

ASX Announcement 1 July 2025

Nico Young - Mineral Resource Review

One of Australia's largest contained Nickel and Cobalt resources

Nico Young – NSW's Largest Nickel and Cobalt Deposit

 The Nico Young deposit has an estimated Mineral Resource of 167.8 Mt @ 0.59% Ni and 0.06% Co at a 0.6% NiEq cut-off, classified in compliance with JORC (2012), representing contained metal of approximately 1Mt of nickel and 100 kt of cobalt^{1,1}.

Table 1: Nico Young 2017 Inferred Resource at a 0.6% NiEq cut-offⁱ

Tonnes (Mt)	Ni grade (%)	Co grade (%)	Contained Ni metal (Kt)	Contained Co metal (Kt)
167.8	0.59	0.06	996.7	96.6

- The Administrator of Jervois Global Limited (Administrators Appointed In Liquidation "Jervois") relinquished the Nico Young exploration licence, creating an opportunity for Legacy Minerals to peg this nationally significant deposit under Exploration Licence application ELA6901.
- There are no liabilities, encumbrances or private royalties associated with the Nico Young deposit, presenting the Company with exceptional optionality and leverage to Ni and Co prices.

About Jervois Global Ltd and Nico Young

- Global mining company Jervois held the Nico Young deposit as an early flagship asset in its portfolio as it grew to a \$1B market capitalisationⁱⁱ.
- Jervois recently entered into USA Chapter 11 Bankruptcy and its 100% subsidiary, Nico Young Pty Ltd, relinquished the Projectⁱⁱⁱ.

Nickel and Cobalt in NSW

- There are four major nickel-cobalt/scandium deposits in central NSW Nico Young (LGM:ASX), Sunrise (Sunrise Energy Metals, SRL:ASX), Platina (Rio Tinto, RIO:ASX), and Melrose (Rimfire, RIM:ASX).
- Sunrise Energy Metals is Co-Chaired by Robert Friedland (~11% owner^{iv}) and has a Measured and Indicated Resource of 160Mt at 0.56% Ni, 0.09% Co, and 71pppm Sc (0.35% NiEq cut-off)^v.

Highly Leveraged to the Nickel and Cobalt Price

• Currently at lows in the commodity price cycle, nickel-cobalt is oversupplied due to a flood of Chinese owned refinery product from Indonesia and the Philippines, significantly impacting markets.

Strategy to Deliver Shareholder Value

- Legacy Minerals is actively looking to secure a partner for the Project. With its profile as one of Australia's largest nickel deposits, it immediately presents a significant opportunity for both national and international parties looking to secure a strategic deposit of critical minerals nickel and cobalt.
- The Company will minimise holding costs and preserve the asset until market conditions improve to realise value. Minimal holding costs are to be funded from Legacy's existing cash reserves.
- The Drake, Thomson, and Black Range Projects remain the Company's core focus, supported by its portfolio of joint ventures with Newmont, S2 Resources, Helix, and EarthAi.

1 See JORC Code and 'Endnotes' on page 37 for references

Page 1 of 37 | ABN 43 650 398 897 3/202 Russell Street Bathurst, 2795 www.legacyminerals.com.au

Legacy Minerals Holdings Limited (ASX:LGM, "the Company". "Legacy Minerals") is pleased to announce the results of a review of the Nico Young cobalt-nickel laterite project in central New South Wales by ERM Australia Consultants Pty Ltd (ERM), including a JORC Table, and Competent Persons Statement as required in the ASX Release dated 16 May 2025 "Retraction Announcement 13 May 2025". ERM's review confirms the veracity of previous work completed in 2017 for the project's previous owners, Jervois Global Limited (Administrators Appointed – in Liquidation - "Jervois").

Management comment – Legacy Minerals CEO & Managing Director Christopher Byrne said:

"A free-peg, representing a zero-dollar acquisition cost of a near 1-million tonne, nationally significant, JORC 2012 compliant, nickel-cobalt deposit is a great, long-term opportunity for our shareholders. Securing an exploration license application over the Nico Young Nickel-Cobalt Project represents a highly strategic, counter-cyclical move with immense upside.

Nico Young is the largest contained nickel deposit in NSW, which also hosts other major Ni-Co deposits including the nearby Robert Friedland-led Sunrise Energy Metals. Given the current depressed market conditions for nickel and cobalt, Legacy Minerals is leveraging this low-cost, counter-cyclical approach to position the Company to benefit from future strengthening in the nickel market through its 100% owned subsidiary Nickel Mines Pty Ltd.

The NiCo Young deposit is also known to contain zones of enriched scandium which have not been historically reported. Initiatives are underway to ascertain if these scandium levels are of significance and could potentially be incorporated into a viable development plan. Likewise historical samples were not tested for platinum group metals and steps are underway to reassess these intersections.

This diversification adds optionality to the Company's overall asset base that ensures that Legacy has exposure to a range of precious metals and critical minerals for battery production. With our gold, copper, and silver focus at the Drake, Thomson, and Black Range Projects, and joint venture projects Bauloora and Glenlogan being explored by joint-venture partners Newmont and S2 Resources, shareholders have significant exposure to a multi-commodity, multi-project discovery and development opportunity.

Nico Young also allows Legacy Minerals to leverage the development work previously undertaken by Jervois Global, estimated at over \$25 million, including drilling campaigns and environmental studies, thereby reducing initial assessment costs and accelerating project advancement."

Project Overview

The project is located approximately 300 km west of major coastal ports in Sydney and Wollongong. The project is also favourably located geographically due to its proximity to existing rail and road infrastructure within 15 km of the project site, the Cooper Basin gas pipeline and regional population centres.

The Nico Young deposit is currently amongst the four largest Ni-Co deposits identified in NSW, which also include Sunrise (Sunrise Energy Metals, SRL:ASX), Platina/Burra (Rio Tinto, RIO:ASX), and Melrose (Rimfire, RIM:ASX) (Figure 1).

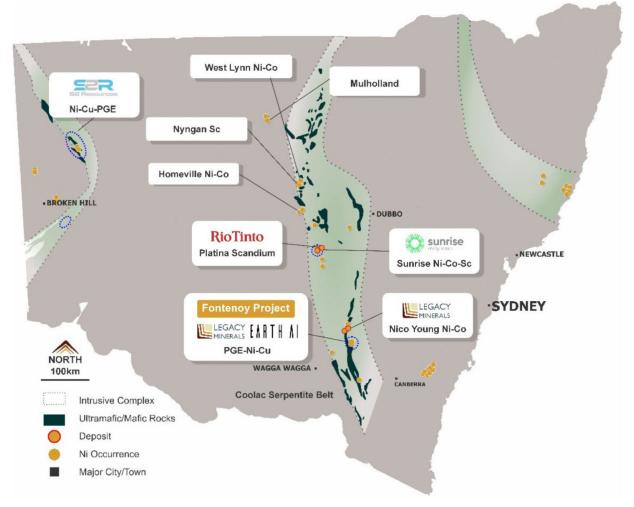
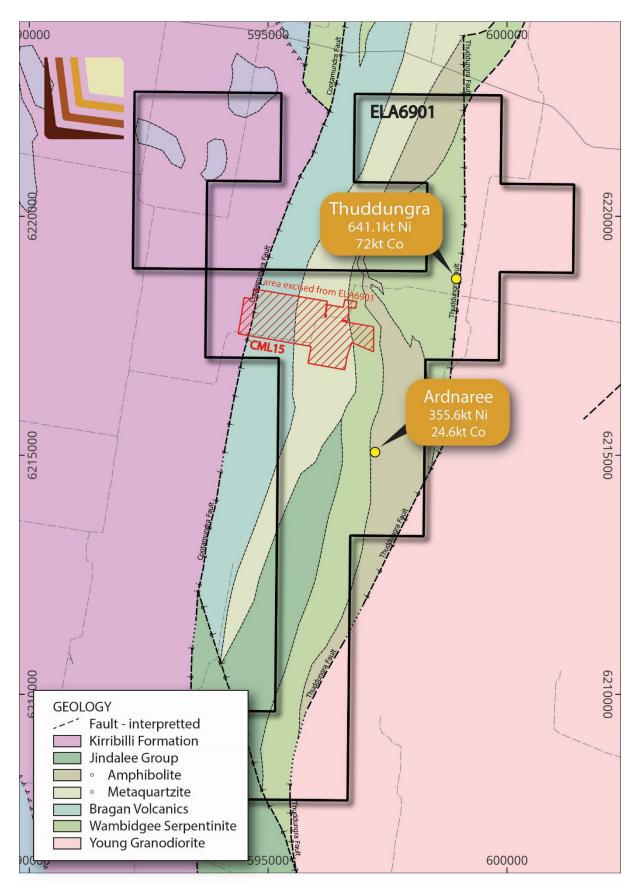


Figure 1: Location of major nickel-cobalt/scandium deposits and occurrences in NSW

The Nico Young project was secured by Legacy in May 2025 following relinquishment of exploration tenure covering the project by the Administrators of Jervois. This enabled Legacy to apply for an exploration licence on untenured land containing the deposit as exploration licence application (ELA 6901). The project was secured with no associated liabilities, encumbrances or private royalties.

Nickel and cobalt are currently experiencing declining prices since early 2023, with the market experiencing oversupply due to expansion of lateritic nickel mining and refined metal production from Indonesia and the Philippines.


Mineral Exploration Tenure

ELA6901 was lodged by Legacy subsidiary Nickel Mines Pty Ltd on 30 April 2025, covering an area of 46 units about 30 km southwest of Young, near Wallendbeen NSW (Figure 2).

Jervois held the project under two Mineral Exploration Licences: EL5527 (Ardnee) and EL EL5571 (Thuddungra). The two licences were relinquished by Jervois' Administrators who placed most value on the company's North American assets.

