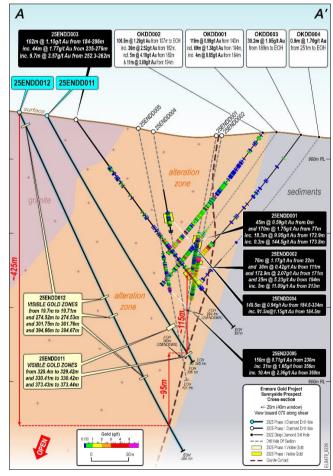


ASX ANNOUNCEMENT 18 November 2025


KNB strikes visible gold in first two drill holes extending system to 425m vertically at Enmore Gold Project, NSW

HIGHLIGHTS

Koonenberry Gold (ASX:KNB) has intersected visible gold in the first two drill holes of its 10,000m Phase II diamond drilling program at the Enmore Gold Project in northeast NSW. Highlights include:

- Visible gold¹ intersected in both 25ENDD011 and 012 down dip of 102m @ 1.10g/t Au from 184-286m, inc. 44m @ 1.77g/t Au from 235-279m inc. 9.7m @ 3.57g/t Au from 252.3m (25ENDD003).²
- Alteration zone extended ~210m vertically underneath 25ENDD003.
- The system remains open at depth and appears to be widening.
- Second drill rig continues to test 2km shear zone to east towards Hand in Hand Prospect.
- Assays from hole 25ENDD011 and 012 are expected in December and January respectively.
- KNB is well funded to continue exploration across its projects with \$7.8M cash³ plus potential additional funds from exercise of ~94 million KNBO options (Ex \$0.04) expiring in April 2026.

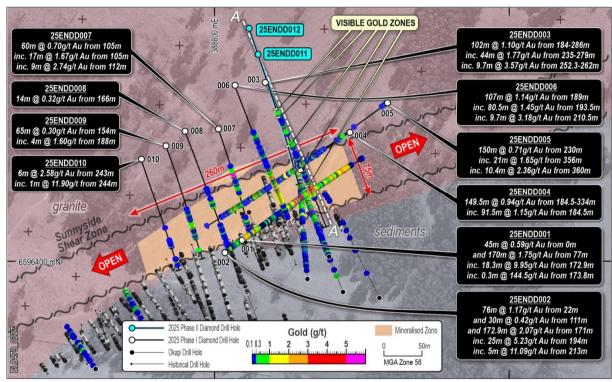
Figure 1. Sunnyside A-A' section (viewed toward 070°) updated with geological observations from 25ENDD011 and 012. The alteration zone, defined by quartz-sericite-carbonate minerals with variable amounts of veining and sulphides, has been extended down dip by ~210m vertically from Hole 25ENDD003. Multiple zones of visible gold have been observed in both 25ENDD011 and 012 within the alteration zone underneath 25ENDD003 and also towards the top of the hole in 25ENDD012. See Figure 2 for location of A-A' section line.

1) <u>CAUTIONARY NOTE</u>: Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. Refer Tables 5-6 for details of visual estimates and abundances. This disclaimer and references also apply to Figures 1 and 2 on pages 1 and 2 respectively.

2) Refer ASX announcement dated 29/04/2025.

3) Cash at 30/09/2025. Refer ASX Announcement dated 17/10/2025.

KNB Managing Director Dan Power commented:


"We have kicked off our Phase II diamond drill program at Sunnyside with more visible gold zones observed in the first two deeper step out holes of the program.

Significantly we are seeing alteration, veining and sulphides to 425m vertical depth, indicating that mineralisation likely extends a further 210m underneath 25ENDD003 and remains open.

The diamond drill rig will continue to systematically test for extensions to the Sunnyside system at depth and along strike as part of the 10,000m program.

To the east, the RC drill rig is currently testing for repetitions of the mineralisation along the Sunnyside Shear Zone towards the Hand in Hand Prospect.

This work is ongoing and is fully funded by our \$7.8M cash position as of 30/09/2025."

Figure 2. Sunnyside Prospect plan view showing drill hole locations and visible gold zones (see Tables 5 & 6 for interval details and observations). KNB's drill program targets both the shear-parallel veins and high-grade gold veins at high angles to the shear within the preferred granite host rock. Observations and assays from 25ENDD001-010 in the Phase I drilling indicate an ~125m wide structural corridor parallel to the granite-sediment contact prospective for granite-hosted gold mineralisation.

DISCUSSION

Phase II hole 25ENDD011 was designed to test ~115m vertically below the Phase I intersection in 25ENDD003 whilst 25ENDD012 was designed to test a further ~95m vertically below 25ENDD011 at the granite contact, investigating continuity of gold mineralisation at depth. These two new holes both intersected visible gold in several places and continued to confirm the geological model with the granite being the preferred host rock, and mineralisation controlled both along the shear zone and along second-order structures.

Visible gold was observed in iron carbonate-quartz-pyrite-arsenian pyrite veins and vein breccia within granite host rock (Photos 1 - 4) as well as at 374.43m, 4.38m into sediments. The phyllic alteration zone (a strong indicator of gold mineralisation based on previous assays) was intersected up to ~210m below the visible gold zone in 25ENDD003 and appears to be broadening with depth (Figure 1).

Photo 1. Visible gold (circled red) in hole 25ENDD011 at 329.42m down hole in quartz vein within granite host rock. Scale bar units are centimetres.

Photo 2. Visible gold (circled red) in hole 25ENDD011 at 330.41m down hole in an iron carbonate-quartz-pyrite-arsenian pyrite vein within granite host rock. Scale bar units are centimetres.

Photo 3. Visible gold (circled red) in hole 25ENDD012 at 274.52m down hole in carbonate-quartz-pyrite-arsenian pyrite vein within strongly phyllic altered granite host rock. Scale bar units are centimetres.

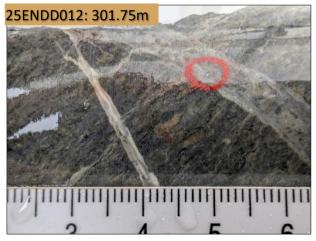
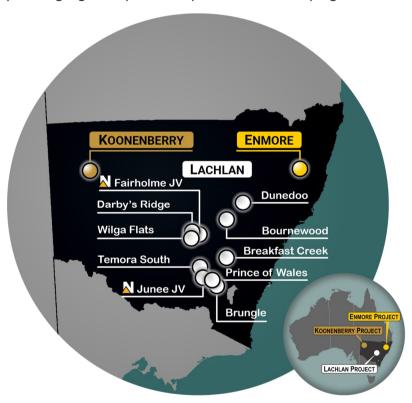


Photo 4. Visible gold (circled red) in hole 25ENDD012 at 301.75m down hole in quartz-carbonate-sulphide vein breccia within moderately phyllic altered granite host rock. Scale bar units are centimetres.

