

Terra Uranium to Acquire the largest Tungsten Molybdenum Project in New South Wales

Highlights

- Terra Uranium Limited (ASX:T92) has entered into a Binding Term Sheet to acquire 100% of the issued capital of Dundee Resources Pty Ltd (Dundee).
- 100% acquisition of the tenement upon which sit the Glen Eden, Bald Nob and Deepwater Tin, Tungsten, Molybdenum, Silver and Base Metals projects.
- **Tungsten prices are at 12-year highs and have recently surpassed \$450USD/MTU.** Due to its high melting point, hardness and density, demand has significantly increased on the back of applications across Military, Aerospace and Electrodes.
- Located approx. 50km by sealed road from the **developing Critical Minerals mines at Taronga (First Tin** AIM:1SN) and Hillgrove Antimony (Larvotto Resources Limited ASX: LRV).
- The Glen Eden Tungsten Molybdenum Project is the largest undeveloped tungsten project in NSW¹.
 - Mineralisation includes Mo, W, Sn and Bi in a clearly defined multi-phase brecciated greisen and stockwork complex approx. 500m in diameter hosted in rhyolitic volcanics.
 - Diamond drilling has been undertaken by pervious explorers to 385m vertical depth with mineralisation still strong at EOH and thus **open at depth in all directions**.
 - GENSW80-1 282m @ 0.11% MoS₂, 0.02% SnO₂ and 0.08% WO₃ for 0.28% WO₃ equ² from 7m
 - GENSW80-2 235m @ 0.10% MoS₂, 0.03% SnO₂ and 0.06% WO₃ for 0.25% WO₃ equ from 15m
 - GENSW81-5 392m @ 0.06% MoS₂, 0.01% SnO₂ and 0.025% WO₃ for 0.14% WO₃ equ from 3m
 - There is also significant Bismuth with the Mo that above holes average 150ppm.
 - Metallurgical work by Amoco in 1981 using hole GENSW-1 showed good recoveries of 58%Sn, 66%W and 86%Mo to potentially saleable SnW and MoBi concentrates.
 - Geochemistry and alteration patterns are consistent with a major system and historic drilling suggesting **potential for deeper Henderson-type high-grade Mo-W ore shells**.

Exploration Target to 100 to 150m depth of 20 to 30Mt @ 0.05 to 0.08% WO₃, 0.02 to 0.04% SnO₂ and 0.06 to 0.10% MoS₂ for 0.18 to 0.29% WO₃ equ

JORC Statement on Exploration Target – The potential quantity and grade is conceptual in nature. Insufficient modern exploration work has been done to estimate a Mineral Resource and it is uncertain that new infill drilling planned over the next 2 years will result in the estimation of a Mineral Resource. The target ranges quoted are based on exploration work, including diamond drilling, reported by Carpentaria Exploration 1964 and Amoco Minerals 1981 and consideration of the recorded drill data, geological model and current expected economic cut-off grades and are endorsed by the JORC Competent Person.

- T92 has also received firm commitments from a number of sophisticated investors and funds to raise \$865,000 before costs by way of a placement of new shares in the Company, at an issue price of \$0.03 per share. Each Share will include an option exercise at \$0.09 and expiry being 31 December 2026.
- The Company remains **well-positioned** to take advantage of an anticipated recovery in the uranium price with the retention of all projects in the Athabasca Basin, Canada and drilling with Joint Venture partners.

¹ Tin and Tungsten Opportunities in New South Wales, Australia. NSW MRA Publication Dec 2021

² WO₃ equivalent is calculated as WO₃ +SnO₂*0.6591 + MoS₂ *1.7917

T92 TERRA URANIUM

Terra Uranium Chairman, Andrew Vigar, commented:

"T92 is delighted to have taken the opportunity to acquire the largest undeveloped Tin Tungsten Molybdenum deposit in NSW. This is an exciting addition to the nearby Ottery Tin Deposit and we will be looking to develop these together. We thank new and existing shareholders for their continued support and look forward to keeping all shareholders informed of the development of our NSW Tin Tungsten Moly strategy to add to our Canadian Uranium portfolio"

Terra Uranium Limited ASX:T92 ("T92", "Terra Uranium" or the "Company") is pleased to advise it has signed a Binding Term Sheet to acquire a group of tungsten, molybdenum, tin and silver and projects in the New England Region, NSW, Australia.

T92 will acquire all of the issued capital of Dundee Resources Pty Ltd ("Dundee") which holds Exploration Licence EL9764 (Figure 1). The package includes the major Glen Eden Project which is located approx. 100km by sealed road from the Company's Ottery Tine Mine (Figure 1)

Glen Eden Project

Geology and Mineralisation:

The Glen Eden prospect is characterised by an extensive zone of hydrothermal alteration of the host rhyolitic volcanics (Phase 1) with a mapped extent of approximately 1,500 m by 800 m. An irregular 500m diameter core complex of veining and greisen breccias (Phase 2) is overprinted by more intense stockworks and greisen breccia (Phase 3) clearly seen in the soil geochemistry for W and Mo, (Figures 2 and 3). Beyond the greisen core, a broader alteration halo consisting of sericitic, phyllic, and potassic zones extends over a significant area, indicating a potentially large mineralised system.

