

ASX ANNOUNCEMENT 21 NOVEMEBR 2025

ASX: NWM

Clarification to Company announcement released 20 November 2025

Norwest Mineral Limited (ASX: NWM) refers to its market announcement dated **20 November 2025**, titled "Norwest Minerals Provides Marymia East RC and Bulgera Drilling Updates". The Company has been requested by the ASX to provide the supporting information required under Listing Rule 5.7 regarding the reporting of the 1996 Marymia East diamond drilling results.

The Company acknowledges that the supporting JORC Table 1 was missing from the announcement. A full and complete JORC Table 1 (Sections 1 and 2), detailing the sampling techniques, QA/QC, and drill hole specifications for the 1996 program, is attached as an Appendix to this clarification statement.

This Clarification announcement has been authorised for release by the CEO of Norwest Minerals Limited under the Company's Continuous Disclosure Policy.

Norwest Minerals Provides Marymia East RC and Bulgera Drilling Updates

PERTH, Western Australia – 21 November 2025 – **Norwest Minerals Limited (ASX: NWM)** ("Norwest" or the "Company") is pleased to provide an update on its gold exploration and early development activities at the Marymia East and Bulgera projects.

Marymia East RC Drilling Completed

The Company has successfully **completed a five-hole Reverse Circulation (RC) drilling program** at the **Marymia East Gold project**. This program was designed to test the area above and along strike of a historical high-grade diamond intersection (**6m at 4.2g/t gold**) drilled by previous explorers in 1996.

Assay results for the Marymia East RC drilling are currently expected late next month.

Bulgera RC Drilling now Underway / Diamond Drilling for Heap Leach Samples Completed

The RC drill rig has now moved to the Bulgera Gold project and has commenced the **second phase of its RC gold resource drilling campaign**. This phase specifically targets additional gold mineralisation below the current 288k ounce gold mineral resource estimate. See table page 8.

- Drilling is scheduled for completion in approximately 10 days.
- Gold assaying of the RC samples is anticipated to take 4 to 6 weeks to process and report.

In addition, a second rig has completed drilling wide-diameter, near-surface diamond core holes at Bulgera. Once these cores are assayed for gold, specific intervals of the oxide and transition material will be sent to ALS Laboratories in Perth for heap leach amenability and gold recovery testwork.

Norwest Minerals CEO, Mr. Charles Schaus, commented: "We are very pleased to have completed the targeted RC drilling at **Marymia East** and look forward to those assay results next month, which will test the potential around the historical high-grade gold intercept. Simultaneously, the focus has shifted to **Bulgera**, where our resource expansion drilling is well underway, aiming to increase the existing 288k ounce resource. Importantly, the newly collected diamond core is now being prepared for **heap leach testwork**, a critical step in evaluating the economic viability of the near-surface gold mineralisation at Bulgera. We anticipate a steady flow of news over the coming months."

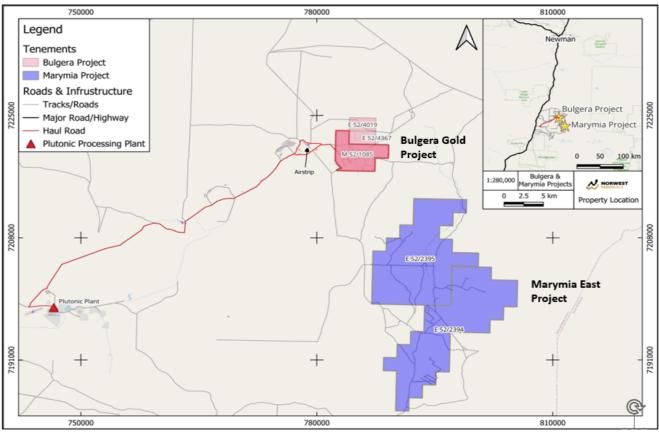


Figure 1 – Location map of Bulgera Gold Project (red) and adjacent Marymia East gold project tenements (blue).

MARYMIA EAST GOLD PROJECT

RC Drilling Complete

Marymia East (ME) is located less than 10kms southeast of the company's Bulgera Gold project, covering 230km² of ground prospective for gold and base metal mineralisation. Earlier this year, the Company conducted a comprehensive review of the Marymia project and identified several compelling historical gold zones drilled in the early to mid-1990's.

Of particular interest is the **Shiraz gold prospect**, last drilled in 1996. This prospect is defined by a near-surface **400m x 150m saprolite gold zone**. The historical significance stems from a 1996 step-back diamond hole that successfully intersected the likely source of the surface gold mineralisation, returning **6m at 4.2g/t gold**. This high-grade intersection is located approximately 215 vertical metres directly below the gold saprolite zone. It is suspected that follow-up drilling in 1996 was not conducted due to the low gold price (A\$370/oz) prevalent at the time.