The Company confirms the visible gold observed as shown in Photos 1-4 is primary in nature and is hosted within quartz veins. Refer to Table 5-6 for details of the visual estimates of abundance observed.

Cautionary Note: Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. The Company will update the market when assay results are received, expected in December and January for holes 25ENDD011 and 25ENDD012 respectively.


FORWARD PROGRAM

Koonenberry Gold is currently undertaking its second drill program at Enmore, targeting extensive intervals of gold mineralisation from surface as well as high-grade gold intervals at depth which were reported for the maiden drill program completed in the first half of 2025. Gold mineralisation has been intersected over an estimated ~75m true width, 300m vertical depth extent and ~260m strike extent in assay results to date. The mineralisation remains open up-dip and at depth as well as along strike to the NE and SW in the preferred granite host rock along the Sunnyside Shear Zone.

Results from Phase I drilling have been used to design a +10,000m follow-up drill program to test the continuity and extensions to mineralisation at Sunnyside, as well as discovery and growth drilling along the Sunnyside Shear Zone, particularly to the east. The Company has identified an ~2km strike length of highly prospective granite associated with gold and arsenic soil anomalies with high-grade rock chips and geophysical features consistent with mineralisation identified at Sunnyside. Wide-spaced, relatively shallow historical drilling in this area contain anomalous gold and add further to the prospectivity of this zone.

Soil sampling and prospecting along the prospective Borah Shear Zone has defined additional targets on a parallel shear zone to the Sunnyside Shear Zone. Gradient Array IP (GAIP) is being planned along this structure, to better define first and second order structures and help rank targets.

Koonenberry Gold has a diverse portfolio of high-quality gold and copper projects in highly prospective areas of NSW and plans to prioritise programs to maximise value for its shareholders. The Company looks forward to providing regular exploration updates as this work progresses.

This ASX release was authorised by the Board of the Company.

For more information please contact:

Dan Power
Managing Director
+61 8 6245 9869
info@koonenberrygold.com.au

Nathan Ryan Investor Relations +61 420 582 887

nathan.ryan@nwrcommunications.com.au

For further information regarding the Company and its projects please visit www.koonenberrygold.com.au
-ENDS-

SUNNYSIDE PROSPECT BACKGROUND

The Sunnyside Prospect occurs along the Sunnyside Shear Zone, which is associated with the development of a penetrative, strongly foliated, mylonitic fabric near the contact between a Permo-Carboniferous (302Ma) porphyritic quartz monzogranite (locally called granite for simplicity) to the north and sedimentary rocks of the Girrakool Beds to the south. Deformation of the granite has occurred at biotite-grade metamorphic conditions. The prospect has seen a modest amount of near-surface historical exploration, with deeper drilling only conducted in recent years. This has resulted in the discovery of significant gold mineralisation over extensive widths as well as high grade zones at depth.

Gold mineralisation is orogenic epizonal in character and is structurally controlled along the NE-SW trending shear zone and in later quartz and iron carbonate veins which can crosscut the shear zone at high angles to the shear fabric. The shear zone dissects and locally fault bounds the granite intrusions.

Mineralisation is largely hosted within the granite and appears to be long-lived and multi staged with gold occurring in silicified breccias, quartz stockworks, sulphidic veins, iron carbonate vein arrays and narrow quartz veins. An early gold event is associated with strong shearing, pervasive silicification and sericitisation with sulphides emplaced along the NE-SW trending shear zone. Multiple overprinting events have introduced gold in iron carbonate vein arrays and quartz veins developed within extensional fracture zones which can be tangential or oblique to the main structure.

This structural setting and paragenesis may be similar to the 1.7Moz Hillgrove deposit, located just 20km to the north, where the main mineralisation is hosted within a conjugate vein array between the Hillgrove and Chandler fault systems rather than along the main shear. For the most part, drilling at Sunnyside has been conducted orthogonal to the main shear zone rather than targeting high-grade shoots oblique to those structures. It is therefore possible that drilling has missed the high-grade shoots.

Discrete mineralised zones are generally defined by intense alteration including a mineral assemblage of sericite, iron carbonate, potassium feldspar (adularia), quartz (crystalline and drusy), free gold, pyrite, arsenian pyrite, minor arsenopyrite and local traces of chalcopyrite, sphalerite, galena and tetrahedrite. The occurrence of adularia is considered to define hydrothermal fluid chemistry and process (ie. potassium bearing) rather than defining a classification of mineral system other than orogenic-type.

Gold mineralisation is typically associated with pyrite, arsenian pyrite and arsenopyrite. Arsenic assays tend to have a linear correlation with gold values except for late stage high-grade drusy quartz ±adularia veins, where there may be no sulphides and therefore low arsenic. It is unclear how much gold is in solid solution with the sulphides. Other sulphides are not common at hand specimen scale, although antimony is anomalous in surface soil samples.

Phase I drilling confirmed that mineralisation extends away from the granite-sediment contact for ~75m in true width, ~260m along strike and from surface to over 300m vertically. Gold mineralisation remains open in multiple directions, including along the Sunnyside Shear Zone, with indications that grade may be increasing with depth.

ABOUT KOONENBERRY GOLD

Koonenberry Gold Ltd is a minerals explorer aiming to create value for shareholders through the discovery of Gold and Copper across its diverse portfolio of highly prospective and strategically located projects. These projects cover an area of 4,360km² making it one of the most significant exploration portfolios in NSW. The Company's main focus is the Enmore Gold Project, which is at an exciting discovery phase with drilling returning broad intervals of gold mineralisation extending from surface as well as high-grade gold zones at depth.