The intrusive system from which the mineralisation is sourced is not exposed at surface, nor has it been intersected in pervious diamond drilling to 385m depth. 3D modelling of the system by Amoco (1981) suggested that deeper untested areas might contain a large molybdenum-tungsten Urad/Henderson style deposit.

Significant Drill Results

Drillholes intersecting the Phase 3 Core tungsten tin molybdenum zones were composited from the original drill logs and assay sheets. Results below are tabulated from date recorded in historical reports using a cut-off grade of 500 ppm W equivalent (Table 1, Figure 2), intervals are down-hole. These represent 55% of the total meterage of 3388m drilled into the Core zone.

Hole_ID	Depth_From	Depth_To	length	MoS ₂	SnO ₂	WO ₃	WO₃ equ	SnO₂ equ
	m	m	m	ppm	ppm	ppm	ppm	ppm
GE-1	9.45	152.40	142.95	691	141	440	1,696	2,687
GENSW80-1	7.00	289.00	282.00	1,126	236	774	2,826	4,472
GENSW80-2	15.00	250.00	235.00	1,029	327	580	2,527	4,003
GENSW81-3	1.00	37.00	36.00	474	264	495	1,467	2,304
GENSW81-5	3.00	395.00	392.00	619	123	245	1,369	2,178
GENSW81-6	0.00	311.00	311.00	581	114	255	1,308	2,079
GENSW81-7	2.00	152.00	150.00	647	449	341	1,726	2,725
GENSW81-8	2.00	67.00	65.00	986	335	608	2,489	3,939
GERC001	0.00	121.00	121.00	540	222	455	1,510	2,379
GERC002	14.00	48.00	34.00	819	74	327	1,754	2,796
GERC003	0.00	30.00	30.00	190	232	305	779	1,213
GERC005	0.00	12.00	12.00	265	145	372	914	1,430
GERC006	0.00	16.00	16.00	411	126	1,130	1,905	2,958
GEWDDH1	0.00	20.00	20.00	274	168	197	770	1,213
GEWDDH2	0.00	14.00	14.00	598	310	464	1,676	2,640
GEWDDH3	0.00	14.00	14.00	169	359	537	1,059	1,634
Total m/	Average grade as	sppm	1874.95	738	213	436	1,819	2,881
Average	e grade as percer	ntage		0.07%	0.02%	0.04%	0.18%	0.29%

Table 1. Significant drill Intercepts using a cut-off grade of 500ppm W equ

Previous Work and Exploration Target

There have been 18 holes drilled in the Core Zone from 1963 to 2006 for a total of 3388m. The deepest hole was 395m vertical. Previous discussions of the extent and style of the mineralized system at Glen Eden are included in annual reports by Carpentaria based on early work in 1964 and the more extensive diamond drilling by Amoco in 1980/81 and were reviewed by the Competent Person. Based on an analysis of the drill database discussed in the previous section and expected minimum economic grades the Competent Person advised an **Exploration Target of 20 to 30Mt @ 0.05 to 0.08% WO**₃, **0.02 to 0.04% SnO**₂ and **0.07 to 0.10% MoS**₂ for **0.18 to 0.29% WO**₃ equ to a depth of 100 to 150m only would be reasonable.

Basic parameters used in the consideration of the exploration target, and that a range of outcomes is required by JORC, include – Volume – a 500m diameter Core target zone composed of a complex of multiple events of greisen, stockwork, veining and breccia. Depth for surface mining 100 to 150m. Bulk density 2.5 (allows to shallow weathering). Grades and payability vary on cut-off used – Table 1 shows those using 500ppm W equ and give a payability of 55%. Final targets are conservative.

The potential quantity and grade of the Exploration Target is conceptual in nature. Insufficient modern exploration work has been done to estimate a Mineral Resource and it is uncertain that new infill drilling

planned over the next 2 years will result in the estimation of a Mineral Resource. The target ranges quoted are based on previous exploration work, including considerable diamond drilling, reported by Carpentaria Exploration in 1964 and Amoco Minerals in 1981 and in comparison with the recorded drill data, geological model and expected minimum economic grades and are endorsed by the JORC Competent Person.

Exploration Program

Terra Uranium will be drilling the Exploration Target at Glen Eden to meet JORC Resource standard as soon as site access is available – this is expected to take 4 to 6 months minimum.

Figure 1. Location of T92 tin, tungsten, molybdenum and precious metal projects in NE NSW

T92 TERRA URANIUM

Figure 2. Glen Eden Project Overview Map with drilling and soil geochemistry

Figure 3. Glen Eden Project Overview Map with drilling and soil geochemistry

2 July 2025

Coarse Molybdenite in NQ Diameter (47.6mm) Drill Core GENSW81-5. No depth recorded but whole hole is above cut-off and core is not weathered so is in primary zone.

Coarse Wolframite in NQ Diameter (47.6mm) Drill Core GENSW81-5. No depth recorded but whole hole is above cut-off and core is not weathered so is in primary zone.

Figure 4. Coarse Molybdenite and Wolframite in NQ drill-core (Amoco 1981)

Further Work Program

Exploration over the area has been extensive by many parties over the last 60 years. It is T92's view that the Exploration Results are reliable as they have been reported by various parties over this time. A detailed analysis of the extent of this exploration will be an immediate priority following the close of the acquisition of Dundee Resources by Terra Uranium.

Primary mineralisation styles will be tungsten, tin, molybdenum and silver/gold systems.

