction and precipitation conditions for Magnet REEs, Y, Ga and other by-products (Ongoing)
- Finalise MREP product specifications (Ongoing)
- Integrate pilot & lab data into the Jupiter Scoping Study (H1 2026)
- Advance offtake and strategic partner engagement

Glossary of Terms

- TREO: Total Rare Earth Oxides
- MREP: Mixed rare earth products (oxide or carbonate)
- MREO: Mixed Rare Earth Oxide; product here assaying 86% TREO at 68% recovery
- MagREO: Magnet rare earth oxides (Nd, Pr, Tb, Dy)
- Beneficiation: Physical upgrading of ore
- Open vs Closed Circuit: Single-pass vs recycled processing modes

Authorised by the Board of Critica Limited.

Critica (ASX: CRI) is rapidly advancing the Jupiter Project in WA, Australia's largest clay-hosted rare earth resource, with a mine-to-magnet plan to meet surging AI, EV, renewables and defence demand.

Jacob Deysel

CEO
 Critica Limited
 Level 2, 16 Altona Street, West Perth, Western Australia
 T: +61 8 6279 9428 | admin@critica.limited | critica.limited

Investor and Media Relations

Dannika Warburton
 Investability Partners
investors@investability.com.au

JOIN CRITICA'S INTERACTIVE INVESTOR HUB

Sign up and engage with our investor relations team

Competent Persons Statement

The information in this report that relates to exploration results including geology interpretation, data preparation and data quality is based on work compiled by Dr. Stuart Owen who is a Member of the Australian Institute of Geoscientists. Dr. Owen is a permanent employee of Critica Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC code). Dr. Owen consents to the inclusion in the report of the matters based on his information in the form and context in which they appear.

The Information in this announcement that relates to previous exploration results for the Projects is extracted from the following ASX announcements:

- Critica's MREP flowsheet achieves 63% Gallium Leach Recovery – 10&17 November 2025
- Consistent Bulk Sample Results Strengthen Jupiter Pathway – 29 September 2025
- Critica to produce high-grade REE concentrate at pilot plant – 1 September 2025
- ANSTO & Minutetech engaged to produce first MREC from Jupiter – 26 August 2025
- Jupiter Confirmed as Australia's Largest MREO Clay Resource – 13 August 2025
- Critica Advances Jupiter – Outstanding Magnet and HREO Grades – 16 July 2025
- Critica Commences Bulk Metallurgical Testwork – 28 May 2025
- First Pass Metallurgical Testwork Delivers 830% REE Upgrade – 23 January 2025

No new Mineral Resource information is contained in this report.

Information in this report which refers to Mineral Resources for the Jupiter Project in Western Australia is taken from the company's initial ASX disclosure dated 11 February 2025, 13 August 2025 and 10 November 2025 at www.critica.limited. The disclosure fairly represents information compiled by Mr Rodney Brown a Member of Australian Institute of Mining and Metallurgy and is an employee of SRK Consulting (Australia) Pty Ltd, independent of Critica Limited and has no conflict of interest.

The Company confirms that all material assumptions and technical parameters underpinning the Mineral Resources Estimates referred to within previous ASX announcements remain current and have not materially changed since last reported. The Company is not aware of any new information or data that materially affects the information included in this announcement.

The Company confirms that the form and context in which the Competent Person's findings are or were presented have not been materially modified.