100% Ou	ned Projects
Au Enmore (EL8479 & EL9747; 302km²)	Cu/Au Breakfast Creek (EL9313; 392km²)
20km Sth of 1.7Moz Hillgrove Au Mine	55km Sth of Cadia Cu-Au Mine
• 174m @ 1.83g/t Au from 0m (OSSRC06)	+6km Cu-Au soil anomaly
• 172m @ 2.07g/t Au from 171m (25ENDD02)	• 7.02g/t Au, 1.96% Cu; 3.4g/t Au, 1.1% Cu;
Emerging gold discovery	0.5g/t Au, 18.5% Cu rocks
Au Prince of Wales (EL9533; 11km²)	Cu/Au Bournewood (EL9137; 43km²)
Historical shafts and workings (170m deep)	40km SW of 7.3Moz Boda-Kaiser deposit
4.0km long structural trend	• 13.3g/t Au and 5.7% Cu rock chips
Very limited drilling	Numerous historical workings
Au Wilga (EL9272; 272km²)	Cu Brungle (EL9532; 157km²)
20km NNW of 13Moz Cowal Au Mine	Significant scale BHP stream sediment Cu
Gold mineralisation at EL Boundary	• 8.43g/t Au & 1.37% Cu rock chips
+4km Carbonate-Base Metal (CBM) trend	Large ovoid shaped magnetic anomalies
Untested by drilling	
Au Temora South (EL8895; 110km²)	Cu Darby's Ridge (EL8876; 72km²)
16km Sth of 1.4Moz Gidginbung Au-Cu Mine	Intrusion related Cu/Au
• 12.7g/t Au, 4.98g/t Au, 1.65g/t Au rocks	Large >2km Au-Cu Air Core anomaly
4m @ 1.93g/t Au to EOH (roadside RAB)	Bullseye mag high + chargeability anomalies
Au Dunedoo (EL9138; 96km²)	Au/Cu Koonenberry (16 ELs; 2,478km²)
65km Nth of 491Moz Ag Eq Bowdens deposit	Highly prospective and underexplored
+8km Au soil anomaly (>10ppb Au)	Abundant evidence for Au (200km² nuggets)
• 1.24g/t Au, 12g/t Ag rock chip	Pipeline of projects with 34km Au soils
Untested by drilling	Multi million ounce Au potential

Farm-in and Joint Venture Projects (Newmont Exploration Manager)							
Cu/Au Junee JV (EL8470; 256km²)	Cu Fairholme JV (EL9467; 169km²)						
Unusually fertile segment of Macquarie Arc ²	Large igneous complex (Phase 4)						
25x Targets; 4x alkalic porphyry systems	Cover of only 36-150m						
• 224m @ 0.19% Cu, 0.2g/t Au from 172m	Northparkes-style "doughnut" mag features						
• \$23.9M spent to date	Cu/Au in Air Core (>0.1g/t Au, >500ppm Cu)						

Capital Structure (ASX:KNB)				
1,027M	\$41.1M	\$7.8M	47% Top 20 31/10/2025	
Shares on issue	Market Cap	Cash		
ASX:KNB	14/11/2025	30/09/2025		

TENEMENTS

Koonenberry Project

Licence Number	Area (km²)*	Location	Title Holder	Equity Interest
EL6803	156.22	NSW	Lasseter Gold Pty Ltd	100%
EL6854	59.02	NSW	Lasseter Gold Pty Ltd	100%
EL7635	23.60	NSW	Lasseter Gold Pty Ltd	100%
EL7651	47.20	NSW	Lasseter Gold Pty Ltd	100%
EL8245	88.50	NSW	Lasseter Gold Pty Ltd	100%
EL8705	5.90	NSW	Lasseter Gold Pty Ltd	100%
EL8706	295.37	NSW	Lasseter Gold Pty Ltd	100%
EL8819	168.36	NSW	Lasseter Gold Pty Ltd	100%
EL8918	162.64	NSW	Lasseter Gold Pty Ltd	100%
EL8919	277.25	NSW	Lasseter Gold Pty Ltd	100%
EL8949	23.62	NSW	Lasseter Gold Pty Ltd	100%
EL8950	32.47	NSW	Lasseter Gold Pty Ltd	100%
EL9491	372.16	NSW	Lasseter Gold Pty Ltd	100%
EL9492	321.66	NSW	Lasseter Gold Pty Ltd	100%
EL9493	26.22	NSW	Lasseter Gold Pty Ltd	100%
EL9225	417.70	NSW	Gilmore Metals Pty Ltd	100%

Table 1. Koonenberry Gold's 100% owned subsidiaries Lasseter Gold Pty Ltd and Gilmore Metals Pty Ltd own a 100% interest in sixteen (16) granted tenements making up the Koonenberry Gold Project. *Area is calculated from the ellipsoid, not planimetric.

Enmore Gold Project

Licence Number	Name	Area (km²)*	Location	Title Holder	Equity Interest
EL8479	Enmore	134.22	NSW	Enmore Gold Pty Ltd	100%
EL9747	Enmore Regional	167.72	NSW	Enmore Gold Pty Ltd	100%

Table 2. Koonenberry Gold's 100% interest in the Enmore Gold Project.

Lachlan Project

Licence Number	Name	Area (km²)*	Location	Title Holder	Equity Interest	Conditions
EL8895	Temora South	110.35	NSW	Gilmore Metals Pty Ltd	100%	
EL9313	Breakfast Creek	392.25	NSW	Gilmore Metals Pty Ltd	100%	
EL9533	Gundagai	11.25	NSW	Gilmore Metals Pty Ltd	100%	
EL9532	Brungle	156.92	NSW	Gilmore Metals Pty Ltd	100%	
EL9138	Dunedoo	96.03	NSW	Gilmore Metals Pty Ltd	100%	
EL8876	Darby's Ridge	71.83	NSW	Gilmore Metals Pty Ltd	100%	
EL9137	Bournewood	43.35	NSW	Gilmore Metals Pty Ltd	100%	0.5% NSR
EL9272	Wilga Flats	272.42	NSW	Gilmore Metals Pty Ltd	100%	0.5% NSR
EL9467	Fairholme	169.43	NSW	Gilmore Metals Pty Ltd	51%	
EL8470	Junee	256.29	NSW	Newmont Exploration Pty Ltd	20%	

Table 3. Gilmore Metals Pty. Ltd. owns a 100% interest in eight (8) granted tenements as set out above. Newmont Exploration Pty Ltd has earned an 80% interest in the Junee project (EL8470) and is currently in the earn in phase through a farm-in and joint venture agreement on the Fairholme project (EL9467). In addition, Newmont Exploration Pty Ltd holds a 0.5% NSR on the Bournewood (EL9137) and Wilga Flat (EL9272) Projects. Koonenberry Gold owns 100% of Gilmore Metals Pty. Ltd.