Glen Eden, the untested depth and lateral extents of the greisenised and brecciated zones present a substantial exploration upside. The geological model suggests similarities to deep-seated, highgrade breccia systems like the Henderson Mo-W deposit in the USA.

Given the complex structure and extensive alteration, Glen Eden holds potential for higher-grade mineralised zones deeper in the system, with significant potential for further Mo-W-Sn-Bi mineralisation.

Proposed Work:-

- Historic Drill Core Re-assessment: Re-assay Londonderry drill core for a complete suite of elements to refine alteration halo and vector towards higher grade mineralisation.
- Geophysical Data Integration: Data from the 2008 Auzex magnetic and radiometric survey to be synthesised with current geochemical data to refine targets.
- Field Mapping and Sampling: A systematic program of soil and rock sampling across target areas using modern ICP-MS will be undertaken to detect alteration and mineralisation patterns that could outline new drill targets.
- Targeted Drilling: Future drilling to define tested zones at Glen Eden and to explore mineralised extensions and potential deeper high-grade zones.

Terms of the Acquisition

Terra Uranium Limited has entered a Binding Term Sheet to purchase all of the shares of Dundee Resources Pty Ltd. for the following consideration:

- the issue of 10,000,000 new T92 ordinary shares (subject to approval by T92 shareholders) (Consideration Shares). Each share will include a 1:1 option exercise \$0.09 and expire 31/12/2026 (Investor Options);
- the issue (subject to approval by T92 shareholders) of 3,000,000 performance rights (Performance Rights), convertible to the same number of T92 shares upon a JORCcompliant Measured and Indicated Resource exceeding 2 million MTU of contained WO₃ within the project area; and
- A\$20,000 in cash in immediately available funds (**Consideration Cash**) for the reimbursement of expenses.
- the Buyer agrees to grant the Sellers (or their nominees) a royalty of 1.25% of the Net Smelter Returns (NSR Royalty) from the sale of any minerals or mineral products derived from the Tenements (or any tenements derived from or replacing the Tenements) (Royalty). The Buyer has the first of refusal right to buy-back the royalty at any time.

Completion of the proposed acquisition is subject to entry by the parties into a long form share sale agreement and the receipt of any necessary regulatory or shareholder approvals. This is expected to take 4 to 8 weeks to complete.

Dundee, and the Dundee shareholders, are unrelated to T92. The vendors are Ground Risk Pty Ltd ACN 673 689 953 ATF the Hall Trust, St Barnabas Investments Pty Ltd (Melvista FT AC) ACN 088 998 387 and Glen Goulds.

Schedule of Tenements

Tenement Number	Name	Grant Date	Expiry Date	Units	Special Conditions	OWNERS
EL9764	Glen Eden, Bald Nob & Deepwater	17 March 2025	17 March 2028	61	Refundable Security Deposit A\$10,000 Annual Expenditure TBA	Dundee Resources Pty Ltd

Tungsten Market

Recent commentary from Guardian Metals, Almonty Metals and others sees supply restrictions and increasing demand => high and rising prices:-

China produces ~80% of the world's tungsten; U.S. domestic mined production is currently near zero Since February 4, 2025, China has implemented export restrictions on tungsten products, including numerous specific formulations critical to U.S. defense applications.

South Korea, the largest per capita tungsten consumer worldwide, imports 94.7% of its tungsten from China.

The rapidly escalating tariff environment likely to significantly increase import costs, and therefore domestic price of "in the U.S." tungsten products

EU, US, Australia, Canada and South Korea declare tungsten as a Critical Mineral.

NATO published in December 2024 their Defense-Critical Supply Chain Security Roadmap stating tungsten as high supply risk for several military applications such as Fighter Aircrafts, Battle tanks, missiles & submarines

Benchmark tungsten prices have moved positively in 2025 in response, currently at USD450 (see below) but there is still upside

		Tung	sten APT 88.5%	%min In wareho	ouse Rotterdam	USD/dmtu	
							14
	🔽 — High	🗹 — Low	🗹 MA30	🗹 MA90	🗹 MA180	🗹 MA360	🔀 Forecast
^{:50} 7			Product: Tungs	ten APT			
			Specification: V	VO3.88.5%min. A	. 5ppm.max. Mg.	5ppm.max, Cu.3ppm	max
			Form: Powder				
50 - 🧖			Size: 35-50um	-90%min			
- 17		6	Packing: 100kg	steel drum			
00 🚺	SA /	k	Origin: China,	/ietnam			
11		744 S	Basis: In wareh	ouse Rotterdam		and the second	A J
50 -	AP/		Payment: T/T,	70% down, 30%	sight		man Nor
00-	14.		Fax: Unpaid				
			Duty: Unpaid	M /	the second		
50 -			Shipment: Pron	npt		S [7]	
			Place: Europe		IN		
00			Quantity 20		N		
			Currency: US d	lollar			
50 -			Unit: Drv metric	c ton unit			
			A	- 11			

Sources: https://www.asianmetal.com/Tungsten/

Share Placement

T92 advises that it has received firm commitments from a number of sophisticated investors to raise \$864,000 before costs by way of a placement of 28,800,000 new shares in the Company (each, a **New Share**) at an issue price of \$0.03 per share (**Placement**).