Table 3: Jupiter drill holes and intervals used to produce the reported Mixed Rare Earth Oxide

Hole	Drill type	East m MGA Zone50 GDA94	North m MGA Zone50 GDA94	RL m AHD	Azimuth	Dip	From (m)	To (m)	Interval (m)
JP002	DDC	529218	6856097	351	090	-70	42.1	64.9	22.8
JP007	DDC	529735	6854107	351	090	-70	42.6	65.1	22.5
JPAC190	AC	530010	6852851	355	-	-90	40.0	48.0	8
JPAC196	AC	530492	6853346	356	-	-90	40.0	48.0	8
JPAC199	AC	529749	6853349	353	-	-90	32.0	40.0	8

Appendix One: JORC Code, 2012 Edition | 'Table 1' Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Table Sampling Techniques	<ul style="list-style-type: none"> • Nature and quality of sampling (e.g.: cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. • Measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. • Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g.: 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g.: submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> • The Mixed Rare Earth Product (MREP) subject of this announcement was produced from a beneficiated bulk sample taken from 3 Air Core (AC) and 2 diamond drill core (DDC) drill holes within the Jupiter Inferred Resource envelope as listed in Table 2 of this announcement. • Sampling was conducted and supervised by a suitably qualified Critica geologists and field technicians.
Drilling Techniques	<ul style="list-style-type: none"> • Drill type (e.g.: core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc..) and details (e.g.: core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc..). 	<ul style="list-style-type: none"> • The metallurgical composites were collected from 90mm diameter AC holes drilled by KTE Mining Services with a KL 150 Air Core rig and PQ diameter DDC holes drilled by DDH1 with a Sandvik DE840 truck mounted drill rig.
Drill Sample Recovery	<ul style="list-style-type: none"> • Method of recording and assessing core and chip sample recoveries and results assessed. • Measures taken to maximise sample recovery and ensure representative nature of the samples. • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> • The bulk AC samples were visually assessed and weighed. Recovery is considered acceptable and representative. • The diamond holes were marked up and core loss recorded prior to samples being quarter cored.

Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> All holes were qualitatively geologically logged by suitably qualified Critica geologists. The detail of geological logging, mineralogy and geochemistry is appropriate for exploration, resource definition and metallurgical sample selection purposes.
Sub-Sampling Techniques and Sample Preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> The material used in the reported metallurgical test work represents 69 m from 3 AC and 2 DDC drill holes within the Jupiter Inferred Resource footprint. The metallurgical samples were collected by sampling scoop from the bulk AC drill spoils and cut in continuous quarter core intervals from the PQ diameter Diamond Drill Core. The samples were crushed as necessary, pulverized then homogenized by mat rolling for supply to the metallurgical laboratory. A subsample of the homogenized bulk sample was collected for head assay prior to submission to the metallurgical laboratory.
Quality of Assay Data and Laboratory Tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	<ul style="list-style-type: none"> Head assaying of the constituent drill samples and bulk metallurgical composite was conducted at ALS Geochemistry, Perth for a broad suite of elements using industry standard methods including REEs by lithium borate fusion with ICP-MS finish. Certified reference materials reported within expected ranges. Metallurgical process materials and products were assayed under the supervision of the Centre of Science and Technology of Minerals and Environment (GAVAQ), Vietnam. Assaying of leach residues and solutions was conducted at Intertek, Perth using industry standard methods.
Verification of Sampling and Assaying	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	<ul style="list-style-type: none"> The metallurgical results are compatible with observed mineralogy. Primary data is stored and documented in industry standard ways. The use of twinned holes is not relevant to the reported metallurgical test work. Assay data is as reported by the relevant assay and metallurgical laboratories and has not been adjusted in any way.