Norwest has **completed its five-hole RC drill program** designed to test the continuation of the gold mineralisation associated with this high-grade gold historical intersection. Unfortunately, one of the five RC holes failed to reach its target depth due to a catastrophic loss of pressure encountered in fractured ground conditions. To ensure the target is still tested, Norwest has arranged for the diamond rig currently at Bulgera to re-enter the failed RC hole and drill an HQ core tail through to the intended gold target zone.

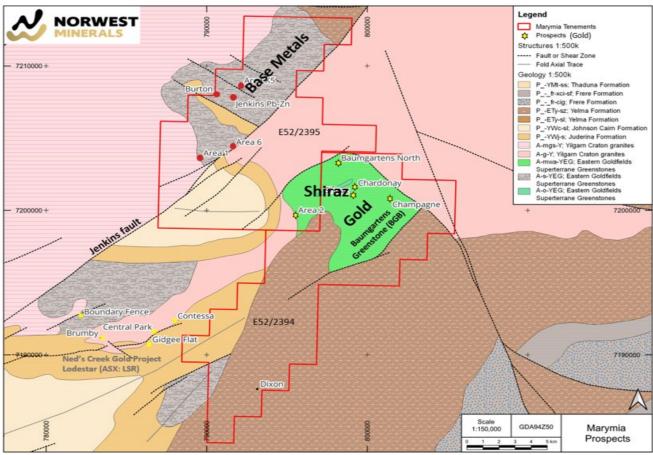


Figure 2 – Simplified Marymia East project geology map showing the Baumgarten greenstone block with associated gold prospects including Shiraz.

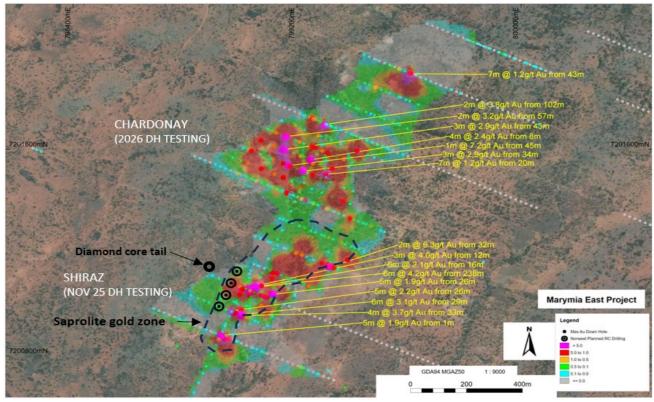


Figure 3 – Mary East gold prospects Shiraz and Chardoney. Location of the Shiraz RC drill collars including the RC hole requiring a diamond tail.

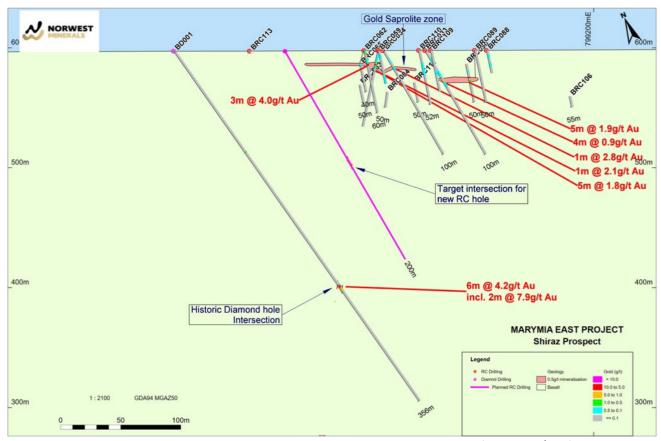


Figure 4 – Shiraz cross section showing the 1996 deep diamond drill hole intersection (6m@ 4.2g/t Au) below the gold bearing saprolite zone.

THE BULGERA GOLD PROJECT

RC Gold Resource Drilling

In mid-September Norwest reported the results of its Phase 1 RC gold resource drilling campaign. The 11-hole step back drilling program tested the downdip extensions of various gold lodes that currently host the **8.4MT grading 1.07g/t gold for 288koz mineral resource estimate (MRE)**. All 11 RC drill holes successfully intersected their targeted depths. The gold assay results confirm multiple zones of mineralisation extend between 50m and 300m down dip of previously intersected gold mineralisation. The significant intersections are shown in the drill hole location map below¹.

The Phase 2 RC drilling at Bulgera is now underway following completion of the Marymia East drilling program. The new holes are being drilled from pads cleared via a recent Heritage Study and will test down dip of the most prominent gold intersections from historical drilling campaigns. The planned Phase 2 drilling includes up to 11 holes for approximately 2,500 metres. All the phase 1 and 2 drilling results will be incorporated into the 2025 resource model with an updated MRE schedule for completion by the end of January 2026.