Non-executive director, Niv Dagan has elected to take up \$100,000 in the placement which will be subject to approval at an upcoming EGM.

The funds raised under the Placement will be used by the Company:

- to fund the acquisition of Dundee Resources Pty Ltd;
- to fund ongoing exploration costs of the Company; and
- for general working capital purposes (including to pay the cost of the Placement).

The Placement will also include the issue of 1 free unquoted option exercisable into 1 New Share (each, an **Option**) for each New Share issued under the Placement. Each Option may be exercised by the holder at any time on or before 5pm (Sydney time) on 31 December 2026 for \$0.09 per Option.

The issue of Options to investors who participated in the Placement is conditional on T92 shareholders approving the issue at the upcoming shareholders' meeting.

For managing the Placement, the Company will pay brokers a cash fee of a total of 6% of the gross funds raised under the Placement plus 3 million broker options (**Option** on same terms as above).

T92) TERRA URANIUM

Indicative timetable

Settlement date for the Placement	8 July 2025
Issue of Placement	9 July 2025
Quotation of Placement Shares on ASX	9 July 2025
General Meeting	Mid August

The above timetable is indicative only and is subject to change.

This announcement has been authorised by Andrew J Vigar, Chairman, on behalf of the Board of Directors.

Announcement Ends

2 July 2025

Competent Person's Statement

Information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Andrew Vigar who is a Fellow of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Vigar is an employee of Mining Associates and a director of Terra Uranium Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Vigar consents to the inclusion in this release of the matters based on his information in the form and context in which it appears.

Historical Exploration Results

The Competent Person, Mr Andrew J Vigar, states that the data presented here is an accurate representation of the available data and studies for the Glen Eden Project at this time. The Exploration Results reported here are from historical data as stored in the NSW DIGS Database. The company's JORC Competent Person has conducted a review of the drilling on the Glen Eden Project undertaken from 1963 to 2024 based on the available reports (JORC Table). It is the opinion of the JORC Competent Person that the work as reported by previous owners was conducted in a manner compliant with the requirements of JORC Code 2012 and the company is able to report these results for the first time under Chapter 5 of the ASX Listing Rules and JORC Code 2012.

JORC Exploration Target

The Competent Person, Mr Andrew J Vigar, states that the potential quantity and grade of the Exploration Target is conceptual in nature. Insufficient modern exploration work has been done to estimate a Mineral Resource, and it is uncertain that new infill drilling planned over the next 2 years will result in the estimation of a Mineral Resource. The target ranges quoted are based on previous exploration work, including considerable diamond drilling, reported by Carpentaria Exploration in 1964 and Amoco Minerals in 1981 and in comparison, with the recorded drill data, geological model and expected minimum economic grades.

Forward Looking Statements

Statements in this release regarding the Terra Uranium business or proposed business, which are not historical facts, are forward-looking statements that involve risks and uncertainties. These include Mineral Resource Estimates, commodity prices, capital and operating costs, changes in project parameters as plans continue to be evaluated, the continued availability of capital, general economic, market or business conditions, and statements that describe the future plans, objectives or goals of Terra Uranium, including words to the effect that Terra Uranium or its management expects a stated condition or result to occur. Forward-looking statements are necessarily based on estimates and assumptions that, while considered reasonable by Terra Uranium, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies. Since forward-looking statements address future events and conditions, by their very nature, they involve inherent risks and uncertainties. Actual results in each case could differ materially from those currently anticipated in such statements. Investors are cautioned not to place undue reliance on forward-looking statements.

T92) TERRA URANIUM

Athabasca Basin Projects

Terra Uranium holds 29 claims over 120,336 ha in the Athabasca Basin, Saskatchewan, Canada with a further 12 mineral claims totalling 60,965 hectares in the Spire & Horizon Projects under Option from ATHA. Grassroots reconnaissance exploration was conducted to identify the existence of mineral potential and initial targets at a regional scale (Figure 5 – Engler is in the north-west of the Basin, off the map to the left).

T92 remains focused on progressing its portfolio of high-value uranium exploration projects, leveraging strategic partnerships to enhance exploration efficiency while positioning the Company to capitalise on an anticipated rise in the uranium price and the growing demand for clean energy.

Figure 5. Athabasca Basin Projects

T92 TERRA URANIUM

About Terra Uranium

Terra Uranium is a mineral exploration company listed on the ASX (code T92) focused on Strategic Minerals in the low risk jurisdictions of Australia and Canada.

The Australian operations are focused on tin, silver and gold in the New England area of NSW. The core projects are the 100% owned Ottery tin and precious metals mine and the Glen Eden Tin

Tungsten Molybdenum Project between Glen Innes and Tenterfield in the New England area of NSW.

The Canadian operations are strategically positioned in the Athabasca Basin, Canada a premium uranium province hosting the world's largest and highest-grade uranium deposits. Canada is a politically stable jurisdiction with established access to global markets. Using the very best people available and leveraging our in-depth knowledge of the Basin's structures and deposits we are targeting major discoveries under cover that are close to existing production infrastructure. The Company is led by a Board and Management with considerable experience in Uranium. Our uranium exploration team is based locally in Saskatoon, Canada.