REFERENCES

- 17/10/2024 (ASX:KNB). Transformational acquisition of exciting NSW Au and CuAu portfolio.
- 29/11/2024 (ASX:KNB). Koonenberry Gold completes acquisition of Enmore Gold and Lachlan Projects in NSW.
- 24/01/2025 (ASX:KNB). Quarterly Report for the period ending 31 December 2024.
- 11/02/2025 (ASX:KNB). KNB commences drilling at Enmore Gold Project.
- 13/02/2025 (ASX:KNB). Placement to accelerate Exploration at Enmore & Lachlan.
- 19/02/2025 (ASX:KNB). Multiple zones of visible gold in first drill hole at Enmore.
- 25/02/2025 (ASX:KNB). KNB expands Enmore Gold Project, NSW securing gold-antimony targets.
- 26/02/2025 (ASX:KNB). KNB intersects visible gold in second drill hole at Enmore.
- 17/03/2025 (ASX:KNB). More gold zones identified at Enmore Gold Project, NSW.
- 02/04/2025 (ASX:KNB). KNB returns 170m @ 1.75g/t gold including 18.3m at 9.95g/t gold from first drillhole.
- 14/04/2025 (ASX:KNB). KNB returns 172.9m @ 2.07g/t gold including 25m at 5.23g/t gold from second drillhole.
- 16/04/2025 (ASX:KNB). Quarterly Report for the period ending 31 March 2025.
- 23/04/2025 (ASX:KNB). KNB intersects multiple zones of visible gold in fifth drill hole at Enmore.
- 29/04/2025 (ASX:KNB). Enmore third hole returns 102m @ 1.10g/t gold including 9.7m at 3.57g/t gold.
- 30/04/2025 (ASX:KNB). KNB intersects multiple zones of visible gold in sixth drill hole at Enmore.
- 13/05/2025 (ASX:KNB). KNB expands Sunnyside gold system to more than 230m strike.
- 20/05/2025 (ASX:KNB). KNB returns 149.5m at 0.94g/t gold from fourth drillhole at Enmore Project.
- 22/05/2025 (ASX:KNB). Domestic and international institutional placement to accelerate exploration plans including +10,000m of drilling at Enmore.
- 06/06/2025 (ASX:KNB). KNB returns 150m at 0.71g/t gold from fifth drillhole at Enmore.
- 23/06/2025 (ASX:KNB). KNB returns 80.5m at 1.45g/t gold from sixth drillhole at Enmore.
- 24/06/2025 (ASX:KNB). KNB extends Sunnyside Prospect by 1.6km to over 2km strike potential.
- 27/06/2025 (ASX:KNB). Newmont completes fully-funded drilling at Junee and Fairholme JV Projects.
- 21/07/2025 (ASX:KNB). Quarterly Report for the period ending 30 June 2025.
- 22/07/2025 (ASX:KNB). KNB identifies target on parallel shear zone to Sunnyside at Enmore Project.
- 04/08/2025 (ASX:KNB). KNB extends mineralised zone to over 260m strike potential and highlights depth and strike potential.
- 05/08/2025 (ASX:KNB). KNB identifies priority drill targets along Sunnyside Shear Zone in IP Geophysics.
- 13/10/2025 (ASX:KNB). KNB commences 10,000m drilling at Enmore Gold Project.
- 15/10/2025 (ASX:KNB). KNB commences district scale airborne magnetic survey.
- 17/10/2025 (ASX:KNB). Quarterly Activities Report for the period ending 30 September 2025.
- 20/10/2025 (ASX:KNB). KNB triples the potential strike length of the Enmore Gold Project NSW.
- 05/11/2025 (ASX:KNB). KNB accelerates drilling with second drill rig at Enmore.
- Banks, M., 2010. Enmore Gold Project, NSW, Australia. Technical review of geology, mineralisation and potential for Olympus Pacific Minerals inc.
- Coote, A., 2025. Petrologic studies of diamond core from the Sunnyside Prospect, Enmore Project, NE New South Wales. Internal report for Koonenberry Gold.
- Davis, B., 2025. Enmore Gold Project Review of geology and first-pass assessment of structural geological controls to architecture hosting mineralisation at the Sunnyside Prospect. Internal report for Koonenberry Gold.
- Downes, P. M., 2017. A mineral system model for orogenic Au and Au-Sb deposits in the southern New England.
- Henley, H.F. 1985. The Enmore-Melrose goldfield. R00005777 (GS1983/033)
- Phillips, G. N. (Ed), 2017. Australian Ore Deposits (The Australasian Institute of Mining and Metallurgy: Melbourne).
- Slee, W.H.J., 1894. Annual Report for 1893 for NSW Department of Mines and Agriculture.
- Wilson, A., 2022. GeoAqua Consultants Ltd, Internal Report for Gilmore Metals.
- 05/08/2024 (ASX:LRV). Hillgrove Gold-Antimony Project Pre-Feasibility Study including Maiden Ore Reserve.

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on information compiled under the supervision of Mr Paul Wittwer, who holds a BSc Geology (Hons.), is a Member of the Australian Institute of Geoscientists (AIG) and the Australian Institute of Mining and Metallurgy (AusIMM) and is the Exploration Manager of Koonenberry Gold Limited. Mr Wittwer has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves.' Mr Wittwer consents to the inclusion in this report of the matter based on his information in the form and context in which it appears. Where reference is made to previous announcements of exploration results in this announcement concerning the Company's projects, the Company confirms that it is not aware of any new information or data that materially affects the information and results included in those announcements. The information in this announcement that relates to the previous exploration results have been cross referenced to the original announcement or are from the announcements listed in the references table.

Forward looking statements

This announcement may include forward looking statements and opinion. Often, but not always, forward looking statements can be identified by the use of forward looking words such as "may", "will", "expect" "intend", "plan", "estimate", "anticipate", "continue", "outlook" and "guidance" or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs. Forward looking statements are based on Koonenberry and its Management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect Koonenberry's business and operations in future. Koonenberry does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that Koonenberry's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by Koonenberry or Management or beyond Koonenberry's control. Although Koonenberry attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of Koonenberry. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law in providing this information Koonenberry does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any changes in events, conditions, or circumstances on which any such statement is based.

Cautionary statement on visual estimates of mineralisation

Any references in this announcement to visual results are from visual estimates by qualified geologists. Laboratory assays are required for representative estimates of quantifiable elemental values. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Proximate statements

This announcement may contain references to Mineral Resources, mines and exploration projects of other parties either nearby or proximate to Koonenberry Gold's projects and/or references that may have topographical or geological similarities to Koonenberry Gold's projects, the Enmore Gold project and / or Lachlan projects. It is important to note that such discoveries or geological similarities do not in any way guarantee that the Company will have any success at all or similar successes in delineating a Mineral Resource on any of Koonenberry Gold's projects, the Enmore Gold project and / or Lachlan projects.

Prospect	Hole ID	Easting	Northing	mAHD	Azi. (True Nth)	Dip	Depth (m)
Sunnyside	25ENDD011	388859	6596681	958.7	160	-55	385.1
Sunnyside	25ENDD012	388847	6596716	963.6	160	-55	506.7

Table 4 – 2025 Enmore Gold Project Phase II Drill Hole Collar locations and orientation.