Figure 2: Plan view map of ELA6901 (black outline) over solid geology interpretation. CML15 (red area) is excised from ELA6901, an active magnesite mine, and is not held by Legacy Minerals.

Geology and Geological Interpretation

Mineralisation within the Nico Young project area is hosted by Ordovician metasedimentary and mafic metavolcanics and mafic intrusives assigned to the Jindalee Beds, close to the contact with an extensive Silurian granodiorite complex. Mineralisation is interpreted to be associated with induration of lateritic regolith by leached fluids from this granodiorite, resulting in enrichment of nickel, cobalt and scandium.

Two deposits have been identified within the project area: Ardnaree and Thuddungra.

The Ardnaree deposit extends over 9km along strike and up to 700m across strike, with mineralisation present from surface to a maximum vertical depth of 56m. Average mineralisation thickness is 13m, with nearly 100% of mineralisation above 50m depth. The Ardnaree deposit extends over 9km along strike and up to 700m across strike, with mineralisation present from surface to a maximum vertical depth of 56m. The average mineralisation thickness of mineralisation is 13m, with nearly 100% of mineralisation thickness of mineralisation is 13m, with nearly 100% of mineralisation thickness of mineralisation is 13m, with nearly 100% of mineralisation above 50m depth.

The Thuddungra Deposit extends 5.9km along strike up to the northern boundary of ELA6901 and up to 715m across strike, with mineralisation present from 6m below the topography surface to a maximum vertical depth of 98m. The average mineralisation thickness is 22m, with 79% of mineralisation above 50m depth.

The laterite profile developed within the deposit area typically comprises hematitic clay and limonitic clay overlying saprolite, which in turn overlies a weathered serpentinite. Scandium is concentrated in the upper layers, followed by cobalt enrichment within limonitic clay and saprolite, and then nickel enrichment within the saprolite and weathered serpentinite.

Mineral Resource Estimate

Jervois reported an Inferred Mineral Resource estimated to comprise

• 167.8 Mt @ 0.59% Ni and 0.06% Co (using a 0.6% Ni equivalent cut-off),

- including a higher grade zone of
 - 42.5 Mt @ 0.80% Ni and 0.09% Co (using a 1.0% nickel equivalent cut-off) (Table 2).

Table 2: Nico Young Inferred Mineral Resource at 0.6% and 1.0% Ni equivalent cut-off grade

Prospect	Tonnes	Ni grade	Co grade	Contained Ni	Contained
	(Mt)	(%)	(%)	(kt)	Co (kt)
0.6% Ni equiv. c	ut-off				
Ardnaree	53.6	0.66	0.05	355.6	24.6
Thuddungra	114.3	0.56	0.06	641.1	72.0
Total Nico	167.8	0.59	0.06	006 7	06.6
Young	107.8	0.59	0.06	996.7	96.6
Including higher	grade mineralisa	ation at 1.0% Ni I	Equiv. cut-off		
Ardnaree	14.5	0.88	0.07	127.6	10.3
Thuddungra	27.9	0.76	0.10	211.2	27.7
Total Nico	42.5	0.80	0.09	338.8	38.0
Young	42.3	0.00	0.09	330.0	20.0

Source: Jervois Mining ASX announcement, 22 Nov 2017, reviewed by ERM June 2025

The Mineral Resource Estimate was prepared by Geostat Services Pty Ltd ("Geostat") and independently audited by Snowden Mining Industry Consultants Ltd ("Snowden") for Jervois. The estimate was announced by Jervois in November 2017 (Jervois, 2017a, Jervois, 2017b). The Mineral Resource estimate was classified and reported in compliance with the JORC Code 2012 edition (JORC,

2012). Work associated with an updated MRE was reported in June 2018 (Jervois, 2018), in a PFS study progress announcement.

Previous Work

Since discovering the deposit in the late 1990s Jervois completed numerous studies involving drilling, various hydrometallurgical and pyrometallurgical process routes. The Nico Young deposit also contains variable levels of scandium. Initiatives were in progress to ascertain if these scandium levels could be practically incorporated into a viable development plan. Likewise historical samples were not tested for platinum group metals (PGE), and an opportunity remains to reassess their potential presence and incorporation in the project scope.

Jervois commenced a prefeasibility study for the project in 2018. The results of a Preliminary Economic Assessment (PEA) for Nico Young, intended to help attract a partner in the development of the project, were released in May 2019 (Jervois, 2019).

Jervois reported investment of more than A\$20 million in exploration of the Nico Young project in August 2023 (Jervois, 2023).

Both scandium and PGE potential are being actively evaluated at the nearby Sunrise and Burra projects by their respective owners (SRK, 2018) (Rio Tinto, 2023).

An extensive collection of detailed technical reports submitted by Jervois for EL5527 and EL5571 are available through the NSW Government's DiGS website (NSW Government, 2021). Legacy are in the process of securing comprehensive data for the project held by Jervois.

Drilling and Sampling

Several drilling campaigns were completed by Jervois between 1998 and 2014. At the Ardnaree deposit, drillholes were drilled on a total of 30 drill sections with drill spacing ranging from 90m to 650m along strike, and averaging 100m across strike. At the Thuddungra deposit, drillholes were drilled on a total of 18 drill sections with drill spacing ranging from 200m to 420m along strike, and averaging 100m across strike. All holes were drilled vertically, which is perpendicular to the overall trend of mineralisation within the laterite profile. Approximately 63% of all drilling used aircore (AC) techniques. Some 35% of drillholes were completed using reverse circulation (RC) drilling, and three drillholes were completed using triple tube diamond (DD) drilling.

The locations of all drill holes were accurately surveyed using differential GPS equipment and are considered to be accurate.

AC drillholes with diameters of 85 mm or 100 mm were sampled at 1 m intervals downhole. RC drillholes were drilled using 100 mm or 127 mm face sampling hammers, with samples collected at 1.0 m downhole intervals. Triple tube HQ (HQ3, 61.1 mm) drill core was also sampled at 1.0 m intervals, with quarter core submitted for analysis and the remaining core retained for future resampling and reference.

Samples were split using riffle splitters to provide manageable. homogeneous samples for assay. Sample residues were retained for reference. Wet samples were grab sampled to obtain material that was air dried prior to being split and prepared for analysis.

Quality assurance measures, including standards, blanks and field duplicate samples were used to monitor analytical data precision and accuracy. One in 20 sample pulps were sent to an independent laboratory for verification of initial assay results.

Sample Analysis

Sample preparation was performed by ALS, Orange. Prepared sub-samples were sent to ALS Brisbane for analysis. Samples from pre-2004 drillholes were analysed for Ni and Co using a variety of sample digests and AAS or ICP analytical methods. Approximately half of these samples were also analysed for Sc using ICP-OES.

Drill holes completed between 2004 and 2007 were analysed for Ni and Co using a four-acid digest and ICP-OES.

Drillholes completed in 2008 were analysed for a suite of elements including Ni, Co, major element oxides (SiO₂, Al₂O₃, Fe, MnO, MgO, CaO, K₂O, Na₂O, TiO₂ and P₂O₅) and Cr₂O₃. Samples from drillholes completed during and after 2014 were analysed using a four acid digest and multielement ICP-OES methods.

Bulk densities were assigned based on lithology, using average values for measurements obtained from diamond drill core for lithologies identified in the deposit.

Mineralisation Characterisation

The project's MRE comprises approximately 25% limonite, 50% saprolite and 25% weathered serpentinite. The three mineral types were used to establish domains for mineral resource estimation.

Mineral Resource Estimation

A block model based on 150 m (N) x 50 m (E) x 2 m (RL) cells with sub-blocking to 75 m (N), 25 m (E) and 1 m (RL) cells was used for Mineral Resource estimation (MRE). Samples were composited to 1.0 m downhole lengths and flagged with the lithology in which they occurred. Spatial continuity was assessed using variography. Ni and Co grades were estimated using Ordinary Kriging. Grade capping was not necessary due to the low coefficients of variation observed in each lithology and a lack of outlier values in assay data.

Mineral Resource Classification

Mineral Resource Estimates were classified using a combination of several criteria, including drill hole spacing, lithology, quality assurance results for analytical data and confidence in mineralisation and grade continuity.

All estimated Mineral Resources were classified as Inferred Resources.

Mineral Resource Reporting

Mineralisation forming the Nico Young deposit has been reported at a 0.6% Ni equivalent cut-off that considers both Ni and Co analytical results and is considered a suitable cut-off for distinguishing mineralisation with Reasonable Prospects for Eventual Economic Extraction (RPEEE) from low grade mineralisation that does not satisfy the definition of a Mineral Resource specified in the JORC Code (JORC, 2012).

The figure of 0.6% Ni equivalent is based on an empirical assessment of the value of mineralisation, preliminary mining and processing costs and expected metallurgical recoveries for a project at a relatively early stage of development that has been assessed to merit further, more detailed evaluation. The estimate is not the basis of a detailed cutoff grade analysis that will be completed as confidence in the project's Mineral Resource increases and project studies become increasingly focussed and detailed.

Reasonable Prospects for Eventual Economic Extraction Discussion

Reasonable prospects for economic extraction are based on the estimated value of nickel and cobalt present in mineralisation intersected by drilling. Examination of drilling data shows that this

corresponds with the boundaries between significantly higher- and relatively lower grade mineralisation that is also expected to be distinguishable visually

Other Modifying Factors

Determination of other modifying factors is at an early stage and will be addressed during drilling required to improve confidence in the publicly reported Indicated Mineral Resource prepared for Jervois.

Metallurgical Testing

Testwork completed by Jervois included:

- geometallurgical characterisation
- determination of acid-soluble nickel and cobalt contents
- acid consumption characteristics
- heap leach testwork
- agglomeration and hydrodynamic characterisation

The studies were designed to develop a flowsheet based on technically demonstrated processes and process technology that have been applied commercially for the production of battery grade nickel sulphate and cobalt sulphate for other projects. Testwork was completed by specialist metallurgical laboratories in both Australia and USA (Jervois, 2019).