The Company holds a 100% interest in the Engler Lake, HawkRock, Parker Lake, Parker east, Rapid River, and Yurkowski Lake Projects located in the Cable Bay Shear Zone (CBSZ) on the eastern side of the Athabasca Saskatchewan, Canada. Basin. ATHA Energy Corp. have signed option Agreements to earn up to 60% of the Pasfield Project and for T92 to earn up to 70% of the Spire & Horizon Projects to the SE of the Athabasca Basin. The Projects are all close to multiple operating large uranium mills, mines and known deposits.

There is good access and logistics support in this very activate uranium exploration and production province. A main road passing between the HawkRock and Pasfield Lake Projects and to the immediate west of the Spire Project with minor road access to Pasfield Lake and the T92 operational base there. The regional prime logistics base is

T92 TERRA URANIUM

Points North located about 50km east of the CBSZ Projects, as well as a high voltage transmission line 30 km away and Uranium Mills to the east.

For more information:

Andrew J. Vigar	Justyn Steadwell		
Chairman	Joint CoSec		
andrew@t92.com.au	admin@t92.com.au		

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data (Sampling and drilling at Glen Eden Project)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple. 	 Core drilling of hole GE-1 by Carpentaria Exploration 1962. Diamond Core drilling by Amoco 1980 and 1981 holes GENSW-1 to -8 total 2430m is NQ size core 47.6mm Samples were split and assayed based on geology – from 0.5 to 3m sent for assay RC Drilling Amoco EZ 1983 10 Percussion holes 5 ½ inch diameter GEPDH-10 Samples were collected each metre and dry riffle split to 1kg, combined to 2 metres for despatch for assay and 5kg for storage RC Drilling by Moly Mines in 2006 GERC001-006 Samples were collected each metre and dry riffle split to 1kg, combined to 2 metres for despatch for assay and 5kg for storage RC Drilling by Moly Mines in 2006 GERC001-006 Samples were collected each metre and dry riffle split to 1kg, combined to 2 metres for despatch for assay and 5kg for storage Surface samples of Mineral Occurrences are referred to by ID number and are publicly available on NSW MinView. As these are historical samples, details of sampling techniques are not available and further work will be undertaken to confirm the results. Details are in the body of the report.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Core drilling of hole GE-1 by Carpentaria Exploration 1962. Diamond Core drilling by Amoco 1980 and 1981 holes GENSW-1 to -8 total 2430m Samples were split and assayed based on geology – from 0.5 to 3m sent for assay RC Drilling Amoco EZ 1983 10 Percussion holes 5 ½ diameter GEPDH 1-10 Samples were collected each metre and dry riffle split to 1kg, combined to 2 metres for despatch for assay and 5kg for storage RC Drilling by Moly Mines in 2006 GERC001-006
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC Samples collected Samples were recovered every metre and weights recorded. For diamond drill core, samples were select logged and selected intervals cut for assay.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All drilling was logged in detail for rock type, alteration, mineralisation and recovery. Original logs have been reported to the NSW Govt and referenced in the Table below on previous work.

Criteria	JORC Code explanation	Commentary
Criteria Sub-sampling techniques and sample preparation	 JORC Code explanation Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in circumstration and the sampling is representative of the in circumstration and the sampling is representative of the in circumstration and the sampling is representative of the incompletion and the sample of the sample of the incompletion and the sample of the incompletion	 Commentary Protocols are followed for handling and storage of all drill core, include highly mineralised intervals. RC samples were collected each metre and dry riffle split to 1kg and combined to 2m for despatch for assay to Amdel and 5kg for storage. Check composites sent to Comlabs each 30m Check and duplicate samples were used. Sample recovery for diamond and RC drilling is recorded and is high. The sampling type, nature and quality are appropriate for this style of mineralisation.
Quality of assay data	situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled. • The nature quality and	Soil and rockchip samples from the Glen Eden prospect were
and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Son and rockcrip samples from the Gien Eden prospect Were assayed for copper, lead, zinc, silver, molybdenum, tin, tungsten, flourine, bismuth by SGS Laboratories, Sydney, and Tetchem Laboratories, Cairns. All drill core from GENSW 1-8 was halved and assayed for copper, lead, flourine, bismuth. zinc, silver, molybdenum by Tetchem Laboratories Cairns. Material from GENSW 1 & 2 tin, tungsten, was sent to SGS Laboratories, whereas all material from GENSW 3-8 was sent to Tetchem Laboratories Cairns. Check assay was by Amdel Laboratories (Adelaide) on one in every 20 meter sample of the entire drill core Ten samples from GENSW 1 were bulked and assayed by Pilbara Laboratories (Perth) by ICP multi element scanning technique. This indicated that no potentially economic elements have passed undetected. W was assayed for. Wolframite is a mineral that contains Tungsten (Fe,Mn)WO₄. Wolframite is a solid solution, meaning it's a mixture of two minerals: ferberite (FeWO₄) and hübnerite (MnWO₄ The amount of W in the mineral is thus also variable. It is shown in the tables in this report as WO₃ (tungsten trioxide), which is a marketable W product and often used for reporting of tungsten, which comes in many forms.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 The drill intercepts are an area of historic drilling with campaigns by different companies with both Diamond Core and RC drilling showing comparable results Data has been recovered from Annual Reports, including original laboratory assay sheets, as reported to the NSW Govt. Check assays were conducted.