Hole ID	mFrom	mTo	Interval (m)	Lithology 1	Alteration 1	Alt. 1 intensity	Vein %	Sulphide %	Visible Gold %
25ENDD011	0	1.4	1.4	No sample	-	-	-	-	-
25ENDD011	1.4	5.3	3.9	Saprolite	-	-	-	-	-
25ENDD011	5.3	11.3	6	Granite	Propylitic	Moderate	-	-	-
25ENDD011	11.3	23.55	12.25	Granite	Propylitic	Moderate	3	-	-
25ENDD011	23.55	29.24	5.69	Granite	Phyllic	Moderate	3	0.1	-
25ENDD011	29.24	39.05	9.81	Granite	Propylitic	Moderate	1	-	-
25ENDD011	39.05	42.1	3.05	Granite	Phyllic	Weak	1.5	-	-
25ENDD011	42.1	71.36	29.26	Granite	Propylitic	Moderate	2	-	-
25ENDD011	71.36	74.1	2.74	Granite	Phyllic	Weak	3.1	0.1	-
25ENDD011	74.1	88.83	14.73	Granite	Propylitic	Moderate	2	0.3	-
25ENDD011	88.83	94.9	6.07	Granite	Phyllic	Moderate	1	1.1	-
25ENDD011	94.9	103.8	8.9	Granite	Phyllic	Strong	0.6	0.6	-
25ENDD011	103.8	107.05	3.25	Granite	Phyllic	Moderate	0.5	0.1	-
25ENDD011	107.05	114.4	7.35	Granite	Phyllic	Strong	1.5	0.5	-
25ENDD011	114.4	115.08	0.68	Granite	Argillic	Moderate	-	0.1	-
25ENDD011	115.08	123.15	8.07	Granite	Phyllic	Strong	5.1	0.2	-
25ENDD011	123.15	131.49	8.34	Granite	Propylitic	Weak	1.5	0.1	-
25ENDD011	131.49	133.05	1.56	Granite	Phyllic	Strong	1.1	0.6	-
25ENDD011	133.05	141.3	8.25	Granite	Propylitic	Moderate	1.1	0.1	-
25ENDD011	141.3	156.42	15.12	Granite	Potassic	Moderate	2	0.3	-
25ENDD011	156.42	164.15	7.73	Granite	Phyllic	Weak	1.5	0.5	-
25ENDD011	164.15	171.43	7.28	Granite	Phyllic	Strong	2.1	1.5	-
25ENDD011	171.43	188.41	16.98	Granite	Phyllic	Weak	2	0.6	1
25ENDD011	188.41	210.97	22.56	Granite	Potassic	Moderate	3.5	0.2	1
25ENDD011	210.97	230.7	19.73	Granite	Phyllic	Moderate	4.1	1.1	-
25ENDD011	230.7	240.33	9.63	Granite	Phyllic	Moderate	6.1	2	-
25ENDD011	240.33	252.76	12.43	Granite	Phyllic	Moderate	4.1	1.5	-
25ENDD011	252.76	278.1	25.34	Granite	Propylitic	Weak	1.5	0.1	-
25ENDD011	278.1	283.05	4.95	Granite	Phyllic	Moderate	1.5	1.5	-
25ENDD011	283.05	289.9	6.85	Granite	Propylitic	Moderate	1.5	0.2	-
25ENDD011	289.9	292.55	2.65	Granite	Propylitic	Moderate	1.1	0.3	-
25ENDD011	292.55	292.56	0.01	Granite	Propylitic	Moderate	1.1	0.3	<0.1%
25ENDD011	292.56	294.4	1.84	Granite	Propylitic	Moderate	1.1	0.3	-
25ENDD011	294.4	300.92	6.52	Granite	Phyllic	Weak	2.5	1	-
25ENDD011	300.92	315.21	14.29	Granite	Propylitic	Moderate	1.6	0.5	-
25ENDD011	315.21	318.65	3.44	Granite	Phyllic	Moderate	3.5	1.1	-
25ENDD011	318.65	326.29	7.64	Granite	Propylitic	Moderate	1.6	0.1	-
25ENDD011	326.29	329.42	3.13	Granite	Phyllic	Weak	3.5	0.6	-
25ENDD011	329.42	330.41	0.99	Granite	Phyllic	Weak	3.5	0.6	<0.1%
25ENDD011	330.41	336	5.59	Granite	Phyllic	Weak	3.5	0.6	-
25ENDD011	336	354.15	18.15	Granite	Carbonate	Strong	5.5	4	-
25ENDD011	354.15	354.41	0.26	Granite	Argillic	Moderate	-	0.5	-
25ENDD011	354.41	370.05	15.64	Granite	Phyllic	Moderate	1.5	0.5	-
25ENDD011	370.05	374.43	4.38	Siltstone	Phyllic	Moderate	2.5	4	-
25ENDD011	374.43	374.44	0.01	Siltstone	Phyllic	Moderate	2.5	4	<0.1%
25ENDD011	374.44	385.1	10.66	Siltstone	Phyllic	Moderate	2.5	4	-

Table 5 – Lithology, alteration, veins, sulphide and visible gold zones observed in 25ENDD011. Visible gold occurrences have either been grouped into zones or shown as individual points.