Mining and Metallurgical Parameters and Modifying Factors

Studies completed for the Nico Young project to date assume that mineralisation will be mined using low cost, shallow-open cut techniques, with no requirement for blasting and processing of ore to recover Ni and Co to a product at site. These studies are at an early stage. Jervois favoured Ni and Co recovery using heap leaching methods.

The amenability of the Ni-Co mineralisation to physical beneficiation has been investigated by previous laboratory studies involving crushing, wet screening, sizing, heavy-liquid and magnetic separations. These studies showed that cobalt and nickel grades could be increased but this would be at the expense of rejecting a significant portion of the feed. Testwork reported by Jervois confirmed the underlying assumptions that high pressure acid leach (HPAL), used widely in lateritic Ni-Co ore processing, would extract most of the Ni and Co present, consume less acid and leave iron largely in the solid residue. Direct Acid and Heap Leach were also shown to be suitable but consumed more acid, extracted less nickel and cobalt, and more iron than HPAL extraction.

Legacy considers heap leach Ni-Co recovery to be less energy intensive and lower capital cost than alternative HPAL and Direct acid Leach processes. Column-leach tests undertaken by Jervois on a weathered serpentinite extracted between 75% and 80% of both nickel and cobalt. Heap leach has also been shown to deliver scandium (Sc) recoveries exceeding 80%.

Further studies will be required to determine the most appropriate ore processing option for the project. Legacy proposes that potential exists for commercial scale heap leach Ni and Co recoveries of between 75% and 80%.

Mining Studies

The progress of a preliminary mining study for the project was reported by Jervois in 2019 (Jervois, 2019) based on conventional truck and shovel mining with little or no blasting. Ore would be transported to a central leach pad or low-grade stockpiles. Progressive backfilling of the open pit is planned to eliminate the need for ex-pit waste dumps. The mine plan, completed for the project's PEA, used both Indicated and Inferred Mineral Resources, with Inferred Resources representing the majority of the mined tonnes.

An Ore Reserve for the project has not been prepared and would require further drilling to improve the classification of the project's MRE.

Project Strengths, Weaknesses, Opportunities and Threats

Strengths, weaknesses, opportunities and threats affecting the Nico Young project are examined in the following table.

Table 3: Nico Young Deposit Strengths	, Weaknesses, Opportunities and Threats
Table 5. Nico Toung Deposit Strengting	, weaknesses, opportunities and inteats

Strengths	Weaknesses
StrengthsLow sovereign risk jurisdiction with establishedlaws and regulations governing access to landfor exploration and mineral resource projectdevelopment.History of mineral resource development andmining throughout the state.Close proximity to regional population centresable to provide support engineering andlogistical services for the project, and a mineworkforce with relevant skills.Access to road, rail, water, electrical, naturalgas and communications infrastructure.Low retention costs, providing an opportunityfor Legacy to wait for more favourable marketconditions before incurring expenditurerequired to progress the project furthertowards development.Innovative mining concept utilising placementof waste rock in mined voids to remove theneed for ex-pit waste dumps and optimiserehabilitation and closure costs.Focus on established metal recoverytechnologies with the objective of producingbattery-grade nickel sulphate and cobaltsulphide products.Produce nickel and cobalt expected to meet EUMinerals Passport requirements and securebroad market access.Counter-cyclical conditions favoured Legacy'sability to secure the project.Positive, intermediate to long-term demandoutlooks for both nickel and cobalt.Substantial improvements in lateritic Ni-Co oreprocessing technologies in recent years thathave resulted in laterites replacing sulphidemineralisation as the p	Project data needs to be recovered from NSW Government and other sources to facilitate a detailed review of work completed by previous explorers. Competition from nickel and cobalt laterite mining and processing operations in Asia, including Indonesia and the Philippines. Relatively low nickel and cobalt prices, reflecting a low point in cyclical markets. The project is at a relatively early stage of development with an Inferred Mineral Resource, early metallurgical studies that have confirmed that several processing flowsheets could deliver technically and economically viable options and preliminary analysis of likely cutoff grades and modifying factors for use in Ore Reserve estimation. This is a normal stage in the development of mining projects.

Advanced project with conceptual mining, metallurgical process design, geotechnical and water management studies commenced.	
Opportunities	Threats
Potential to identify additional critical metals in Nico Young mineralisation, including PGE and scandium. Potential for further exploration to identify additional mineralisation forming a basis for future extension of the project's mineral resource. Adoption of heap leach technology for nickel, cobalt (and scandium) recovery with potential to develop a mine with highly competitive operating costs. Opportunity to monitor and implement innovative, fit for purpose, mining technologies including autonomous mining and haulage equipment to reduce costs and enhance safety.	Recent history of opposition to new mineral resource developments in New South Wales, in part associated with activist activity and with Federal Government decisions related to environmental approvals.

Conclusions

Legacy has secured a significant Ni-Co deposit with extensive previous work that has the potential to reduce the timeframe required for permitting and development of the project. The project is 100% held by Legacy and free of royalties and other encumbrances.

ERM considers the approach followed by previous owners to evaluation of the Nico Young deposit to be generally suited to global resource estimation of a Ni-Co laterite deposit at a relatively early stage of development.

The Mineral Resource estimate for the project is considered by ERM to be likely to be robust. Classification of the estimate as an Inferred Resource points to a relatively low level of confidence in the estimate that will be improved by further studies and improved approaches to future Mineral Resource evaluation work and studies. These measures will include:

- statistical demonstration of the compatibility of data provided by different drilling methods, sampling strategies and analytical schemes
- assessment of potential mining operations
- detailed review of mineral processing and metallurgical methods
- improvement in nickel equivalence estimation using a combination of commodity price, metallurgical recovery and refining cost information
- additional drilling required to increase confidence in the project's Mineral Resource estimate, required to support definition of Ore Reserves by applying modifying factors specific to the Nico Young deposit
- Identification of options in each of these areas will enhance the knowledge required to support material project development decisions.

Prevailing low Ni and Co prices are an incentive for Legacy to maximise value by completing a work program sufficient to retain project tenements in good standing with the NSW government and seek a partner to participate in development of the project when cyclical commodity prices improve.

Andrew Waltho, ERM Consulting Director, Mining Transactions and Corporate Advisory in ERM's Technical Mining Services team has the required qualifications and experience to assume Competent Person responsibilities set out in the JORC, (2012) for the project.

A JORC Table 1 commentary on the exploration and MRE for the project accompanies this announcement.

Bibliography

- Jervois. (2017a, November 20). NiCo Young Cobalt-Nickel Laterite: Updated Mineral Resource. Retrieved from Announcements - Australian Securities Exchange (ASX): https://announcements.asx.com.au/asxpdf/20171120/pdf/43pck3npm8xhsb.pdf
- Jervois. (2017b, November 22). *NiCo Young Cobalt-Nickel laterite: Additional Information*. Retrieved from Australian Securities Exchange (ASX): https://announcements.asx.com.au/asxpdf/20171122/pdf/43pgtl2g2whfwy.pdf
- Jervois. (2018, June 22). Jervois Mining provides progress update on Nico Young PFS. Retrieved from ASX: https://announcements.asx.com.au/asxpdf/20180622/pdf/43vywt6wx5l8t1.pdf
- Jervois. (2019, May 24). Positive Preliminary Economic Assessment for Nico Young and M2 Cobalt Merger Update. Retrieved from ASX: https://announcements.asx.com.au/asxpdf/20190524/pdf/445c32x3t3yh3c.pdf
- Jervois. (2023, August 7). Jervois, building a leading independent cobalt and nickel company. Diggers and Dealers Kalgoorlie presentation. Retrieved from ASX: https://announcements.asx.com.au/asxpdf/20230807/pdf/05sd36rgdhl169.pdf
- JORC. (2012, December 20). Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code) 2012 edition. Retrieved from JORC: https://www.jorc.org/docs/JORC_code_2012.pdf
- NSW Government. (2021). *Reports, Publications, Geotechnical*. Retrieved from DiGS: https://search.geoscience.nsw.gov.au/
- Rio Tinto. (2023, April 28). *Rio Tinto acquires high-grade scandium project in Australia*. Retrieved from Rio Tinto: https://www.riotinto.com/en/news/releases/2023/rio-tinto-acquires-high-gradescandium-project-in-australia
- SRK. (2018). Sunrise Nickel Cobalt Project, New South Wales, Australia NI 43-101 Technical Report. Perth: unpublished report, SRK Prohect CTQ002 for Clean TeQ Holdings Limited by SRK Consulting (Australia) Pty Ltd.

SIGN UP TO LEGACY MINERALS' INTERACTIVE INVESTOR HUB **ASX: LGM**

Approved by the Board of Legacy Minerals Holdings Limited.

For more information:

Investors:	Media:
Chris Byrne	Nicholas Read
CEO & Managing Director	Read Corporate
chris.byrne@legacyminerals.com.au	nicholas@readcorporate.com.au
+61 (0) 499 527 547	+61 (0) 419 929 046

DISCLAIMER AND PREVIOUSLY REPORTED INFORMATION

Information in this announcement is extracted from reports lodged as market announcements referred to above and available on the Company's website <u>https://legacyminerals.com.au/</u>. The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

This announcement contains certain forward-looking statements. Forward looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside of the control of Legacy Minerals Holdings Limited (LGM). These risks, uncertainties and assumptions include commodity prices, currency fluctuations, economic and financial market conditions, environmental risks and legislative, fiscal or regulatory developments, political risks, project delay, approvals and cost estimates. Actual values, results or events may be materially different to those contained in this announcement. Given these uncertainties, readers are cautioned not to place reliance on forward-looking statements. Any forward-looking statements in this announcement reflect the views of LGM only at the date of this announcement. Subject to any continuing obligations under applicable laws and ASX Listing Rules, LGM does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcements in this announcements in this announcement is statements in this announcement statements in this announcement statements in this announcement continuing obligations under applicable laws and ASX Listing Rules, LGM does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement to reflect changes in events, conditions or circumstances on which any forward-looking statements is based.