2 July 2025

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars were located using handheld GPS (accuracy ± 2m). Except the EZ drill-holes OPDH 1 through 6 which were on a local grid and positions are approximated (+/- 10m) Downhole survey measurements including depth, dip and azimuth were taken at nominal 30m intervals All coordinates are based on Map Grid Australia Zone 55E, Geodetic Datum of Australia 1994.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is variable due to the early stage of exploration. There is sufficient data and geological understanding for the reporting of an Exploration Target. Closer spaced infill drilling will be required for Resource Estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The mineralisation is a greisen and stockwork breccia in nature. Target for current exploration is bulk mining. The mineralisation is a pipe-like body 500m in diameter and open beyond current drilling at 400m Drill hole intercepts are down-hole intervals only Orientation of the individual structures is not possible at this early stage, thus true widths are also not possible to determined. No bias in sample widths or grades is expected.
Sample security	The measures taken to ensure sample security.	Samples transported in sealed and labelled bags to laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	The original samples are not available

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Terra Uranium Limited has a Binding Term Sheet to acquire 100% ownership of Dundee Resources Pty Ltd which holds 100% of EL9764). All claims are current and in good standing and all necessary permits for the current level of operations have been received.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Exploration over the area has been extensive by many parties over the last 60 years. A review of the extent of this exploration will an immediate priority following the close of the acquisition of

2 July 2025

JORC Code	explanation	Commentary	Commentary			
		Dundee Resources b See Table below for i	y Terra Uranium. references used			
Year	Company	Work Completed	Key Results			
2007	Moly Mines	310 soils 100m x 100m with a tighter 50m x 50m grid over the most mineralised area in Newsome's mine paddock. Ground mag survey comprising 1329 locations was also carried out on 50m spacings over a much larger area using a Unimag II proton magnetometer	Good Sn mineralisation –eluvial distribution –follow up. Mag results inconclusive due to noise from infrastructure etc			
2006	Moly Mines	24 rock samples GE005 – GE028 6 RC holes for 754m GERC001 – GERC006	Confirmed Core area, but holes only to 150m max.			
2002	New England Tin NL	Soil and rock chip sampling (orientation lines)	Limited new work			
1998	New England Tin NL	28 soils, 9 drainages, 174 rock chips GE001 – GE174	Modeled geochemistry and alteration, broad zone east-west extending over 10km and up to 5km wide. Sn has localized N-S orientation within core zone			
1988	Cyprus	244 auger and RAB samples assayed for gold	100x300m Au anomaly up to 2.42ppm . 3 samples assayed >0.1ppm Au and 5 samples assayed >250ppm As			
1983	Amoco EZ JV	Trenching 10 Perc holes GEPDH-1 – GEPDH-10 7 Perc holes (Bald Nob) BNPDH- 1 – BNPDH7	$30Mt @ 0.1\% MoS_2$, 0.08% WO ₃ , and 0.04% SnO ₂ to 300m depth, based on interpretation, vertical pipe-like body. Geological evolution and model.			
1978-1982	Amoco	Soil sampling, Rock chips, Ground magnetics, petrography, & diamond drill holes (GENSW80-1, GENSW81-2 - GENSW81-8) for 2430 m	Deep all core drilling. Defined Mo-Sn-W mineralised zone over 2 km ² in altered rhyolitic volcanics. Defined geological model based on Urad-Henderson Mo-W			
1962-1964	Carpentaria Exploration	IP, surface geochemistry, trenching, 1 drill hole GE-1	No anomalies from IP – original data not available. GE-1 ended in mineralisation on eastern edge of Core. Avg grades for entire hole 152m @ 0.06% MoS2, 0.035% WO3, 0.01% Bi and 0.012% Sn.			