Hole ID	mFrom	mTo	Interval (m)	Lithology 1	Alteration 1	Alt. 1 intensity	Vei n %	Sulphide %	Visible Gold %
25ENDD012	0	1	1	Soil	-	-	0	0	-
25ENDD012	1	9.6	8.6	Granite	Propylitic	Weak	0	0	-
25ENDD012	9.6	14.4	4.8	Granite	Phyllic	Moderate	0.1	0.1	-
25ENDD012	14.4	19.7	5.3	Granite	Propylitic	Moderate	0.5	0.1	-
25ENDD012	19.7	19.71	0.01	Granite	Propylitic	Moderate	0.5	0.1	<0.1%
25ENDD012	19.71	29.7	9.99	Granite	Propylitic	Moderate	0.5	0.1	-
25ENDD012	29.7	35.3	5.6	Granite	Propylitic	Moderate	0.1	0.1	-
25ENDD012	35.3	43.6	8.3	Granite	Phyllic	Moderate	0.5	0	-
25ENDD012	43.6	67.6	24	Granite	Propylitic	Moderate	0.5	0.1	-
25ENDD012	67.6	75.2	7.6	Granite	Propylitic	Moderate	1.5	0.5	-
25ENDD012	75.2	83.5	8.3	Granite	Propylitic	Moderate	0.1	0.1	-
25ENDD012	83.5	86.8	3.3	Granite	Phyllic	Moderate	1	0.1	_
25ENDD012	86.8	114.5	27.7	Granite	Propylitic	Moderate	0.5	0.1	-
25ENDD012	114.5	129.4	14.9	Granite	Propylitic	Moderate	0.5	0.6	-
25ENDD012	129.4	130.2	0.8	Granite	Phyllic	Strong	5	4	_
25ENDD012	130.2	149.25	19.05	Granite	Propylitic	Moderate	1.5	0.5	_
25ENDD012	149.25	159.9	10.65	Granite	Argillic	Strong	5	2.5	-
25ENDD012	159.9	176.2	16.3	Granite	Phyllic	Moderate	2.5	1.5	_
25ENDD012	176.2	198.95	22.75	Granite	Propylitic	Moderate	1.5	0.5	-
25ENDD012	198.95	202.9	3.95	Granite	Phyllic	Moderate	2.1	0.5	-
25ENDD012	202.9	220.6	17.7	Granite	Propylitic	Moderate	1	0.5	_
25ENDD012	220.6	237.2	16.6	Granite	Phyllic	Moderate	2.5	1.2	_
25ENDD012	237.2	245.7	8.5	Granite	Propylitic	Weak	1	0.2	_
25ENDD012	245.7	256.5	10.8	Granite	Potassic	Moderate	0.5	0.1	_
25ENDD012	256.6	271.3	14.7	Granite	Propylitic	Weak	2	0.5	_
25ENDD012	271.3	274.52	3.22	Granite	Phyllic	Strong	2.6	3	_
25ENDD012	274.52	274.53	0.01	Granite	Phyllic	Strong	2.6	3	<0.1%
25ENDD012	274.52	285.3	10.77	Granite	Phyllic	Strong	2.6	3	
25ENDD012	285.3	296.1	10.77	Granite	Phyllic	Moderate	1.5	0.6	_
25ENDD012	296.1	298.2	2.1	Granite	Propylitic	Moderate	0.5	0.0	_
25ENDD012	298.2	301.75	3.55	Granite	Phyllic	Moderate	1.1	1	_
25ENDD012	301.75	301.76	0.01	Granite	Phyllic	Moderate	1.1	1	<0.1%
25ENDD012	301.76	302	0.24	Granite	Phyllic	Moderate	1.1	1	-
25ENDD012	301.70	315.7	13.7	Granite	Phyllic	Moderate	1.6	0.6	
25ENDD012	315.7	320.7	5	Granite	Potassic	Moderate	0.5	0.0	
25ENDD012	320.7	343.9	23.2	Granite	Propylitic	Weak	1	0.1	
25ENDD012	343.9	362	18.1	Granite	Phyllic	Weak	1.1	1.1	_
25ENDD012	362	372.37	10.37	Granite	Carbonate	Moderate	2	1.5	
25ENDD012	372.37	393.1	20.73	Granite	Phyllic	Moderate	2.5	1.1	
25ENDD012	393.1	394.66	1.56	Granite	Phyllic	Weak	2.3	0.1	
25ENDD012	394.66	394.67	0.01	Granite	Phyllic	Weak	2.1	0.1	<0.1%
25ENDD012	394.67	407.31	12.64	Granite	Phyllic	Weak	2.1	0.1	V0.176
25ENDD012	407.31	411.25	3.94	Granite	Phyllic	Moderate	2.5	1.2	-
25ENDD012	411.25	411.23	5.45	Granite	Phyllic	Weak	1.6	0.2	-
25ENDD012 25ENDD012	411.25	428.8	12.1	Granite	Phyllic	Moderate	3.5	1.6	
25ENDD012			9.26		Phyllic		6		
25ENDD012 25ENDD012	428.8 438.06	438.06 441.9	3.84	Granite Granite	Phyllic	Strong Moderate	0	3	
25ENDD012 25ENDD012	438.06	443.13	1.23	Granite	Phyllic	Moderate	2	0.6	
25ENDD012 25ENDD012	443.13	443.13	2.37	Granite		Moderate	0	0.6	-
25ENDD012 25ENDD012	445.15	464.94	19.44	Granite	Argillic Phyllic	Moderate	1	0.1	-
25ENDD012 25ENDD012	464.94	465.86	0.92	Granite	Phyllic	Moderate	1.5	1.1	
25ENDD012 25ENDD012	465.86	467.14	1.28	Granite	Phyllic	Moderate	0.5	1.1	-
-	465.86	467.14	6.62	Siltstone	,	Moderate	1.5		
25ENDD012	1				Phyllic Phyllic			1.6	-
25ENDD012	473.76	478.9	5.14	Siltstone	Phyllic	Moderate	1.5	1.6	-
25ENDD012	478.9	487.05	8.15	Siltstone	Propylitic	Weak	1	1	-
25ENDD012	487.05	487.06	0.01	Siltstone	Argillic	Weak	- 0.6	- 1 1	-
25ENDD012	487.06	506.7	19.64	Siltstone	Propylitic	Weak	0.6	1.1	-

Table 6 – Lithology, alteration, veins, sulphide and visible gold zones observed in 25ENDD012. Visible gold occurrences have been shown as individual points.

APPENDIX 1. JORC CODE TABLE 1 Checklist of Assessment and Reporting Criteria

- Enmore Gold Project (EL 8479)

Section 1: Sampling Techniques and Data

Section 1: Sampling Techni		Commentary
Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Diamond drilling was conducted to obtain core which was cut lengthways in half 1cm offset to the right of core orientation lines (viewed downhole) where available, otherwise along nominal cut lines. Samples were pulverised to 85% passing 75 microns.
		No references witnessed to historic
		sampling techniques or procedures for drilling by Getty Oil Development Company, Warren Jay Holdings Pty Ltd or Zedex Minerals Ltd. No valueadd technologies were reported to have been used on drilling samples. No photographs of drill core or percussion samples have been located
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any 	Where possible, the same side of the diamond half core was submitted for assay.
	measurement tools or systems used.	, Historical Drilling
		 Getty Oil and Providence generally sampled at 2m intervals over the whole hole. Zedex drilling was generally sampled at 1m intervals on a selective sampled based on presence or significant alteration and veining. Sample lengths ranged nominally up to 1.5m, and there are only 4 samples of >1.5m length (max 3.1m). Minimum sample size ranged down to 10cm.
	 Aspects of the determination of mineralisation that are Material to the Public Report. 	 Determination of mineralisation from Koonenberry work was through appropriate geological logging of samples by the geologist responsible and is also assumed for the historical drilling.
	• In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Industry standard sampling procedures were completed in the recent Koonenberry drilling and are assumed in the historical drilling but have not yet been confirmed. Coarse and refractory gold issues throughout the Project are sufficient to warrant check sampling with fire assay techniques. Koonenberry has conducted Screen Fire Assays where visible gold was observed and if samples return >1g/t from the original Fire Assay. Evidence of fire assay check sampling has been found for all historical operators.