ASX: NWM - Announcement 17 September 2025, 'Extension of Bulgera Gold Mineralisation'

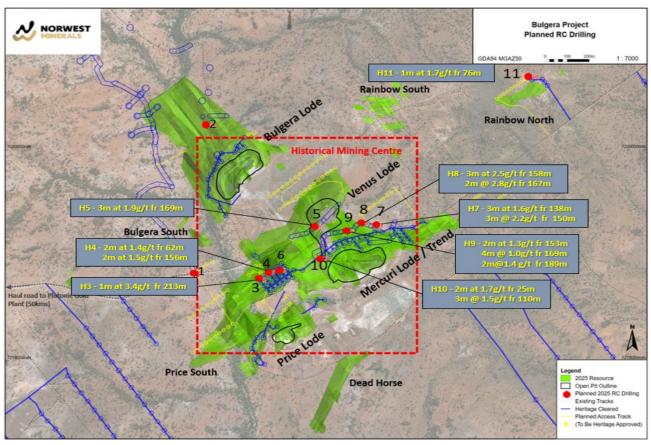


Figure 5 – RC drill hole collar map with phase 1 gold intersections, historic pits, and 2025 gold mineralisation envelopes.

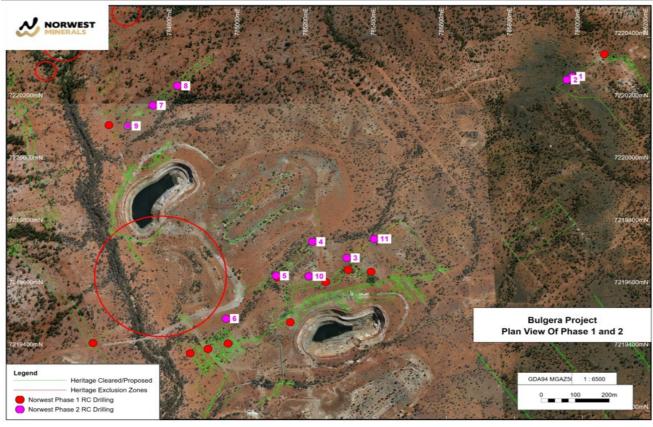


Figure 6 – RC drill hole plan location plan showing completed phase 1 RC drill holes (red) and planned phase 2 RC collar positions (violet).

Core drilling for Heap Leach testwork complete

Norwest successfully completed the drilling program designed to collect near-surface samples for **Heap Leach testwork** at Bulgera. Earlier this month, the Company mobilised a rig to drill large diameter core specifically for laboratory heap leach amenability and gold recovery testing². The drilling is now finished, having collected near-surface oxide and transition material from **14 core holes**, totalling 290 metres. The collected core samples are currently being assayed for gold content before being submitted to **ALS Laboratories in Perth** for the metallurgical testwork.



Figure 6 – Bulgera project map showing location of wide diametre (PQ) drill holes.

Figure 7 – Diamond rig drilling wide diametre core for heap leach amenability and gold recovery testwork on near surface low grade oxide and transition material. The inset image is an example of the wide-diametre core to be analysed.

² ASX: NWM - Announcement 6 November 2025, 'Drilling underway at Marymia East Gold Project"

Operational and Environmental Context

The 2024 Orelogy study included a conceptual layout confirming that the proposed heap leach operation will fit entirely within the existing **Bulgera mining centre**. This is highly important, as the area has already been impacted by past mining and exploration activities. Consequently, the Company anticipates **no significant environmental issues** resulting from the new operation. Furthermore, Norwest believes that a portion of the revenue generated from the Bulgera Heap Leach operation can be used to support the **rehabilitation** of the area, which has been neglected for over 21 years.

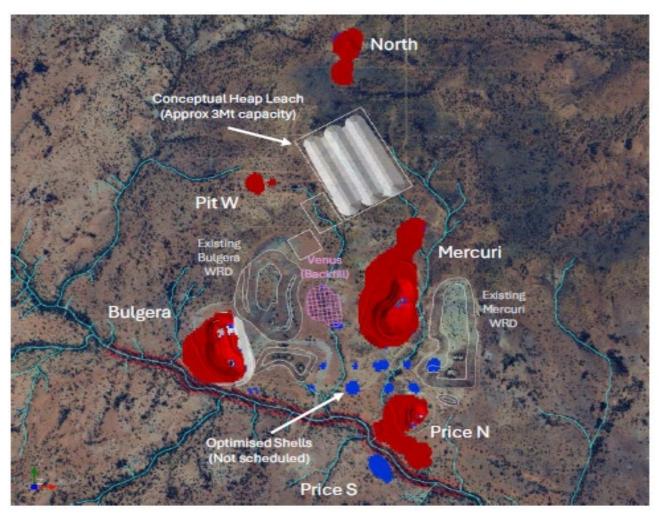


Figure 8-2024 conceptual heap leach operation layout. Note the design sits within ground impacted by historical exploration and mining activities.

Bulgera Heap Leach Project: Orelogy Study Update

The economic potential of a heap leach operation at the Bulgera project continues to be supported by external analysis. A 2024 desktop study conducted by Orelogy Mining Consultants initially demonstrated that a heap leach operation could generate positive cash flows from the soft, near-surface oxide-transitional resource, using an assumed gold price of A\$3,500/oz.