COMPETENT PERSON'S STATEMENT – NICO YOUNG

The information in this report that relates to Exploration Results and Mineral Resource estimation and reporting is based on information reviewed and critically assessed by Andrew Waltho BAppSC (Hons), FAusIMM, FAIG, RPGeo, FGS, Professional Member SME, GAICD. Mr Waltho is an employee of ERM Australia Consultants Pty Ltd (ERM) of whom Legacy Minerals Holdings Limited (Legacy) is a client. Neither Mr Waltho nor ERM have interests in Legacy beyond the scope of ERM's current consulting engagement.

Mr Waltho has sufficient experience in the exploration, evaluation and Mineral Resource estimation, which is relevant to the style of mineralisation and type of deposit under consideration and satisfies the requirements of a Competent Person specified by the JORC Code (2012). Mr Waltho consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

COMPETENT PERSON'S STATEMENT – LEGACY MINERALS PORTFOLIO

The information in this Report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Thomas Wall, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Wall is the Technical Director and a full-time employee of Legacy Minerals Pty Limited, the Company's wholly-owned subsidiary, and a shareholder of the Company. Mr Wall has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australaian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Wall consents to the inclusion of the matters based on this information in the form and context in which it appears in this announcement.

About Legacy Minerals

Legacy Minerals is an ASX-listed public company that has been exploring gold, copper, and base-metal projects in NSW since 2017. The Company has ten projects that present significant opportunities for shareholders.

Au-Ag Black Range (EL9464, EL9589)	Cu-Au Drake (EL6273, EL9616, EL9727, ALA75)	
Extensive low-sulphidation, epithermal system with	Large caldera (~150km ²) with similar geological	
limited historical exploration. Epithermal occurrences	characteristics to other major pacific rim low-sulphidation	
across 30km of strike.	deposits.	
Cu-Au Rockley (EL8926) Prospective for porphyry Cu-Au and situated in the Macquarie Arc Ordovician host rocks with historic high- grade copper mines.	Au-Cu (Pb-Zn) Cobar (EL9511) <u>Helix JV</u> Undrilled targets next door to the Peak Gold Mines and along strike of the CSA copper mine.	
Au-Ag Bauloora (EL8994, EL9464) <u>Newmont JV</u>	Au Harden (EL9657) <u>Hilltops JV</u>	
One of NSW's largest low-sulphidation, epithermal	Substantial historical gold production from two high-grade	
systems with a 27km ² epithermal vein field.	and poorly tested orogenic systems.	
Cu-Au Glenlogan (EL9614) <u>S2 Resources JV</u>	Au-Cu Fontenoy (EL8995) <u>Earth AI JV</u>	
Untested porphyry search space located 55kms from	A highly prospective and underexplored area for PGE, Ni,	
Australia's largest porphyry complex, Cadia Valley.	Au and Cu mineralisation with significant drill intercepts.	
Cu-Au Thomson (EL9190, EL9194, EL9728) A new and unexplored Intrusion-related gold and copper system search space with numerous 'bullseye' magnetic and gravity anomalies that remain untested.	Ni-Co Nico Young (ELA6901) One of the largest nickel deposits in Australia with significant counter-cyclical exposure.	
NSW	SON Boda COBAR DRAKE Cadia Cadia ROCKLEY Cowal GLENLOGAN FONTENOY BAULOORA BLACK RANGE	

Figure 3. Location summary of Legacy Minerals' Projects in NSW, Australia, and major mines and deposits

SIGN UP TO LEGACY MINERALS' INTERACTIVE INVESTOR HUB

Appendix 1 JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling	Nature and quality of sampling	Aircore drilling was used to obtain 1m drill chip
techniques	(e.g. cut channels, random	samples from which a 1-2 kg sample was
	chips, or specific specialised	collected for submission to the laboratory for
	industry standard	analysis. Occasional 2m and 5m composite
	measurement tools appropriate	samples were also compiled from which a
	to the minerals under	sample was collected for laboratory
	investigation, such as down	submission.
	hole gamma sondes, or	Diamond drillholes used triple-tube techniques
	handheld XRF instruments, etc).	and were sampled at predominantly 1m
	These examples should not be	intervals, with quarter core splits sent to the
	taken as limiting the broad	laboratory.
	meaning of sampling.	Samples from each drill interval were collected
	Include reference to measures	in a cyclone and split using a riffle splitter. Wet
	taken to ensure sample	samples were grab sampled at the drill site,
	representivity and the	then dried and split prior to preparation for
	appropriate calibration of any	analysis.
	measurement tools or systems	Several drill campaigns were conducted, and
	used.	samples submitted for assay as follows:
	Aspects of the determination of mineralisation that are Material	Aircore holes YA001-YA235.1m samples were collected, and split using a single tier riffle
		splitter, and submitted to ALS, in Orange, NSW.
	to the Public Report. In cases where 'industry	Diamond holes YC01-YC03 were cut into 1m
	standard' work has been done	intervals and quarter core splits sent to ALS in
	this would be relatively simple	Orange, NSW.
	(ego 'reverse circulation drilling	RC holes YA236-YA288.1m samples were
	was used to obtain 1 m samples	collected, and split using a single tier riffle
	from which 3 kg was pulverised	splitter, and submitted to ALS, in Orange, NSW.
	to produce a 30 g charge for	RC holes YA289-YA326.1m samples were
	fire assay'). In other cases more	collected by spear-sampling from the sample
	explanation may be required,	pile, and submitted to ALS, in Orange, NSW.
	such as where there is coarse	Aircore holes YA327-YA438.1m samples were
	gold that has inherent sampling	collected, and split using a single tier riffle
	problems. Unusual	splitter, and submitted to ALS, in Orange, NSW.
	commodities or mineralisation	Density core samples were collected from
	types (e.g. submarine nodules)	quarter HQ3 diamond drill core.
	may warrant disclosure of	A separate program of 18 RC holes were drilled
	detailed information.	(RC454RC481), however assays were not used
		in the resource estimate due to concerns with
		the method of sampling. These holes were
		used to guide the geological interpretation.
		Mineralogy is predicted using a combination of
		geological logging and assay results.
Drilling	Drill type (ego core, reverse	Exploration drilling primarily utilised aircore
Techniques	circulation, open-hole hammer,	methods, with some reverse circulation and
•	rotary air blast, auger, Bangka,	diamond core drilling. This is further discussed
	sonic, etc) and details (e.g. core	in Section 2 of this table.
	diameter, triple or standard	

SIGN UP TO LEGACY MINERALS' INTERACTIVE INVESTOR HUB

	tube, depth of diamond tails, face sampling bit or other type, whether core is oriented and if so, by what method, etc).	Aircore holes were drilled using a diameter of 85mm and 100mm. RC holes were drilled using a down-the-hole hammer with a 100mm or 127mm face sampling bit to penetrate ground and deliver sample up 6 m drill rod inner tubes through to the cyclone and cone splitter. Diamond drillholes were drilled using a PQ3 rotary precollar and a triple-tube HQ3 core barrel. All holes were drilled vertically.
Drilling Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery & ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No direct recovery measurements of aircore and reverse circulation samples were performed prior to 2005. Aircore samples from 2007 onwards were weighed to monitor sample recovery for aircore and reverse circulation drilling. Aircore drill hole logs from 2000 onwards describe the sample condition. RC sample quality cannot be verified. A split, non-rotating inner tube was used for the diamond drillholes, with generally good recovery achieved using mud. Some core was lost at the top and bottom of holes due to broken ground, which is not considered to adversely affect sample representivity. Bias due to preferential loss or gain of fine and coarse material has not yet been investigated. Examination of any grade-recovery relationships or potential for bias in the data collected for the project has not been completed to date. Legacy is in the process of obtaining and reviewing comprehensive project data.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	AC, RC and diamond drill holes have been logged using a systematic approach consistent with the data that can be collected from each drilling method. Geological information collected distinguishes the different lithologies and mineralogical zoning developed in the mineralised regolith profile and is consequently suitable for use in Mineral Resource estimation and subsequent mining and metallurgical studies. A structured, coded logging form was used to ensure consistent recording of key geological observations from all drill holes. Logs were subsequently loaded to a Microsoft Access database. Drill hole logging of samples is considered to be qualitative, incorporating visual estimates of geological quantities, but systematic

Subsampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample	through use of a structured drill hole logging form. Properties recorded included, but was not limited to, lithology, oxidation, colour and weathering, and interpretation of the laterite profile zone represented by each sample. Quantitative information recorded included magnetic susceptibility using a GeoInstruments GMS-2 metre and sample weights. Every sample interval (100%) of aircore, RC and diamond drilling was geologically logged. 85% of all drillholes were sampled for assay. Sub-sampling approach: Diamond drill core was cut, with 1m quarter- core split samples submitted for assay analysis. Samples prior to 2008 were mostly riffle-split and submitted for assay All RC and aircore samples from 2008 onwards were collected through a cyclone and split using a single tier riffle splitter (50:50 split). Where samples greater than 2kg were collected in the bottom tray, a scoop was used to collect the sample along the longth of the
	preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half	to collect the sample along the length of the tray into a sample bag. Samples smaller than or equal to 2kg were collected in their entirety. The majority of samples were dry. Wet samples were grab sampled, put into a cloth bag and left to air-dry prior to being put through a splitter. A sample size of 1-2 kg was collected, considered appropriate and representative for the style of mineralisation.
	sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample preparation techniques (aircore and RC drilling): Samples were sorted, labelled and weighed. Samples were dried to constant mass at 105 degrees. Large samples were crushed using a Boyd crusher if required and split to obtain no
		greater than 3kg samples. Samples were pulverised to 85% of weight passing 75 μm sieve A 200g sub-sample was collected for analysis Sample preparation techniques (diamond drill core)
		Diamond core samples were crushed and followed the above sample preparation methodology described above for aircore and RC samples
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used	Samples have been analysed by ALS. Samples from holes drilled prior to 2004 were assayed for Ni and Co by various assay methods including IC3B, IC4, and AAS method

 tests considered partial or total For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established active a laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established active and the search of the style of mineralisation. The different analytical techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Stafford Queensiand for both sample preparation and analytical testing. A Geolnstruments GMS-2 magnetic susceptibility metre was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed correlated poorly with those pro	la ha nata mu		A402 (nitrie neuroblenie UE seid disection UC
For geophysical tools, spectrometers, handheld XRF instruments, etc, the instruments, etc, the calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and precision have been established accuracy (i.e. lack of bias) and precision have been established inducing Name analysis inducing Name analysis three deternants and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and precision have been established inducing Name analysis procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and precision have been established inducing Name analysis provement of the technique ME-ICP61. Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. A Geoinstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns. Samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A Geoinstrument SGMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns. Samples were submitted to Analabs, Orange, NSW, and were assayed using method ALO2. The independent assay correlated poorly with those reported by ALS. 200 pulps from ALS were submitted to <td>laboratory</td> <td>and whether the technique is</td> <td>A102 (nitric, perchloric, HF acid digestion, HCl</td>	laboratory	and whether the technique is	A102 (nitric, perchloric, HF acid digestion, HCl
spectrometers, handheld XRF instruments, etc, the parameters used in model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, dupicates, external laboratory checks) and precision have been established cacuracy (i.e. lack of bias) and precision have been established setting for the techniques MEICP03. Holes drilled trom 2014 onwards were assayed for Ni, Co and their elements by digestion with precision have been established calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, dupicates, external laboratory checks) and precision have been established recision have been established precision have been established scanacy (time). Standards, blanks, dupicates, external laboratory techniques were industry standards at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed correlated poorly with those reported by ALS. 200 pulps from ALS were submitted to Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using mettron activation method BQ-	tests	-	
 instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established Procedures dopted levels of accuracy (i.e. lack of bias) and precision have been established Cho J, Caro J, Caro J, Fe, K2O, MgO, MnO, Nature of quality control Nature of quality control Alobaratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established Cho J, Caro J, Caro J, Fe, K2O, MgO, MnO, Nature of quality control Cho J, Caro J, Fe, K2O, MgO, MnO, Nature of quality control Cho S analytical technique ME-ICP93. Holes drilled from 2014 onwards were assayed for Ni, Co and other elements by digestion with a four-acid digest and analysed using ICP-OES analytical technique ME-ICP61. Assay and laboratory techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A Geoinstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included! 100 puips from ALS were submitted to Analabs, Orange, NSW, and were assayed using method Al02. The independent assays correlated poorly with those recorded by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those r			
parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standardis, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been establishedHoles drilled between 2004-2007 were assayed for Ni, Co by digestion with perchloriza cids (four acid digest), and then analysed using ICP-OES atondard it have been establishedfor Ni, Co and other elements by digestion with a four-acid digest and analysed using ICP-OES analytical techniques WE-ICP61.Say and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analytes with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample sperparation and analytical testing. A Geoinstruments GMS-2 magnetic succeptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 puips from ALS were submitted to Analabs. VC, analabs were requested to re-assay the puips, which showed a closer reconciliation, with result 6% higher than those reported by ALS. 200 puips from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutro			
determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory rchecks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established including instrument make and precision have been established different analytical techniques ME-ICP61. Assay and laboratory rchecks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established inclusion have been established precision have been established different analytical techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canda for assay using methor A102. The independent assays correlated poorly with those provided by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canda for assay using neutron activation method BQ-			
including instrument make and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and precision have been established accuracy (i.e. lack of bias) and precision have been established setternal aboratory checks) and precision have been established setternal aboratory checks and precision have been established setternal established sett			
 model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established for Ni, Co and other elements by digestion with a four-acid digest and analysed using ICP-OES analytical techniques ME-ICP61. Assay and laboratory techniques were industry standard the time of collection and appropriate for the style of mineralisation. The different analytical techniques used is considered unlikely to lead to differences between analytes between dto ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. A Geoinstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays samples were dispatched to alls at stafford Queensland for barnable instruments different analytical testing. A Geoinstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays corel Laboratories in Ontario Canada for analy using neutron activation method BQ- 			,
calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established mether acceptable levels of accuracy (i.e. lack of bias) and precision have been established mether acceptable levels of accuracy (i.e. lack of bias) and precision have been established mether acceptable levels of accuracy (i.e. lack of bias) and precision have been established mether acceptable levels of accuracy (i.e. lack of bias) and precision have been established mether acceptable levels of accuracy (i.e. lack of bias) and precision have been established manaytical technique ME-ICP61. Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. A Geoinstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-		0	
 their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established Precision have been established Assay and laboratory techniques ME-ICP93. Holes drilled from 2014 onwards were assayed using ICP-OES analytical technique ME-ICP91. Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analytes with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Stafford Queensland for both sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both samples form drilling campaigns. Campaigns includet: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ- 		_	
Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been establishedAl203, CaO, Cr203, Fe, K2O, MgO, MnO, Na2O, Ni, P2OS, SIO2 and TiO2 using industry standard lithium meta/tetra borate fusion and ICP-OES analytical technique ME-ICP93. Holes drilled from 2014 onwards were assayed tor Ni, Co and other elements by digestion with a four-acid digest and analysed using ICP-OES analytical technique ME-ICP61. Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for danalytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A Geoinstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established precision have been established a four-acid digest and analysed using ICP-OES analytical technique ME-ICP61. Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Stafford Queensland for barshame, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for bb sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited AA/CC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			-
standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established precision have been established accuracy (i.e. lack of bias) and precision have been established throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between dilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A Geolnstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those reported by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established in precision have been established in this precision have been establishe			
 whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established Holes drilled from 2014 onwards were assayed for Ni, Co and other elements by digestion with a four-acid digest and analysed using ICP-OES analytical technique ME-ICP61. Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ- 		-	
accuracy (i.e. lack of bias) and precision have been established a four-acid digest and analysed using ICP-OES analytical technique ME-ICP61. Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those reported by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
precision have been established a four-acid digest and analysed using ICP-OES analytical technique ME-ICP61. Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those reported by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-		-	
analytical technique ME-ICP61. Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
Assay and laboratory techniques were industry standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-		precision have been established	с , с
standard at the time of collection and appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
appropriate for the style of mineralisation. The different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			, , , ,
different analytical techniques used throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
throughout exploration of the project are essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
essentially comparable in utilising total digests and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
and reading Ni and Co analyses with comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
comparable instrumentation. Continuous improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method AIO2. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
improvement of the techniques used is considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
considered unlikely to lead to differences between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
between analyses between drilling campaigns. Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
Samples were dispatched to ALS at Orange, NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
NSW for sample preparation and then forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
forwarded to Brisbane, Queensland for analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
analytical testing. From 2014 onwards, samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
samples were dispatched to ALS at Stafford Queensland for both sample preparation and analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
Queensland for both sample preparation and analytical testing.A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
analytical testing. A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
A GeoInstruments GMS-2 magnetic susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
susceptibility meter was used on all samples. Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
Limited QA/QC of samples from drilling campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			-
campaigns included: 100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
100 pulps from ALS were submitted to Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
Analabs, Orange, NSW, and were assayed using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
using method A102. The independent assays correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
correlated poorly with those provided by ALS. Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
Analabs were requested to re-assay the pulps, which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
which showed a closer reconciliation, with results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
results 6% higher than those reported by ALS. 200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
200 pulps from ALS were submitted to Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
Becquerel Laboratories in Ontario Canada for assay using neutron activation method BQ-			
NAA-1. These results reconciled very closely			assay using neutron activation method BQ-
			NAA-1. These results reconciled very closely

		with those of ALS, with a 0.7% difference in Ni
		values. Five Calweld holes were drilled in 2001 adjacent to existing aircore holes with bulk samples collected in 44 gallon (200 litre) drums for metallurgical purposes. Correlations between Calweld assays and aircore assays were poor, which is thought to be due to the different sample sizes, and different assay methods. Little information is available regarding this QA/QC process for this drilling. Standards (certified reference materials, "CRM") and blanks were included with samples submitted for assay during the 2014 and 2017 drill campaigns. CRMs were sourced from Ore Research and Exploration (OREAS). 5% of assay pulps from ALS were sent to Bureau Veritas Laboratory, SA for verification of assay results. All results returned within 5% of original assays. 102 duplicates were collected by putting splitting retained sample fractions through a single tier riffle splitter and the 50% split submitted to Bureau Veritas in South Australia using ICP-OES analysis method ME-ICP93. Standards and blanks were included with this submission. All duplicate, standards and blanks
		assays returned results outside accepted
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	tolerances. Umpire checks on sample pulps were performed by an alternative and independent laboratory (Bureau Veritas, SA). Three holes were twinned in the 2014 program, with the twinned holes located 2m, 10m and 16m apart. Comparisons were fair to poor, however limited data has restricted the validity of comparisons. Field observations were recorded on paper drill logs, which were subsequently transferred to spreadsheet form and uploaded into a Microsoft Access relational database. No adjustments of assay data have been made One shallow pit was excavated at Ardnaree to obtain a bulk sample for metallurgical testwork. The pit was 3m deep and encountered the top 1m of the deposit as expected.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and	Drill hole collar locations have been surveyed to Geocentric Datum of Australia 1994 (GDA94) and Map Grid of Australia 1994 (MGA94) Zone 55 grid by qualified surveyors using Differential Global Positioning System