Criteria	JORC Code explanation	Commentary
		Getty and Zedex appear to have resubmitted all results >1.0g/t Au for fire assay.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Koonenberry Diamond drilling completed by DDH1 Drilling and Ophir Drilling using a track mounted rig to obtain PQ3 and HQ3 core (triple tube). Historical Drilling 9 holes for 1,599.5m by Getty Oil Development Company in 1983-84 by Getty Oil Development Company. HQ precollar reducing to NQ. No references found to oriented core. Percussion drilling by Getty is not clearly referenced, though commentary in reports is suggestive of open hole percussion. 41 holes for 4,192m, average 102m. 16 holes for 1,994.7m by Zedex Minerals Limited in 2004-06 using a UDR650 track mounted rig. Core diameter not referenced. No references found to oriented core or evidence of orientations in core photos. Reverse Circulation (RC) drilling Warren Jay Holdings; 143 holes for 3,232m, average 22.6m. Conducted using a 10cm button bit on Sullair Sullitrack Mk2, possibly open hole hammer.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Each core run is recorded in diamond drilling as end of run depth, drilled metres, recovered metres. Triple tube drilling undertaken to maximise core recovery in broken zones. Historical Drilling Diamond Drilling: Getty: Core recovery visually estimated. Recoveries were generally 100% but do dip periodically, showing it was faithfully recorded. RC & Percussion: No firm details were found on percussion sampling procedure. Getty mentioned strict sampling procedures. Warren Jay Holdings referred to early termination of some holes when water was intercepted.
	Measures taken to maximise sample recovery and ensure representative	Triple tube drilling undertaken by Koonenberry to maximise core

Criteria	JORC Code explanation	Commentary
	nature of the samples.	recovery in broken zones. No measures to ensure representivity were reported from historical drilling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 No study has been undertaken to ascertain any sample recovery or bias issues.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 No Mineral Resource estimation, mining studies or metallurgical studies have been conducted at this stage. All core is geologically logged with lithologies, alteration, mineralisation, veining, structures, geotech, recovery and bulk density recorded.
		Historical Drilling
		 Getty: All drilling logged qualitatively in handwritten descriptions grouped by domains, with quantitative assessment of sulphide and quartz content. No geotechnical logging. Zedex & Warren Jay Holdings: Lithological drill logging was completed.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Geological logging was qualitative in nature.
	The total length and percentage of the relevant intersections logged.	The entire length of all recent and historical holes were logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core was cut using a diamond saw and half core was sent for assay.
		Historical Drilling
		No photographs of drill core or percussion samples have been located except for certain select ranges of Zedex diamond and percussion drilling. Photographs of Zedex core evidence that core was sawn and half core sent for analysis.
	If non-core, whether riffled, tube	Historical Drilling
	sampled, rotary split, etc and-whether sampled wet or dry.	Industry standard sampling procedures at the time are assumed but have not yet been confirmed. Photographs of Zedex percussion drill sites evidence that samples were collected through a cyclone, but sample reduction and compositing methods are unknown.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Koonenberry drilling samples are pulverised at ALS to a QC size specification of 85% <75µm.

Criteria	JORC Code explanation	Commentary
		 No references have been found to sampling preparation for historical results.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 Pulverised samples are rotary split using a Boyd Rotary Splitter No references have been found for sub-sampling methods for historical results.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Duplicates were inserted every 50m No references have been found for QAQC methods for historical results
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sample size for Koonenberry drilling is appropriate. No references have been found for sample sizes for historical results.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Samples were sent to ALS Brisbane and then ALS Perth which is an ISO/IEC 17025:2005 and ISO9001:2015 certified laboratory. All samples were analysed for Au using a 50g Fire Assay with an AAS finish (Au-AA26), with a detection limit range of 0.01ppm to 100ppm Au. All zones with visible gold (and samples returning >1g/t in original Fire Assay) were analysed for Au using a 1kg Screen Fire Assay (Au_SCR24), where a 1kg pulp is dry screened to 106 microns and a duplicate 50g assay on screen undersize and an assay of entire oversize fraction is performed and then combined with the undersize fraction to produce an overall total assay. This method ensures that both coarse and fine gold are accurately quantified, providing a comprehensive assessment of the gold content. Detection limit range for Au is 0.05 to 100,000ppm. In addition, some samples were also analysed with PhotonAssay (ALS method Au-PA01p) to compare assay techniques. Up to ~500 grams of the pulverised sample is used for analysis (or up to whatever can fit in the plastic jar. Analysis is non-destructive, not requiring sample decomposition. Samples are bombarded with high-energy X-Rays which excite atomic nuclei that produce gamma rays at signature energies, allowing for gold detection. The nature of the laboratory assay

Criteria	JORC Code explanation	Commentary
	• For geophysical tools, spectrometers, handheld XRF instruments. etc. the	 sampling techniques is considered 'industry standard' and appropriate. Historical Drilling Getty: submitted drill samples for analysis to COMLABS Pty Ltd, a NATA certified lab, analysing Au by AAS and As by XRF. Zedex submitted drill samples for analysis to ALS Brisbane. Analysed by Au-TL43 (Aqua regia, ICPMS finish, Trace level Au, 25g), then by Au-OG43 where Au>1g/t (Aqua regia, ICPMS finish, Intermediate grade level, 25g). Where Au>1g/t, also analysed by Au-AA25 (ore grade 3g fire assay, AAS finish). Multielements by ME-ICP41s (Aqua-regia with ICP-AES finish, 0.5g sample) for Ag, As, Bi, Cd, Co, Cu, Fe, Mn, Mo, Ni, P, Pb, S, Sb, Zn. Then by ME-OG49 (ore grade) where Ag>100ppm, or As, Cu, Pb or Zn>1,000ppm. No geophysical, spectral or handheld XRF tools have been reported being
	handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	XRF tools have been reported being used on samples or core.
	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Standards and blanks were incorporated into each sample batch at a rate of 1 in 25 samples. No references found for Sample quality, sample interval, sample number and QA/QC inserts (standards, duplicates, blanks) for historical sampling.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 Significant intersections/results in this ASX Release have been verified from the source data by the Competent Person and alternative company personnel.
	The use of twinned holes.	• N/A
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Primary data was collected on digital devices and stored on company cloud server. No documentation of primary data procedures from historical drilling has been identified. All available historical raw data is publicly available data.
	Discuss any adjustment to assay data.	No adjustments have been made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral 	 All drill holes were sited with a standard Garmin GPS with an Easting and Northing accuracy of approximately +/- 5m and then