Orelogy has now revised this heap leach study using the updated 2025 gold resource model and incorporating a higher gold price assumption of A\$5,000/oz. The Company intends to announce the results when it can comply with ASX Listing Rules 5.16 and 5.17 regarding the disclosure of production targets and forecast financial information. Norwest is currently obtaining further detailed information and inputs to fully underpin the Orelogy desktop study before reporting any forecasts.

July 2025 Bulgera Gold Project Mineral Resource Estimate (0.6g/t Au lower cut-off grade)

Indicated Resources Inferred Resources Total Resources					ces			
Mt	Au (g/t)	Au Ozs	Mt Au (g/t) Au Ozs			Mt	Au (g/t)	Au Ozs
3.43	0.95	105,020	4.96	1.15	183,400	8.39	1.07	288,400

End of Announcement

This ASX announcement has been authorised for release by the Board of Norwest Minerals Limited.

For further information, visit www.norwestminerals.com.au or contact

Charles Schaus
Chief Executive Officer and Director
E: infor@norwestminerals.com.au

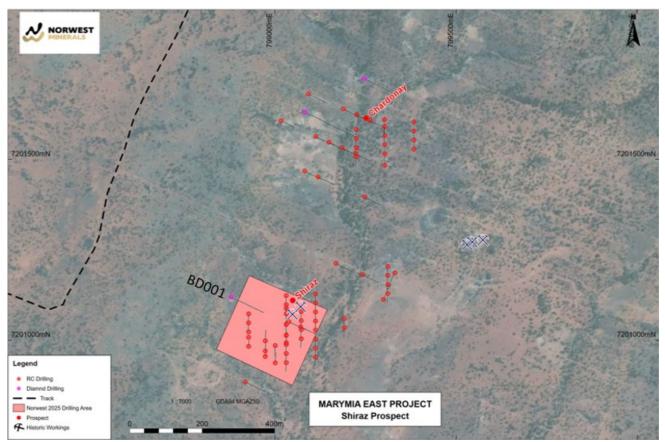
APPENDIX 1

Audax Resources – 1996 Diamond Drilling The Marymia Project

1996 Diamond Collar information

Hole Id	Hole Type	Easting (GDA94z50)	North (GDA94z50)	Elev (STRM)	Depth (m)	Year Drilled	Dip (°)	Azimuth (°)
BD001	DD	798879	7201119	597	356.1	1996	-55	116
BD002A	DD	799247	7201723	599	184	1996	-55	116
BD003	DD	799083	7201630	599	270	1996	-55	116
BD004	DD	801326	7200776	600	219	1996	-55	206
BRC001	RC	801173	7200784	600	104	1996	-60	116
BRC002	RC	801209	7200768	600	108	1996	-60	116
BRC003	RC	801246	7200752	600	102	1996	-60	116
BRC004	RC	801283	7200736	600	100	1996	-60	116
BRC005	RC	801319	7200720	600	91	1996	-60	116
BRC007	RC	800919	7200675	600	102	1996	-60	116

BRC008	RC	800913	7200460	600	108	1996	-60	116
BRC009	RC	800968	7200436	600	108	1996	-60	296
BRC010	RC	801262	7200310	600	114	1996	-60	116
BRC011	RC	801345	7200274	600	102	1996	-60	296
BRC012	RC	801399	7200904	600	42	1996	-60	116
BRC012A	RC	801380	7200912	600	43	1996	-60	116
BRC013	RC	801389	7200908	600	40	1996	-60	116
BRC014	RC	801509	7200857	600	96	1996	-60	116
BRC015	RC	801546	7200841	600	108	1996	-60	116
BRC016	RC	801582	7200825	600	102	1996	-60	116
BRC017	RC	801619	7200809	600	90	1996	-60	116
BRC018	RC	801656	7200793	600	108	1996	-60	116
BRC019	RC	801693	7200777	600	96	1996	-60	116
BRC020	RC	801729	7200762	599	100	1996	-60	116
BRC021	RC	797854	7203151	598	84	1996	-60	26
BRC022	RC	798123	7203209	600	126	1996	-60	26
BRC023	RC	801340	7201147	600	108	1996	-60	116
BRC024	RC	801404	7201119	600	70	1996	-60	296
BRC025	RC	801319	7200720	600	78	1996	-60	296
BRC026	RC	800872	7199607	598	104	1996	-60	116
BRC027	RC	801110	7200158	600	108	1996	-60	116
BRC028	RC	801373	7200643	600	104	1996	-60	116
BRC029	RC	801447	7200611	600	107	1996	-60	296
BRC030	RC	801242	7200667	600	100	1996	-60	26
BRC031	RC	801393	7201233	600	100	1996	-60	116
BRC032	RC	798918	7200884	596	120	1996	-60	116
BRC033	RC	799071	7201036	598	100	1996	-60	116
BRC034	RC	799039	7201050	598	100	1996	-60	116
BRC035	RC	799331	7201186	599	104	1996	-60	206
BRC036	RC	799299	7201112	598	99	1996	-60	26
BRC037	RC	801289	7200777	600	104	1996	-60	206
BRC038	RC	799242	7201181	598	99	1996	-60	116
BRC039	RC	799168	7201212	598	100	1996	-60	116
BRC040	RC	799248	7201396	599	100	1996	-60	116
BRC041	RC	799119	7201451	599	104	1996	-60	116
BRC042	RC	799082	7201467	599	102	1996	-60	116
BRC043	RC	799223	7201515	599	99	1996	-60	116
BRC044	RC	799186	7201531	599	87	1996	-60	116
BRC045	RC	799149	7201547	599	120	1996	-60	116
BRC046	RC	799113	7201563	599	116	1996	-60	116
BRC047	RC	799262	7201607	599	108	1996	-60	116
BRC048	RC	799226	7201623	599	116	1996	-60	116
BRC049	RC	799189	7201639	599	129	1996	-60	116
BRC050	RC	799093	7201680	599	120	1996	-60	116
BRC051	RC	799001	7200937	597	60	1996	-60	2