	other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	(DGPS) survey equipment, accurate to within 10 cm in both horizontal and vertical directions. MGA94 coordinates are the default coordinate system for the project. GDA94 and MGA94 coordinates are able to be accurately converted using published parameters between coordinate systems. Collar locations were checked by plotting a hard copy of surveyed drillholes for comparison with planned coordinates. 90% of all drillholes have been surveyed by licensed contract surveyors. Down hole surveys have not been collected. Drill hole inclinations were checked at surface to ensure that each hole was being drilled vertically and the holes assumed to be straight. Any deviation encountered is expected likely to be minimal due to the drilling techniques used and the relatively shallow nature of most drill holes. A topographic surface for the project area was developed using surveyed drill hole collar elevations.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	Ardnaree: Holes were drilled on a total of 30 drill sections with drill spacing ranging from 90m to 650m along-strike, and averaging 100m across-strike. Data spacing is considered sufficient for the establishment and classification of an Inferred resource with respect to this style of mineralisation. Samples were composited to 5m intervals outside mineralised zones in early aircore and RC drill campaigns. All later aircore holes were not composited and were sampled at 1m intervals. Thuddungra: Holes were drilled on a total of 18 drill sections with drill spacing ranging from 200m to 420m along-strike, and averaging 100m across-strike. Data spacing is considered sufficient for the establishment and classification of an Inferred resource with respect to this style of mineralisation. Samples were composited to 5m intervals outside mineralised zones in early aircore and RC drill campaigns. All later aircore holes were not composited and were sampled at 1m intervals.
Orientation of data in	Whether the orientation of sampling achieves unbiased	Lateritic nickel mineralisation at Ardnaree is predominantly horizontal to sub-horizontal,
relation to	sampling of possible structures	and thus the vertical drillholes intersect the

a sa a la alta a l		intervente during and included little all action and the set
geological structure	and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	interpreted mineralised lithologies as close to a perpendicular angle as possible. Drill lines are oriented east-southeast, perpendicular to the deposit strike. Drilling orientation and subsequent sampling is unbiased in its representation of reported material.
Sample	The measures taken to ensure	Samples were collected by field assistants,
Security	sample security	placed onto pallets and delivered to the laboratory by a recognised freight service. Retention and duplicate samples were kept in a locked facility in the town of Young. Retention samples from one RC programme were stored on site, by arrangement with landholders. These were covered with a plastic UV silage tarpaulin and surrounded by a two wire, 1.5m high battery powered electric fence. Winter winds ripped the cover and curious stock trampled the sample bags that had been exposed and degraded by the elements. Approximately 40% of the samples were unable to be recovered. From September 2009 onwards all retention samples were stored in a locked facility in the town of Young.
Audits or	The results of any audits or	An external review has been completed of
reviews	reviews of sampling techniques and data.	project data integrity and field procedures by Snowden.

Section 2: Reporting of Exploration results

Criteria examined in Section 1 also apply in this section.

Criteria	JORC Code	Commentary
	Explanation	
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests,	The project area, including all of the known extents of the Ardnaree and Thuddungra by an exploration licence application, ELA6901. The application was lodged by Legacy subsidiary Nickel Mines Pty Ltd on 30 April 2025, covering an area of 46 units about 30 km southwest of Young, near Wallendbeen NSW Legacy is not aware of any issues that could prevent timely granting of the exploration licence. NSW has a system of successive tenure where tenement holders are able to apply for higher, longer term forms of tenement. Data reported to the NSW government is held confidentially while tenements remain under the control of the original tenement holder.

SIGN UP TO LEGACY MINERALS' INTERACTIVE INVESTOR HUB

	historical sites	Exploration licences carry expenditure commitments and a
	historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Exploration licences carry expenditure commitments and a requirement for periodic relinquishment that may be varied by application to the NSW minister responsible for Mineral Resources. Jervois held title to the project under two Exploration Licences (EL5527 and EL5571), now cancelled by the NSW Government. Information submitted to the NSW Government by Jervois in compliance with exploration licence reporting conditions is now publicly accessible Interview Mine Under the Under two Exploration Licences (EL5527 and EL5571), now cancelled by the NSW Government. Information submitted to the NSW Government by Jervois in compliance with exploration licence reporting conditions is now publicly accessible Interview Mine Under the Under two Exploration (Transformed to the NSW Government). Information under the transformed to the NSW Government by Jervois in compliance with exploration licence reporting conditions is now publicly accessible Interview Mine Under the Unde
		major infrastructure and population centres, NSW. Source: NSW Department of Primary Industries and Regional Development
Exploration done by other parties	Acknowledgeme nt and appraisal of exploration by other parties	BHP undertook a limited nickel prospecting programme in the Thuddungra area. Work completed included regional and prospect scale geological mapping, ground magnetic traverses and drilling of 20 reconnaissance drill holes, focused on laterite caps identified. Jervois commenced exploration in the Young district in 1998. Past field exploration has included geological mapping ground magnetics aircore drilling diamond drilling Caldwell drilling and metallurgical testing. Jervois held title to the project under two Exploration Licences (EL5527 and EL5571), now cancelled by the NSW Government.

	1									
		 A maiden Mineral Resource for Ni-Co mineralisation in the project area was completed in September 2001. Since the time there have been multiple drilling programs within the resource boundaries to provide both mineral resource evaluation and metallurgical samples. The most recent we completed in June 2017, February-March 2018 and July September 2018. The most recent public reported Miner Resource estimate was announced publicly in November A Preliminary Economic Assessment (PEA) for the project completed buy Jervois in 2019 that included conceptual studies, a review of metallurgical testwork and process development options. Geotechnical studies for the open pit, heap leach pad, a tailings storage facility and evaporation pond commence Development of a site water balance commenced. Environmental and heritage studies for the project commenced. Previous exploration and development studies are inter to have been completed in a competent manner that we deliver robust data, suitable for Mineral Resource evalu Acceptable QA/QC measures have been employed from early stage in the project's development. Project data is considered to have been well managed to ensure access 						hat the were - eral er 2017. ct was I mining ed. preted ould hation. n an		
Geology	Deposit type, geological setting and style of mineralisation	The Nic sequen Minera leachec of nicke The late limonit weathe upper l clay and saprolit	ce, on f lisation d fluids el, coba eritic pl ic clay o red sen ayers, f d sapro	the we at You from the lt and strofile ty overly rpentin followe blite, an	stern eo ing is as his grar scandiu /pically ng sapro ite unit d by co id then	dge of ssociat nodiori m. compr olite, w . Scan balt er nickel	a granc ed with te, resu ises he /hich in dium is nrichme enrichr	diorite lateris lting ir matitio turn c conce ent wit	e compl sation c n enrich c clay ar overlies ntrated hin limo	ex. of ments nd a l in the ponitic
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill	Drilling MGA94 Assays project with th descrip geologi A listing append	at the coord from R 's MRE e samp tions fo cal inte g of dril led to t	Nico Yo inates o C holes due to ling me or these erpreta Il hole I his doc	oung pr used. RC454 a lack o ethod. I e holes tion and ocatior ument.	-RC481 of sam Howev are col d mode is and e	s summ L were o pling de er, the nsidere el devel drilling	exclud etails a geolog d suita lopmel inform	ed from nd cond ical ible for nt. iation is	n the cerns use in
	holes: easting and northing of the drill hole collar elevation or RL	Year	# Hole	rilling m	RC Dr # Hole	m	Diam Drillin # Hole		Calwo Drillin # Hole	
	(Reduced Level – elevation above	1998	s 10	490	S		S		S	
				-						

	1									
	sea level in	1999	95	2,77						
	metres) of the			3						
	drill hole collar	2000			11	476				
	dip and azimuth	2000			ΤT	470				
	of the hole	2001			10	489	3	161.	5	125.
	down hole							8		7
	length and	2002			8	529				
	interception depth	2002			0	529				
	hole length.	2005			6	352				
	If the exclusion	2007			36	1,80				
	of this					2				
	information is	2008	83	1,85						
	justified on the	2008	05	4						
	basis that the			4						
	information is	2014	26	1,46						
	not Material and			9						
	this exclusion does not detract	TOTA	214	6,58	71	3,64	3	161.	5	125.
	from the JORC	L	217	6	/ 1	8	5	8	5	125. 7
	Code	L		0		0		0		/
	explanation									
	understanding of									
	the report, the									
	Competent									
	Person should									
	clearly explain									
	why this is the									
	case.									
Data	In reporting	No new	-							
Aggregation	Exploration							-		Jervois
Methods	Results, weighting	-	ASX:JF	w anno	uncen	ients ac	cessio	ole via th	ie ASX	web
	averaging	site. Results in previous announcements have been reported as								d as
	techniques,	length-weighted averages.								u us
	maximum	For exa	-		-	19:				
	and/or minimum			From		oth To		Ni		
	grade		(m)	TIOIII	(m)			(%)		
	truncations (e.g.		(11)		(11)			(70)		
	cutting of high	(0.0		1.0			0.21		
	grades) and cut- off grades are		1.0		2.0			0.88		
	usually Material		2.0		3.0			0.71		
	and should be		3.0		4.0		(0.75		
	stated.									
	Where		0.0		4.0			0.64		
	aggregate	-		-		-		0.88)+(1.0 x	
	intercepts	0.71)+(-					
	incorporate short lengths of	No cutt	-				•			
	high grade							n report		5
	results and	Ardnare	ee and	Thuddu	ungral	MRE ba	sed or	n the for	mula:	