Location of Data Points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> Drill hole locations were determined by handheld GPS with a nominal accuracy of +/- 5 metres. All coordinates and maps presented here are in the MGA Zone 50 GDA94 system. Topographic control is provided by Worldwide 3 arc second SRTM spot height data.
Data Spacing and Distribution	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	<ul style="list-style-type: none"> The drill holes selected for the reported metallurgical test work were part of Jupiter exploration and resource definition programs as previously reported to the ASX.
Orientation of Data in Relation to Geological Structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> All AC drilling was vertical and DDC drilling -70 degrees as appropriate for the broadly flat-lying mineralization style. Downhole thickness approximates true thickness.
Sample Security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> The chain of custody for the metallurgical composite from collection to submission to the metallurgical laboratory was managed by Critica personnel. and the level of security is considered appropriate.
Audits or Reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> The test work was monitored and reviewed by suitably qualified Critica metallurgist Dr Hien Dinh.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral Tenement and Land Tenure Status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> The Brothers REE Project currently consists of granted Exploration Licences E59/2421, E59/2463, E59/2710, E59/2711, E59/2819, E59/2820, E59/2821, E59/2827, E59/2889, E59/2890, E59/2907, E59/2927, E59/2928, E59/2930, and applications E59/2977 and E58/629. All are 100% held by Tasmanian Rare Earth Pty Ltd a wholly owned subsidiary of Critica Limited.
Exploration Done by Other Parties	<ul style="list-style-type: none"> Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> Documented previous explorers within the area now covered by the Brothers Project include North Flinders Mines Ltd, CRA Exploration Pty Ltd, Spark Energy Pty Ltd, Arcadia Minerals Ltd, Babalya Gold Pty Ltd, Burmine Ltd, Equigold NL, Equinox Resources NL, Jervois Mining Ltd, Minjar Gold Pty Ltd, Mount Magnet South NL, Sons of Gwalia Ltd and David Ross. Refer to previous Critica announcements to the ASX and also available from http://critica.limited.
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> The Brothers REE exploration area is situated within the Western Australian Archean Yilgarn Craton and mostly comprises Cenozoic cover sequence overlying an extensive Archean monzogranite complex (the Big Bell Suite).
Drill Hole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> Locations and intervals for the metallurgical material used in the test work reported here are listed in Table32 of this announcement. Collar locations were determined by differential GPS to sub-metre accuracy. All coordinates and maps presented here are in the MGA Zone 50 GDA94 system. Topographic control is provided by Worldwide 3 arc second SRTM spot height data. Refer to previous ASX announcements for relevant intersections, assay results and resource estimation.
Data Aggregation Methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high 	<ul style="list-style-type: none"> Metal equivalents have not been applied. Refer to previous ASX announcements for relevant Jupiter project intersections and assay results.

Criteria	JORC Code explanation	Commentary
	<p>grades) and cut-off grades are usually Material and should be stated.</p> <ul style="list-style-type: none"> Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> Standard element to oxide conversion factors have been used and TREO was calculated on an unrounded basis.
Relationship Between Mineralisation Widths and Intercept Lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down-hole length, true width not known') 	<ul style="list-style-type: none"> The intersected clay and saprolite zones blanket weathered granitoid basement such that downhole thickness approximate true thickness.
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Metallurgical sample locations are given in Table 3. Refer to previous Critica announcements to the ASX for block model plans and sections, also available from http://critica.limited.
Balanced Reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> Refer to previous ASX announcements for relevant Jupiter project drill intersections and resource estimation.
Other Substantive Exploration Data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> Beneficiation of the bulk metallurgical composite was conducted at the Centre of Science and Technology of Minerals and Environment (GAVAQ), Vietnam as previously announced by Critica Limited to the ASX 29 September 2025. The Mixed Rare Earth Oxide reported here was produced under supervision of the Centre of Science and Technology of Minerals and Environment (GAVAQ), Vietnam using beneficiated iron-rich saprolite material grading 1.2% TREO and process route given in Critica Limited's announcements to the ASX of 29 September 2025 and 28 October 2025.
Further Work	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). 	<ul style="list-style-type: none"> Critica is currently conducting ongoing mineralogy and metallurgical test work, including beneficiation of REEs via physical rejection of quartz, feldspar and iron oxides

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<p>(including potential by-products), REE mineral flotation, and REE extraction.</p> <ul style="list-style-type: none"> Critica has engaged GAVAQ to build a closed circuit plant for piloting and ongoing optimization of REE beneficiation, and has engaged GAVAQ, ANSTO and Minutech AMML for REE extraction, oxide and carbonate production (see previous Critica Limited announcements to ASX at https://critica.limited).