BRC052	RC	799001	7200985	597	60	1996	-60	182
BRC053	RC	799031	7200938	597	50	1996	-60	182
BRC054	RC	799031	7200963	597	50	1996	-60	182
BRC055	RC	799031	7200988	597	50	1996	-60	182
BRC056	RC	798973	7200970	597	50	1996	-60	2
BRC057	RC	798973	7200998	597	60	1996	-60	2
BRC058	RC	799031	7201013	597	50	1996	-60	182
BRC059	RC	799031	7201043	597	60	1996	-60	182
BRC060	RC	799031	7200993	597	60	1996	-60	2
BRC061	RC	798973	7200955	597	40	1996	-60	2
BRC062	RC	799031	7201073	598	60	1996	-60	182
BRC063	RC	799031	7201098	598	50	1996	-60	182
BRC064	RC	799031	7201123	598	50	1996	-60	182
BRC065	RC	799031	7201088	598	40	1996	-60	182
BRC066	RC	799303	7201515	599	50	1996	-60	182
BRC067	RC	799303	7201540	599	50	1996	-60	182
BRC068	RC	799303	7201565	599	50	1996	-60	182
BRC069	RC	799303	7201590	599	50	1996	-60	182
BRC070	RC	801347	7201135	600	50	1996	-60	182
BRC071	RC	801347	7201160	600	50	1996	-60	182
BRC072	RC	801347	7201179	600	40	1996	-60	182
BRC073	RC	801425	7201150	600	60	1996	-60	182
BRC074	RC	801425	7201171	600	50	1996	-60	182
BRC075	RC	801425	7201122	600	50	1996	-60	182
BRC076	RC	801031	7201037	600	50	1996	-60	182
BRC077	RC	801031	7201077	600	60	1996	-60	182
BRC078	RC	799303	7201610	599	86	1996	-60	182
BRC079	RC	799303	7201483	599	50	1996	-70	2
BRC080	RC	798928	7200982	597	50	1996	-70	2
BRC081	RC	798928	7200982	597	60	1996	-90	0
BRC082	RC	798928	7201007	597	50	1996	-90	0
BRC083	RC	798928	7201022	597	70	1996	-90	0
BRC084	RC	799031	7201014	597	50	1996	-70	2
BRC085	RC	799031	7201044	597	106	1996	-60	2
BRC086	RC	799112	7200953	597	50	1996	-60	182
BRC087	RC	799112	7200978	598	50	1996	-60	182
BRC088	RC	799112	7201003	598	50	1996	-60	182
BRC089	RC	799112	7201028	598	50	1996	-60	182
BRC090	RC	799112	7201053	598	50	1996	-60	182
BRC091	RC	799112	7201078	598	50	1996	-60	182
BRC092	RC	799112	7201103	598	50	1996	-60	182
BRC093	RC	799112	7201128	598	50	1996	-60	182
BRC094	RC	799312	7201128	599	50	1996	-60	182
BRC095	RC	799312	7201153	599	50	1996	-60	182
BRC096	RC	799312	7201178	599	58	1996	-60	182