	longer lengths of	NiEq = Ni% + (0.50 x Co%)
	low grade	Based on long term commodity prices of US\$6.00 / lb Ni and
	results, the	US\$30.00 / Ib Co which represented Jervois's long term
	procedure used	panning prices in 2017 when the most recent MRE was
	for such	reported.
	aggregation	
	should be stated	The nickel equivalence formula is used for mineralisation
	and some typical	domaining and therefore does not meet the requirement for a
	examples of such	resource estimate metal equivalence set out in the JORC Code
	aggregations should be shown	and ASX reporting guidelines as there is no nickel equivalent exploration results, mineral resource or ore reserve being
	in detail.	reported. The equivalence formula is a product of previous
	The assumptions	work that will be revisited by Legacy to take account of mining
	used for any	and metallurgical recovery and product pricing and payment
	reporting of	terms prior to the release of a future MRE update for the
	metal equivalent	project. Legacy will also assess the potential for nickel + cobalt
	values should be	± scandium grades to be used, as reported, to establish cutoff
	clearly stated.	criteria and RPEEE, in preference to using an equivalence
	· · · · / · · · · · ·	relationship.
		The Jervois Ni and Co planning prices are based on broker and
		investment house price predictions and more conservative
		than London Metals Exchange (LME) spot pricing at the time.
		Historical metallurgical recoveries from testwork completed
		vary from 50% to 95% depending on the processing method
		used, Jervois, historically, has considered various flowsheets
		with varying levels of success. A technical review of heap leach
		testwork indicate that recoveries of between 75% and 80% may be expected from commercial-scale heap leaching of Nico
		Young ore
Relationship	These	All drill holes have been drilled vertically into effectively
between	relationships are	subhorizontal or horizontal mineralised zones in the laterite
mineralisatio	particularly	profile.
n widths and	important in the	Drill intersection lengths closely approximate true widths.
intercept	reporting of	
lengths	Exploration	
	Results.	
	If the geometry	
	of the	
	mineralisation	
	with respect to	
	the drill hole	
	angle is known, its nature should	
	be reported.	
	If it is not known	
	and only the	
	down hole	
	lengths are	
	reported, there	
	should be a clear	

ASX: LGM

	offect / c. c	
	effect (e.g.	
	ʻdown hole	
	length, true	
	width not	
	known').	
Diagrams	Appropriate	All drilling data for the project is in digital form, allowing it to
	maps and	be used for plan and cross section preparation in three
	sections with	dimensions – any elevation, easting, northing or plane through
	scales and	the deposit – to be readily and accurately prepared.
	tabulations of	
	intercepts	
	should be	
	included for any	
	significant	
	discovery being	
	reported.	
	These should	
	include but not	
	be limited to a	
	plan view of drill	
	hole collar	
	locations and	
	appropriate	
	sectional views.	
Balanced	Where	Significant exploration results are not reported in this release.
Reporting	comprehensive	Exploration results and other aspects of project development
	reporting of all	work completed by Jervois historically are considered to have
	Exploration	been reported in a balanced manner.
	Results is not	This announcement in the Competent Person's opinion has
	practicable,	been prepared specifically to provide a balanced and objective
	representative	account of the significance of Legacy's securing the Nico Young
	reporting of both	deposit, previous work and future potential.
	low and high	
	grades and/or	
	widths should be	
	practiced to	
	avoid misleading	
	reporting of	
	Exploration	
	Results.	
Other	Other	The Nico Young project exploration and resource evaluation
Substantive	exploration data,	work has made use of
Exploration	if meaningful	geophysical survey data including ground magnetic traverses
Data	and material,	and airborne magnetics
	should be	geological mapping at both regional and prospect scale
	reported	collection of bulk density measurements from diamond drill
	including (but	core from both the Ardnaree and Thuddungra deposits.
	not limited to):	The project is at a relatively early stage of development with a
	geological	largely Inferred Mineral Resource that will need to be
	observations	upgraded and reclassified as additional information is
	geophysical	collected. Some work, including
	survey results	preliminary metallurgical testwork
	/ ·	

	an a ab ansta-l	
	geochemical	conceptual mining studies
	survey results bulk samples –	environmental and social impact baseline data collection has commenced and will, with results of other studies contribute
	size and method	
		to an understanding of modifying factors.
	of treatment	
	metallurgical	
	test results	
	bulk density	
	groundwater	
	geotechnical and	
	rock	
	characteristics	
	potential	
	deleterious or	
	contaminating	
	substances	
Further	The nature and	Further drilling will be required to define the extents and
Work	scale of planned	grade of Ni and Co mineralisation to assess its development
	further work	potential and determine the size of the high-grade Co
	(e.g. tests for	resource.
	lateral	Twinning of aircore holes and further diamond density holes
	extensions,	was also planned by Jervois prior to relinquishment of the
	depth extensions	project. Legacy will develop a further work program for the
	or largescale	project following a thorough compilation and review of project
	step-out drilling).	data.
	Diagrams clearly	
	highlighting the	
	areas of possible	
	extensions,	
	including the	
	main geological	
	interpretations	
	and future	
	drilling areas,	
	provided this	
	information is	
	not	
	commercially	
	sensitive.	

ASX: LGM

Section 3: Estimation and Reporting of Mineral Resources

Criteria examined in Section 1 also apply in this section.

Criteria	JORC Code Explanation	Commentary
Database	Measures taken to ensure	A drilling database, developed by Jervois using
Integrity	that data has not been	Microsoft relational database software has
	corrupted by, for example,	been established for the project.
	transcription or keying errors,	Excel files exported from the project
	between its initial collection	database containing drill logs, surveyed
	and its use for Mineral	coordinates and assays of new holes were
	Resource estimation	supplied to Geostat Services (Geostat) for use
	purposes.	in the 2017 resource estimate.
	Data validation procedures	Data validation steps included, but
	used.	were not limited to the following:
		Validation through database constraints, e.g.
		overlapping/missing intervals, intervals
		exceeding maximum depth, missing assays,
		duplicate coordinates.
		Validation through 3D visualisation in 3D
		software to check for any obvious collar,
		downhole survey, or assay import errors. Checks were conducted between the collar
		survey files from the licensed survey contractor and those supplied to Geostat by
		Jervois.
Site Visits	Comment on any site visits	Geostat undertook a site visit during the
	undertaken by the Competent	preparation of the most recent Mineral
	Person and the outcome of	Resource Estimate for the project in 2017,
	those visits.	and visited both the Ardnaree and
	If no site visits have been	Thuddungra deposits, and the Jervois sample
	undertaken indicate why this	storage facility at Young.
	is the case.	
Geological	Confidence in (or conversely,	Confidence in the geological interpretation is
Interpretation	the uncertainty of) the	good, based on the quantity and quality of
	geological interpretation of	data available, the continuity and nature of
	the mineral deposit.	the mineralisation evident and geological
	Nature of the data used and	understanding of the development and
	of any assumptions made.	features of laterite.
	The effect, if any, of	Detailed geological logging has allowed
	alternative interpretations on	correlation of mineralisation intersections
	Mineral Resource estimation.	from section to section.
	The use of geology in guiding	Cross-sectional interpretation of each
	and controlling Mineral	lithology unit has been performed, followed
	Resource estimation.	by interpretation of mineralisation
	The factors affecting	boundaries. Three-dimensional wireframes of
	continuity both of grade and	the sectional interpretations are created to
	geology.	produce the mineralisation model.
		Mineralisation was defined within discrete
		lithologies/laterite profile zones and modelled
		accordingly. The Mineral Resource is well-defined from
	1	existing drillholes, and as such, alternative

SIGN UP TO LEGACY MINERALS' INTERACTIVE INVESTOR HUB

	I	interpretations are expected to result in
		interpretations are expected to result in similar tonnage and grade estimates.
Dimensions	The extent and variability of	The Ardnaree deposit extends over 9km along
DIMENSIONS	The extent and variability of the Mineral Resource	strike and up to 700m across strike, with
	expressed as length (along	mineralisation present from surface to a
	strike or otherwise), plan	maximum vertical depth of 56m. The average
	width, and depth below	mineralisation thickness is 13m.
	surface to the upper	Most of the Ardnaree estimated Mineral
	and lower limits of the Mineral Resource.	Resource occurs within 50m of surface. Mineralisation at Ardnaree is characterised by
	Milleral Resource.	an overall northeast trend and a sub-
		horizontal to horizontal dip.
		The Thuddungra deposit extends 5.9km along
		strike up to the northern boundary of the
		project ELA and up to 715m across strike, with mineralisation present from 6m below the
		topography surface to a maximum vertical
		depth of 98m. Average mineralisation
		thickness is 22m.
		Approximately 80% of the Thuddungra
		estimated Mineral Resources occurs within
		50m of surface.
		Mineralisation forming the Thuddungra
		deposit is characterised by an overall north-
		northeast trend and sub-horizontal to slight
		dip towards the east.
Estimation and	The nature and	The geological model and Mineral Resource
modelling	appropriateness of the	Estimate were prepared using Surpac version
techniques	estimation technique(s)	6.6.1 geological and mining software.
	applied and key assumptions,	Nickel and cobalt grades were estimated by
	including treatment of	ordinary kriging. This method is deemed
	extreme grade values,	appropriate by the Competent Person for the
	domaining, interpolation	estimation of Mineral Resources for the
	parameters and maximum	Ardnaree and Thuddungra deposits.
	distance of extrapolation from	A combination of assays and lithology were
	data points. If a computer	used to define the sectional envelopes, with a
	assisted estimation method	cut-off of approximately 0.3% Ni applied to
	was chosen include a	separate mineralisation from waste.
	description of computer	Envelopes were subdivided on the basis of
	software and parameters	lithology into hematite, limonite, saprolite
	used.	and serpentinite lithological zones.
	The availability of check	Wireframes were constructed in cross section
	estimates, previous estimates	envelopes to represent all mineralisation
	and/or mine production	within respective lithologies. Each wireframe
	records and whether the	was treated as a separate grade estimation
	Mineral Resource estimate	domain, with estimation of grades within each
	takes appropriate account of	domain.
	such data.	No grade capping was applied. Samples were
	The assumptions made	of the same population with low to moderate
	regarding recovery of by-	coefficients of variation and no extreme
	products.	outliers present.