Criteria	JORC Code explanation	Commentary
	Resource estimation.	collars later surveyed with a DGPS. Down hole surveys measured using a Reflex north seeking gyro instrument.
		Historical Drilling Getty Oil: No reference to datum on maps, though AMG is listed, so datum can be assumed as AGD66. Drillhole azimuth listed in magnetic bearing on logs. Topographic control not referenced. Grids were constructed in key prospect areas so can assume at minimum there was a consistent locational and topographic control for drilling through the local surveyed grid. Accuracy assumed to be ±20m. Warren Jay Holdings: No details of datum, survey or topographic control have been witnessed yet. Zedex: post-drilling collar survey using high resolution professional
	Specification of the grid system used.	 surveying, Datum AGD84. The grid system used is Universal Transverse Mercator (UTM) GDA94 MGA Zone 56 for Koonenberry drilling has been converted to this grid.
	Quality and adequacy of topographic control.	Collars were used for topographic control in combination with Government LiDAR data.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drilling spacing varied depending on the target, but no resource is being reported.
		Historical Drilling
		Data spacing is sufficient to establish general continuity of lode style mineralisation along primary structures. Spacing is not currently sufficient or consistent enough to establish continuity of mineralisation on high-grade shoot style reefs (no structural logging has been witnessed or referenced).
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No Mineral Resource or Ore Reserve have been estimated.
	Whether sample compositing has been applied.	 No compositing of assay data has been applied.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Holes 25ENDD001-002 & 25ENDD004-005 were oriented subparallel to the interpreted Sunnyside East strike direction (east northeast trend). This may introduce a sampling bias, producing

Criteria	JORC Code explanation	Commentary
		mineralised intervals broader in apparent thickness. The rationale was to intersect interpreted high grade cross-cutting NNW structures. It remains unclear which direction is the most ideal for drilling.
		Historical Drilling
		Most drilling outside Bora seems to have been optimized for NE trending, generally NW dipping lode structures. Angle of drilling to higher grade mineralised structures at these other prospects is unclear.
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill testing is too early stage to determine if the drilling orientation has introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	 Samples from Koonenberry drilling were transported to the laboratory using reputable registered freight. No references have been found to procedures for sample security for the historical samples
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audit or reviews were completed of the Koonenberry Drilling. No historic audits have been described in reports.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Exploration Licence (EL) 8479 held by Enmore Gold Pty Ltd, owned by Koonenberry Gold Ltd. Granted 21 October 2016, renewed in 2021 and 2023 and expiring on 21 October 2029 whereon it is eligible for renewal. There are no known Native Title interests in relation to the Property. No royalty interests are in place.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The tenement is current and in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration has been conducted by Silver Valley (1974) with Diamond drilling. Getty Oil (1983-84). DD and percussion drilling. Mapping, surface sampling. Good systematic investigative work. Getty concluded the lateral and width dimensions (of the old mine workings) were limited and would not deliver their target of ± 5Mt @ 3g/t (482k oz) Au openpittable and withdrew. Significant drill intercepts (especially BSD5) were

Criteria	JORC Code explanation	Commentary
		not adequately followed-up. Costean and soil sampling was effective at locating exposed mineralisation at a coarse scale. IP surveying demonstrated potential of electrical geophysical methods on this mineralisation style. • Warren Jay Holdings (1996-97) drilled 143 holes, at an average depth of 22m testing for open pittable oxide resources. This work defined the oxide mineralisation potential at Sunnyside, but has not contributed more to definition of mineral potential or underground extraction potential elsewhere on the Property. • Zedex Minerals Ltd (for Providence Gold & Minerals Pty Ltd) drilled 16 diamond holes at an average 124m depth. Many the holes were partially sampled, including in positions where structures were interpreted to intersect. Additional possible commercial commodities (W & Sb) have not been analysed. Vectoring is not possible with available data. • Providence Gold and Minerals Pty Ltd, formerly Warren Jay Holdings Pty Ltd (1994-2022), have completed extensive soil sampling to identify extensive mineral potential along the major and subsidiary structures, as well as an aeromagnetic survey, trenching and underground channel sampling. • A program of 8 RC holes for 976m was completed in 2021 and 7 Diamond holes for 1,440.1m were completed in 2022 testing the Sunnyside Prospect under the ownership of Okapi Resources Ltd.
Geology	Deposit type, geological setting, and style of mineralisation.	 The Enmore Gold Project is structurally controlled orogenic Au, hosted in the New England Orogen on three major crustal NE trending structures, 20km SSW from Hillgrove Au-Sb Mine. The hydrothermal system was long-lived through tectonic compression & uplift. Two mineralisation styles are broadly described: An early relatively low grade ductile silicified and sulfidic lode style mineralisation constrained within and generally parallel to mylonite zones formed on the major NE trending structures. A later and higher-grade mineralisation associated with brittle deformation in dilational and rheologically controlled shoots often

Criteria	JORC Code explanation	Commentary
		 oblique to but constrained within the mylonite zones. Native/free gold occurs as inclusions within mosaic/mosaic-drusy quartz and is concentrated filling cavities within mosaic/mosaic-drusy quartz as overgrowths to pyrite and arsentiferous pyrite. Free gold occurs as inclusions within pyrite/arsentiferous pyrite lining cavities filled with gold. Gold occurrences associated with late dilational events generally have a higher proportion of free gold and significantly higher gold grades than the lode style structures. Enmore mineral occurrences are strongly analogous to Hillgrove.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar. Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar. Dip and azimuth of the hole. Down hole length and interception depth. Hole length. 	Relevant completed drill hole details are presented in Tables
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No information has been excluded from this release to the best of Koonenberry Gold's knowledge.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. 	 No new assays have been reported Standard length weighting averaging techniques were for intercepts previously reported and no Top Cuts were used.
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	No new assays have been reported
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation.	An estimated true width of the overall mineralised structure is provided. The growntry at Supposide is not
	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 The geometry at Sunnyside is not properly defined at this stage. Holes 25ENDD001-002 & 25ENDD004-005 were oriented sub-parallel to the

Criteria	JORC Code explanation	Commentary
		interpreted Sunnyside East strike direction (east northeast trend). This may introduce a sampling bias, producing mineralised intervals broader in apparent thickness. The rationale was to intersect interpreted high grade cross-cutting NNW structures. It remains unclear which direction is the most ideal for drilling.
		Historical Drilling
		 Sunnyside, Sherwood, et al: Holes appear to be largely targeted orthogonal to main lode structure, while shoot style mineralisation can be high or low angle to the lode structure.
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Down hole lengths are reported Estimated true width of the overall mineralised structure is shown on sections.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps, sections, and tables for new results have been included.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	No new sample assay data has been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This Project includes exploration data collected by previous companies. Much of this data has been captured and validated in a GIS database.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step- out drilling). 	 Drilling is ongoing. Further exploration will be planned based on data interpretation and geological assessment of prospectivity. This may include surface sampling, geophysical surveys or drilling.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	See body of this announcement.