BRC097	RC	799312	7201203	599	50	1996	-60	182
BRC098	RC	799225	7201507	599	50	1996	-60	182
BRC099	RC	799225	7201532	599	50	1996	-60	182
BRC100	RC	799225	7201557	599	50	1996	-60	182
BRC101	RC	799225	7201582	599	50	1996	-60	182
BRC102	RC	799384	7201553	599	58	1996	-60	2
BRC103	RC	799384	7201528	599	50	1996	-60	2
BRC104	RC	799384	7201578	599	50	1996	-60	182
BRC105	RC	799384	7201603	599	62	1996	-60	182
BRC106	RC	799192	7201034	598	55	1996	-60	182
BRC107	RC	799192	7201059	598	50	1996	-60	182
BRC108	RC	799073	7201004	598	50	1996	-60	182
BRC109	RC	799073	7201029	598	50	1996	-60	182
BRC110	RC	799073	7201054	598	52	1996	-60	182
BRC111	RC	799073	7201079	598	50	1996	-60	182
BRC112	RC	798928	7201047	597	52	1996	-60	182
BRC113	RC	798928	7201072	597	50	1996	-60	182
BRC114	RC	795621	7200572	578	80	1996	-60	94
BRC115	RC	795576	7200573	578	93	1996	-60	94
BRC116	RC	795513	7200575	578	80	1996	-60	94
BRC117	RC	795473	7200576	578	80	1996	-60	94
BRC118	RC	795423	7200578	578	80	1996	-60	94
BRC119	RC	795371	7200580	577	81	1996	-60	94
BRC120	RC	795929	7203044	587	90	1996	-60	116
BRC121	RC	795479	7203641	586	99	1996	-60	206
BRC122	RC	799017	7201606	599	81	1996	-60	116

1996 Audax significant intersections > 0.5 g/t Au

	From	То	Width	Au	
Hole Id	(m)	(m)	(m)	(g/t)	Significant Intersection
BD001	103	104	1	0.52	1m @ 0.52g/t Au from 103m
BD001	238	244	6	4.20	6m @ 4.20g/t Au from 238m
BD002A	102	104	2	3.76	2m @ 3.76g/t Au from 102m
BD002A	153	154	1	0.58	1m @ 0.58g/t Au from 153m
BD003	28	32	4	1.49	4m @ 1.49g/t Au from 28m
BD003	129	131	2	3.51	2m @ 3.51g/t Au from 129m
BRC001	89	90	1	1.48	1m @ 1.48g/t Au from 89m
BRC002	29	30	1	0.57	1m @ 0.57g/t Au from 29m
BRC003	47	65	18	1.21	18m @ 1.21g/t Au from 47m
BRC004	23	27	4	0.86	4m @ 0.86g/t Au from 23m
BRC004	45	46	1	1.29	1m @ 1.29g/t Au from 45m
BRC008	32	33	1	0.71	1m @ 0.71g/t Au from 32m
BRC009	28	29	1	0.60	1m @ 0.60g/t Au from 28m

BRC023	51	54	3	9.53	3m @ 9.53g/t Au from 51m
BRC025	22	33	11	1.33	11m @ 1.33g/t Au from 22m
BRC025	56	60	4	1.62	4m @ 1.62g/t Au from 56m
BRC028	12	13	1	0.73	1m @ 0.73g/t Au from 12m
BRC028	55	56	1	0.91	1m @ 0.91g/t Au from 55m
BRC029	48	49	1	1.41	1m @ 1.41g/t Au from 48m
BRC031	70	71	1	0.56	1m @ 0.56g/t Au from 70m
BRC032	0	4	4	0.81	4m @ 0.81g/t Au from 0m
BRC032	64	65	1	0.72	1m @ 0.72g/t Au from 64m
BRC033	27	31	4	0.90	4m @ 0.90g/t Au from 27m
BRC034	15	16	1	2.79	1m @ 2.79g/t Au from 15m
BRC036	31	33	2	1.05	2m @ 1.05g/t Au from 31m
BRC036	85	87	2	1.30	2m @ 1.30g/t Au from 85m
BRC039	58	59	1	0.59	1m @ 0.59g/t Au from 58m
BRC040	23	24	1	0.83	1m @ 0.83g/t Au from 23m
BRC045	45	46	1	7.20	1m @ 7.20g/t Au from 45m
BRC046	73	74	1	0.98	1m @ 0.98g/t Au from 73m
BRC047	59	60	1	0.52	1m @ 0.52g/t Au from 59m
BRC048	60	61	1	1.02	1m @ 1.02g/t Au from 60m
BRC049	42	43	1	0.65	1m @ 0.65g/t Au from 42m
BRC050	71	72	1	0.94	1m @ 0.94g/t Au from 71m
BRC052	9	12	3	1.27	3m @ 1.27g/t Au from 9m
BRC059	21	22	1	2.09	1m @ 2.09g/t Au from 21m
BRC061	28	30	2	1.57	2m @ 1.57g/t Au from 28m
BRC062	0	5	5	0.89	5m @ 0.89g/t Au from 0m
BRC062	12	15	3	3.97	3m @ 3.97g/t Au from 12m
BRC066	20	27	7	1.23	7m @ 1.23g/t Au from 20m
BRC085	11	16	5	1.81	5m @ 1.81g/t Au from 11m
BRC085	19	20	1	0.78	1m @ 0.78g/t Au from 19m
BRC090	26	31	5	1.90	5m @ 1.90g/t Au from 26m
BRC092	5	7	2	2.06	2m @ 2.06g/t Au from 5m
BRC093	10	11	1	1.92	1m @ 1.92g/t Au from 10m
BRC095	18	19	1	0.68	1m @ 0.68g/t Au from 18m
BRC095	22	24	2	2.01	2m @ 2.01g/t Au from 22m
BRC096	47	48	1	1.15	1m @ 1.15g/t Au from 47m
BRC099	23	24	1	1.53	1m @ 1.53g/t Au from 23m
BRC108	17	19	2	0.74	2m @ 0.74g/t Au from 17m
BRC111	13	20	7	1.18	7m @ 1.18g/t Au from 13m