(T92) TERRA URANIUM

Criteria	JORC C	ode explanation	Commentary		
DIGS	NSW No	Author and comments on	reference		
R00015167	GS1981/541	Rafferty, W 1981. Progres 1084 NSW. Pp128 Amoco	s Report April to October 1981 Glen Eden Exploration Licence Minerals Australia		
		Soil grid extensions, comp	letion of geological mapping, bench scale Met and of material from holes 2, 3,4,5 and 7		
		2,430m in 8 diamond drill	holes GENSW 1 to 8		
		Geological and metallurgic	cal model		
R0009723	GS1983/300	Scarborough BE 1983 Ass and Bald Nob NSW. EZ A	sessment of the Sn-W Potential of the Prospects at Glen Eden moco JV		
		Drilling of 10 RC holes to	100m to test for bulk open pit deposit outside of the HG core		
		7 trenches for total 210m a	at drill sites		
		GE PDH-1 to 10			
R00015964	GS1979/354	Rafferty, W. 1979 Progres NSW. For the Period April	s Report. Glenn Innes Project. Exploration Licence 1084, to October 1979. pp32		
D 0000001	004000/000	limited field work			
R00009901	GS1982/390	Licence 1084 (extended)	ss Report April to October 1982. Glen Eden. Exploration		
D00000470	004000/400	summary of pervious work			
R00006179	GS1988/166	Roxburgh B G & Joyce P J. 1988. Progress Report Period ending April 1988. Prospectin Licence Applications 321 to 326 (EL1084 Extended). Glen Eden NSW. Pp41 Cyprus Gold Australia			
		Soil Geochem only			
RT2401821	REP2024- 1821	Fulton R. Final Report on Glen Eden Project EL 8902. Oct 2019 to Oct 2024. pp25			
R00041627	GS2007/340	Moly Mines 2005. Glen Eden EL 6033. Final Report Dec 2004 to Feb 2005. pp12			
R00010681	GS1982/336	Stevens M. 1982 Relinquishment Report, Glen Eden Project, Exploration Lecence 10 NSW. Pp24			
		Includes drill results			
R00015302	GS1981/320	Nattery 1980. Request for Drilling Aid, Glen Eden Prospect, Exploration Licence 1 NSW. pp40			
		good surface maps and M	o W soil geochem		
R00010682	GS1982/337	Stevens M, 1982. Combin Exploration Licence 1084,	ed Final report and Progress Report Oct 1981 to April 1982 NSW. Pp241		
D 0000500	004004/440	excellent summary, centra	I zone 200m diameter tested to 300m depth		
R00028528	GS1964/118	Williams, BT 1964. Final R	Report - Glen Eden Prospect. NSW		
D00040005		mineralisation over an area	a 1,800ft by 500ft. Indicated tonnage to 380ft is 22.8m tons		
R00040935		Brown, RE. 1997. Mineral	Deposits of the Glenn innes 1:100,000 map sheet area. Pp20		
D00015644	CS1090/272	good summary	1091 Brogross Bapart November 1090 to April 1091 Clan		
R00015644	GS 1900/373	Eden EL 1084 NSW. Pp12	25		
Geology	Depos and st	sit type, geological setting yle of mineralisation.	 The Glen Eden prospect is characterised by an extensive zone of hydrothermal alteration with a mapped extent of approximately 1,500 m by 800 m around a 500m diameter core of hydrothermal breccias, stockworks and greisen clearly seen in the soil geochemistry for W and Mo, hosted within rhyolitic volcanics (see figure main report). The central core is a large multi-stage vein stockwork and greisen breccia body (approximately 500 m in diameter and open at 395 m depth) that includes veins and stockworks with molybdenite, cassiterite. wolframite. bismuthanite and 		

2 July 2025

(T92) TERRA URANIUM

Criteria	JORC Code explanation	Commentary
		 other minerals (see figure main report). Beyond the greisen core, a broader alteration halo consisting of sericitic, phyllic, and potassic zones extends over a significant area, indicating a potentially large mineralised system. Amoco suggested that mineralisation at Glen Eden happened in three events. First, a Colorado-style molybdenum system formed, followed by greisen mineralisation similar to the Erzgebirge type. Finally, intense brecciation occurred, typical of porphyry systems like Taronga. Each phase used existing pathways: quartz veins were used by greisen, which was later altered by brecciation. The intrusive system from which the mineralisation is sourced is not exposed at surface, nor has it been intersected in pervious diamond drilling.3D modelling of the system by Amoco confirmed this zonation and suggested that deeper untested areas might contain a large molybdenum-tungsten Urad/Henderson style deposit.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 Table of drill holes at Glen Eden Project All drill hole collars are surveyed and reported in MGA94_56 Except the 1961 drill-hole GE 1 which were on a local grid and positions are approximated (+/- 10m) There are down-hole surveys to the longer diamond drill holes.

Criteria	JORC Code explanation			Commentary						
	Hole	Туре	Length (m)	Dip	Grid	East	North	RL	Collar Azimuth	Year
	GE-1	DD	152.4	-50	MGA94_56	390032	6722280	1054.864	152.3	1962
	GENSW80-1	DD	289.4	-90	MGA94_56	389930	6722420	1053.04	360	1980
	GENSW80-2	DD	249.85	-48.5	MGA94_56	390015	6722458	1050.617	302	1980
	GENSW81-3	DD	433.8	-50	MGA94_56	390018	6722453	1051.015	122	1980
	GENSW81-4	DD	304.4	-45	MGA94_56	389798	6722407	1051.646	123	1980
	GENSW81-5	DD	394.9	-90	MGA94_56	389868	6722485	1050.124	360	1980
	GENSW81-6	DD	310.9	-90	MGA94_56	389907	6722573	1050.44	360	1980
	GENSW81-7	DD	152	-75	MGA94_56	389757	6722803	1064.996	122	1980
	GENSW81-8	DD	297.6	-50	MGA94_56	389987	6722499	1047.996	32	1980
	GEPDH1	RC	100	-70	MGA94_56	389965	6722788	1063.95	289	1983
	GEPDH10	RC	100	-70	MGA94_56	389765	6722323	1055.947	289	1983
	GEPDH2	RC	100	-70	MGA94_56	389795	6722078	1062.2	289	1983
	GEPDH3	RC	100	-70	MGA94_56	389655	6722578	1055.983	289	1983
	GEPDH4	RC	100	-70	MGA94_56	389248	6721993	1060.651	289	1983
	GEPDH5	RC	100	-70	MGA94_56	389377	6721798	1078.453	289	1983
	GEPDH6	RC	100	-70	MGA94_56	389485	6722093	1065.174	289	1983
	GEPDH7	RC	100	-70	MGA94_56	389545	6722376	1053.344	289	1983
	GEPDH8	RC	100	-70	MGA94_56	388900	6721698	1072.905	109	1983
	GEPDH9	RC	100	-70	MGA94_56	389625	6722210	1061.277	289	1983
	GERC001	RC	121	-90	MGA94_56	389861	6722514	1049.842	360	2006
	GERC002	RC	150	-90	MGA94_56	389913	6722575	1050.348	360	2006
	GERC003	RC	150	-90	MGA94_56	389911	6722580	1050.651	360	2006
	GERC004	RC	150	-90	MGA94_56	389805	6722682	1053.543	360	2006
	GERC005	RC	95	-90	MGA94_56	389809	6/22681	1053./29	360	2006
	GERC006	RC	88	-90	MGA94_56	389859	6/2251/	1049.862	360	2006
	GEWDDH1	DD	20	-90	MGA94_56	390073	6722422	1051.374	360	1979
	GEWDDH2		14	-90	MGA94_56	390038	6722262	1054.917	360	1979
	GEWDDH3		14	-90	MGA94_56	390107	6722360	1050.825	360	1979
	GEWDDH4	00	32	-90	MGA94_56	390092	0722447	1050.605	300	1979
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 			 Exploration results have been reported uncapped. Higher grade intervals within larger composited intervals are clearly noted as such. Cut-off grade for reporting is 500ppm Wequ Metal equivalents have been calculated as follows. Metal Equivalents have been calculated for W as one of the most valuable metals present and for use in cut-off grade selection and Sn for comparison with nearby tin deposite but not in reporting. Tungsten is the focus on this project although it is true that the moly grade contributes more. I is the company's view that tungsten is a Critical Mineral in the current volatile political climate and that its vale relative to Moly will change significantly in the near future. 						
					The individual grades for Mo, W and Sn are included in the metal equivalent calculation,					