Map showing location of diamond hole BD001 (6m@4.2g/t Au) and locations of all other diamond and RC holes drilled in 1996. Drill hole locations and significant assays see tables displayed above.

FORWARD LOOKING STATEMENTS

This report includes forward-looking statements. These statements relate to the Company's expectations, beliefs, intentions or strategies regarding the future. These statements can be identified by the use of words like "will", "progress", "anticipate", "intend", "expect", "may", "seek", "towards", "enable" and similar words or expressions containing same.

The forward-looking statements reflect the Company's views and assumptions with respect to future events as of the date of this announcement and are subject to a variety of unpredictable risks, uncertainties, and other unknowns. Actual and future results and trends could differ materially from those set forth in such statements due to various factors, many of which are beyond our ability to control or predict. Given these uncertainties, no one should place undue reliance on any forward-looking statements attributable to the Company, or any of its affiliates or persons acting on its behalf. The Company does not undertake any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise. Neither the Company nor any other person, gives any representation, warranty, assurance, nor will guarantee that the occurrence of the events expressed or implied in any forward-looking statement will actually occur. To the maximum extent permitted by law, the Company and each of its advisors, affiliates, related bodies corporate, directors, officers, partners, employees and agents disclaim any responsibility for the accuracy or completeness of any forward-looking statements whether as a result of new information, future events or results or otherwise.

COMPETENT PERSON'S STATEMENTS

Exploration

The information in this report that relates to Exploration Results and Exploration Targets is based on and fairly represents information and supporting documentation prepared by Charles Schaus (CEO of Norwest Minerals Pty Ltd). Mr. Schaus is a member of the Australian Institute of Mining and Metallurgy and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to its activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Schaus consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

Mineral Resource Estimate

The information in this report relating to mineral resource estimation is based on work completed by Mr. Stephen Hyland, a Competent Person and Fellow of the AusIMM. Mr. Hyland is Principal Consultant Geologist with Hyland Geological and Mining Consultants (HGMC) and holds relevant qualifications and experience as a qualified person for public reporting according to the JORC Code in Australia. Mr. Hyland is also a Qualified Person under the rules and requirements of the Canadian Reporting Instrument NI 43-101 Mr. Hyland consents to the inclusion in this report of the information in the form and context in which it appears.

Appendix 1: JORC Code, 2012 Edition - Table 1

JORC Code, 2012 Edition – Table 1 report template Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information. 	 AuDax Resource NL completed four NQ sized diamond holes in 1996 Diamond core was half core sampled and was submitted as 1m samples where there was veined or visibly mineralised zones. The remainder of the drill core was channel sampled along the length of the core using a diamond impregnated filleting wheel and was collected as 2 to 3m samples. All drill core was sampled. Although not documented in the historic report it is assumed that the RC drilling was initially 3m scoop composite sampled and then later anomalous samples were 1m scoop resampled.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The diamond drill holes were drilled with RC down to fresh rock (75 – 85m downhole) (4½ inch hole diameter) and then drilled with NQ size core for the remainder of the drill hole. It was not noted in the report but due to the era of the drilling it is assume that the RC samples were collected using a face sampling hammer. The diamond drill core was orientated with structural measurements collected down hole. Magsus measurements were also collected down hole.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Sample recovery was not recorded in the drill logs.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The drill core and RC was geologically logged in it's entirety by company geologists. Logged for various geological attributes, including, lithology, oxidation, alteration, mineralisation and veining.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 NQ size diamond core was half core sampled and was submitted as 1m samples where there was veined or visibly mineralised zones. The remainder of the drill core was channel sampled along the length of the core using a diamond impregnated filleting wheel and was collected as 2 to 3m samples. The collection of the RC samples methodology was not recorded in the WAMEX report. 4m composite samples were collected for the RC samples so it is assumed that these were scoop sampled. Recovery and moisture content was not recorded on the logs. There is no mention of any QAQC measures/procedures used for the RC or Diamond drilling. Sample size of the RC was not recorded. Half NQ samples at 1m intervals are considered appropriate and representative for the style of mineralisation. This would be around the 2 to 3 kg in size. These are the reported intersection intervals. The thin channel sampling conducted on the remainder of the drill core outside the veined zones is thought to under sample and not be representative based upon the mineralisation style. No QAQC samples were noted in the WAMEX ATR report.

Criteria	JORC Code explanation	Commentary
		 Samples were submitted to Analabs Pty Ltd in Welshpool Perth for analysis.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All samples were sent to Analabs Pty Ltd in Whelshpool Perth for gold and arsenic analysis. Gold was analysed using Analabs GG313 code with a 0.01ppm lower detection. Arsenic was analysed using Analabs HA101 code with a 1ppm lower detection (HF based digestion). More specific details of these analysis methods or sample preparation are unknown. No other details on analysis was documented in the historic ATR report. There is no mention to QAQC procedures being used for this drilling.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No verification of the assays have been completed to date. Norwest is twinning drill hole BD001 as part of the planned drilling. The database information has been verified with the original WAMEX report a52298 that was lodged by AuDAX. There has been no adjustment to the drill hole data. The sample sizes of the visibly veined or mineralised (presence of sulphide) are considered to be appropriate for the type, style and consistency of mineralization encountered. The primary data released in the WAMEX report has been used and transcribed into the database. All assay results were verified by comparing what is reported in the report versus the drill hole database by the Qualified Person before release.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All coordinates were recorded in local grid that was established by surveyors and then transformed into MGA Zone 50 datum coordinates. Ground truthing of the area identified the location of the historic drill pads with evidence of drill sumps. The provided confidence in the local grid to GDA94 conversion. It is thought the accuracy of the drill hole should be +/- 5 to 10m.

Criteria	JORC Code explanation	Commentary
		 Topographic control is provided by a Digital Terrain Model based on the 30 m Shuttle Radar Topographic Mission data. All holes were surveyed at regular intervals (ranging from 10 to 60m intervals) to check the variation in inclination and azimuth using an eastman down hole survey camera.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The AuDAX diamond drilling ranges in spacing from 190 to 550m. The RC drilling was typically drilled on a rough 25 x 25m drill spacing. To date there is insufficient geological and grade continuity to support the definition of a mineral resource, and the classifications applied under the 2012 JORC code. No compositing has been conducted.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Due to the orientation to the drill hole and the current mineralisation interpretation it is thought that the drill hole was orientated to be approximately perpendicular to mineralisation. It is thought that there should be little to no artificial thickening of the mineralised intervals.
Sample security	The measures taken to ensure sample security.	 It is unknown what AuDAX sample security procedures were for the RC and diamond drill samples. Information on this was not documented in the WAMEX historic AuDAX ATR report. It is assumed that company personnel dropped the samples from site to a transport company in Newman and then trucked directly to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits or reviews have been performed on the project, to date.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The reported exploration is situated on Exploration Licences E52/2394-I, held and operated by Norwest Minerals Ltd. Tenement E 52/2394 was granted on 16/06/2010 and is set to expire on 15/06/2026. This tenement is part of the C144/2010 combined reporting group. The tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The central area of the ADX lag and RR soil sampling grids ("this area") has been explored for gold as early as the 1920's from Baumgarten Reward reporting 26.46 ounces of gold from 19.5 tonnes treated in 1926. In 1993, the south-west edge of this area was surface grid sampled and RAB drilled by Growth Resources. In 1994, the south-east edge was RAB drilled by Alkane Exploration. In the same year, ADX conducted a RAB drill program along ESE-WNW tracks across the center of this area which tested depths of up to 6-15m for Au and As. ADX followed this work with a handful of small-scale RC drill programs in 1996 and bottom of hole assays are reported. In 2006, during field visits preceding the ADX lag sampling, ADX also collected several rock chip grab samples around the center of this area. In 2012, during field visits concurrent with the RR soil sampling, RR also collected several rock chip grab samples around the center of this area. In 2019, Norwest Minerals Ltd collected rock chip grab samples around the center of this area. None of the reported rock chip assays show spatially coincident anomalous Cu or Zn. Historical drillholes are largely untested for Cu or Zn and for some cases only bottom-of-hole assayed.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralization.	 There is uncertainty surrounding the geological terrane architecture covering the Marymia tenements, given the complicated structural contact between the Baumgarten greenstone belt (part of the Marymia Inlier) and the Paleoproterozoic Yerrida Basin sediments. Magnetic imagery indicates that the Archaean Greenstone sequence extends, at shallow depth, beyond pre-existing mapping. The Marymia area is prospective for Archaean lode gold, Proterozoic VMS, and Archean komatiitic or Archaen/Proterozoic intrusive nickel.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A table is provided in this press release
Data aggregatio n methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of 	 No high cuts have been applied. Metal equivalent values are not being reported. A table of assays greater than 0.5g/t Au have been included.

Criteria	JORC Code explanation	Commentary
	 such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationshi p between mineralizati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	At this stage it is thought that the drilling is close to perpendicular to mineralisation and the reported drill hole intersections are close to true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	An appropriate cross section has been included in the release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 A table containing >0.5g/t Au intersections has been included in this release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Nothing to note.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Future work will comprise follow up RC and diamond drilling to confirm the historic intersections and test along strike to the north and south.