Criteria	JORC Code explanation	Con	nmentary					
		 The commodity prices for all metals as sourced from public date The metallurgical recoveries for all metals based on actual metallurgical test work carried out by Amoco in 1981. Methods have not changed significantly since that time, It is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold, the calculation formulae used are tabulated below, using a nominal example. 						
	Glen Eden – NSW	Sn		W		Mo low	(could be too ver)]
	Nominal 30,000,000		0.04%		0.08%		0.10%	
	Price per tonne	\$ 3	30,000	\$	40,000	\$	55,000	
	met recovery from Amoco	•	58%	•	66%	•	86%	_
	price met factor Relative value/t	\$ 1	6.96	\$	26,400	\$	47,300	-
		φ	0.90	φ	21.12	φ	47.50	
	sn equ		1		1.5172		2.7184	
	0.43%		0.04%		0.12%		0.27%	
	Wequ		0.6591		1		1.7917	-
	0.29%		0.03%		0.08%		0.18%	-
	Mo equ 0.16%		0.3679		0.5581		0 10%	
	0.10% 0.01% 0.04% 0.10% The following is summarised from Rafferty W & Roxburgh B, 1981 and based on the diamond core drilling done by Amoco of hole GENSW-1. The sample used was a composite from, and is representative of, the entire length of the hole. It shows good recoveries for W, Sn and Mo. It is expected that the Bi will report to the Mo concentrate. Mineralogy: Polished thin section, and TEM study of the bulked composite (head and concentrate samples) confirms the known ore mineralogy: molybdenite, wolframite, scheelite, native-bismuth, cassiterite, chalcopyrite, sphalerite, pyrite. The ore mineral grains show excellent liberation from each other and from the associated gangue.							
	Metallurgical Evaluated:							
	Three methods were evaluated:-							
	1. Gravity separation (for wolframite, cassiterite recovery}							
	2. Gravity separation with magnetic separation (for wolframite)							
	3. Froth flotation (primarily for molybdenite recovery but efforts were also made to recover cassiterite and wolframite)							
	This work was of a preliminary nature with no effort made to optimise the operating parameters.							
	Molybdenum Recovery: Excellent preliminary flotation results were achieved producing a concentrate containing 1.8% molybdenum representing 86% recovery . This compares very							

Criteria	JORC Code explanation	Commentary					
	favorably with operating plants throughout the world where recoveries range from 75-85% molybdenite producing concentrates grading from 1-3% molybdenum.						
	Tin-Tungsten Recovery: Efforts were made to produce separate cassiterite and wolframite concentrates. However the results are combined and expressed as a ·bulk tin-tungsten concentrate. The recoveries were high - 58% tin, 66% tungsten , but the concentrate grades very low - 0.03% tin, 0.12% tungsten.						
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the 	 The mineralisation is a greisen and stockwork breccia pipe complex in nature. Target for current exploration is bulk mining. The mineralisation is a pipe-like body 500m in diameter and open beyond current drilling at 400m Drill hole intercepts are down-hole intervals only Orientation of the individual structures is not possible at this early stage, thus true widths are also not possible to determined. 					
	down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').						
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A layout map of the drilling is included in the body of this release. A Key Section is also shown. 					
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All significant geochemical data from the drill program in the core target zone is reported above cut-off grades. Meterage below-cut-off is also reported. 					
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Exploration over the area has been extensive by many parties over the last 60 years. Review of the extent of this exploration will an immediate priority following the close of the acquisition of Dundee Resources by Terra Uranium. Metallurgical study work is summarised from Rafferty W & Roxburgh B, 1981 in the Body of the report and based on the diamond core drilling done by Amoco. 					
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A full exploration program will be developed following the thorough analysis of past work. Focus will be on in-fill drilling to better define mineable higher grade zones, and at depth for extensions. This program is expected to take 2 years 					