	- · · · · · ·	
	Estimation of deleterious	Statistical analysis was carried out on data
	elements or other non-grade	from all domains.
	variables of economic	A minimum of 2 composites and a maximum
	significance (e.g. sulphur for	of 15 composites were used in estimation of
	acid mine drainage	grades into blocks.
	characterisation).	A block model of parent cell size 150m (N) x
	In the case of block model	50m (E) x 2m (RL) sub-celled to 75m x 25m x
	interpolation, the block size in	1m was used for resource estimation.
	relation to the average	Search ellipses for initial grade estimation
	sample spacing and the	ranged from 450m x150m x 15m to 175m x
	search employed.	100m x 15m at Ardnaree, and 700m x 140m x
	Any assumptions behind	12m at Thuddungra. A second subsequent
	modelling of selective mining	estimation pass was employed with expanded
	units.	search ellipses in order to fill blocks in areas
	Any assumptions about	of sparse drill density within the domains.
	correlation between variables.	Grades are extrapolated up to a maximum
	Description of how the	distance of approximately 300m from data
	geological interpretation was	points. This equates to half the drillhole spacing at the extremities of the Nico Young
	used to control the resource	deposit.
	estimates.	Two earlier resource estimates were available
	Discussion of basis for using	for comparison, albeit with smaller datasets
	or not using grade cutting or	and are considered to be consistent given the
	capping.	drilling at the time in comparison with the
	The process of validation, the	most recent Mineral Resource estimate.
	checking process used, the	The recovery of scandium oxide as a by-
	comparison of model data to	product was being considered by Jervois.
	drill hole data, and use of	Investigation of scandium potential will
	reconciliation data if available	require further drilling and metallurgical
		studies.
		Estimation of any deleterious elements has
		not been undertaken to date.
		Nickel and cobalt grades within the Nico
		Young deposit are not correlated.
		The resource estimate was validated by visual
		inspections on screen, global statistical
		comparisons of input composite grades and
		block grades, and local grade/depth
		relationships.
Moisture	Whether the tonnages are	Tonnages were estimated on a dry basis.
	estimated on a dry basis or	
	with natural moisture, and	
	the method of determination	
	of the moisture content.	
Cut-off	The basis of the adopted cut-	A nominal cut-off of 0.3% Ni was used to
Parameters	off grade(s) or quality	separate mineralisation from host rocks was
	parameters applied.	considered to reflect the geology of the Nico
		Young deposit, which was confirmed by visual
		inspection of drilling results (grades and
		lithology) in cross-sections. The selected
		cutoff is considered to select mineralisation

	1	· · · · · · · · · · · · · · · · · · ·
		with reasonable prospects for eventual
		economic extraction (RPEEE).
		Cut-off strategy will need to be reviewed prior
		to further resource estimation. The selected
		cut-off assists in developing a comprehensive
		understanding of modifying factors that will
		be required, in future, to estimate Ore
		Reserves for the project.
Mining factors	Assumptions made regarding	The mining concept for the project applied by
or assumptions	possible mining methods,	Jervois was that conventional truck and
-	minimum mining dimensions	shovel open pit mining with, predominantly,
	and internal (or, if applicable,	in-pit placement of mining waste and
	external) mining dilution. It is	progressive backfilling and rehabilitation of
	always necessary as part of	mined areas would be used.
	the process of determining	the deposit occurs near the surface and
	reasonable prospects for	the laterite host is relatively soft and able to
	eventual economic extraction	be mined, largely, without regular blasting.
	to consider potential mining	Ore is intended to be processed to recover Ni
	methods, but the assumptions	and Co on site.
	made regarding mining	Studies were commenced by Jervois to collect
	methods and parameters	and assess modifying factors for the future
	when estimating Mineral	estimation of Ore Reserves for the project.
	Resources may not always be	A comprehensive review of the mining
	rigorous. Where this is the	concept will be required to identify
	case, this should be reported	opportunities associated with both mining
	with an explanation of the	techniques and equipment selection that
	basis of the mining	input to estimation of mining costs and
	assumptions made.	productivities for the project.
Metallurgical	The basis for assumptions or	The amenability of the Ni-Co mineralisation to
factors or	predictions regarding	physical beneficiation has been investigated
assumptions	metallurgical amenability. It is	by laboratory studies involving crushing, wet
assumptions	always necessary as part of	screening, sizing, heavy-liquid and magnetic
	the process of determining	separations. These studies showed that Co
	reasonable prospects for	and Ni head grades could be doubled but this
	eventual economic extraction	would be achieved at the expense of rejecting
	to consider potential	a significant portion of the feed.
	metallurgical methods, but	Testwork confirmed underlying assumptions
		that high pressure acid leach (HPAL) would
	the assumptions regarding	
	metallurgical treatment	extract most of the Ni-Co, consume less acid
	processes and parameters	and produce residues mainly composed of iron minerals.
	made when reporting Mineral	
	Resources may not always be	Direct Acid and Heap Leach were also shown
	rigorous. Where this is the	to be potentially suitable methods for
	case, this should be reported	recovering Ni and Co, but consumed more
	with an explanation of the	acid, extracted less nickel and cobalt, and
	basis of the metallurgical	produced more iron than HPAL.
	assumptions made.	The metallurgical studies for the project took
		place from an early stage of project
		development and continued for 20 years.
		Metallurgical options and the need for further
	1	studies will be reviewed.

Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential	Environmental studies are at an early stage. Some baseline data collection has been completed by Jervois. Mining and mineral processing have been shown to produce waste and tailings that are not reactive and require specific management approaches to manage any risk of adverse environmental outcomes. The current mining strategy for the project is for in-pit placement of waste rocks to progressively backfill mined voids and permit progressive rehabilitation of mined areas throughout the life of mine.
	of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made	
Bulk Density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation of different materials to be mined.	Laterites exhibit a limited range of bulk densities naturally. To date, 135 specific gravity measurements were collected from core provided by three diamond drill holes, using the water immersion method. Average specific gravities were calculated for materials forming each domain interpreted for use in Mineral Resource estimation. These included 2.18 tm- 3 for serpentinite, 1.84 tm-3 for saprolite, 1.87 tm-3 for limonite and 1.99 tm-3 for hematite. Porosity was considered when applying results in Mineral Resource Estimation. Further analysis of relationships between specific gravity and bulk density will be required, in conjunction with the collection of additional density measurements.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative	The project's Mineral Resources have been classified as Inferred in accordance with JORC Code 2012 guidelines. Classification of the resource considered several criteria, including drillhole spacing, sampling density, sampling locations,

Audits or reviews	confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. The results of any audits or reviews of Mineral Resource	lithology, QA/QC, bulk density and confidence in grade continuity which were assessed by the Competent Person responsible for Mineral Resource Estimate preparation. The classification of the Mineral Resource is supported by this review of the project. Jervois engaged Snowden Mining Consultants to review the preparation of Mineral
	estimates	Resource Estimates for the project prepared by Geostat.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	The relative accuracy of the Mineral Resource is reflected in the classification of the Mineral Resource in the Inferred category, consistent with the requirements of the JORC Code (2012). Mineralisation has been identified forming the Nico Young deposits. Further work is required to better understand deposit geology and structure, the extent and thickness of the deposit, grade variability, bulk density and cut-off grades. The Nico Young deposit is undeveloped and has no production history for use in reconciliation of the project's Mineral Resource Estimate.

ASX: LGM

HoleID	MGA East	MGA North	RL	Total Depth	Hole Type	Dip	Azimuth
			(m ASL)	(m)		(degrees)	(degrees)
RC461	598527.94	6222552.415	309.000	40.00	RC	-90	0
RC462	598721.939	6222519.412	309.000	40.00	RC	-90	0
RC463	598920.937	6222487.41	308.000	31.00	RC	-90	0
RC464	598495.938	6222354.415	310.000	40.00	RC	-90	0
RC465	598692.937	6222322.411	310.000	40.00	RC	-90	0
RC466	598891.935	6222290.409	310.000	40.00	RC	-90	0
RC467	599747.928	6221945.402	314.000	79.00	RC	-90	0
RC468	599842.928	6221944.401	314.000	40.00	RC	-90	0
RC469	599687.926	6221553.402	315.000	64.00	RC	-90	0
RC470	599786.925	6221530.402	315.000	75.00	RC	-90	0
RC537	598177.936	6221939.418	314.000	54.00	RC	-90	0
RC538	598367.937	6222179.416	312.000	54.00	RC	-90	0
RC539	598560.936	6222144.412	312.000	55.00	RC	-90	0
RC540	598762.934	6222114.409	312.000	47.00	RC	-90	0
RC543	599520.934	6222401.406	308.000	73.00	RC	-90	0
RC544	599620.934	6222389.405	308.000	78.00	RC	-90	0
RC545	599719.933	6222374.405	308.000	84.00	RC	-90	0
RC546	599817.933	6222359.404	309.000	84.00	RC	-90	0
YA004	599722.921	6220851.402	315.000	69.00	AC	-90	0
YA005	599630.922	6220866.403	316.000	50.00	AC	-90	0
YA006	599815.921	6220835.402	314.000	69.00	AC	-90	0
YA007	599533.905	6218197.404	334.000	57.00	AC	-90	0
YA008	599602.904	6218137.404	334.000	60.00	AC	-90	0
YA009	599441.905	6218185.404	335.000	48.00	AC	-90	0
YA063	599707.904	6218230.403	333.000	50.00	AC	-90	0
YA064	599335.906	6218184.403	336.000	36.00	AC	-90	0
YA065	599228.906	6218253.406	338.000	39.00	AC	-90	0
	-	6218233.400	340.000		AC	-90	0
YA066 YA085	599160.907 596644.998	6215305.653	370.000	12.00 20.00	AC	-90	0
	-	6215293.725		36.00	AC	-90	0
YA086	596741.833	6215295.725	366.000				-
YA087	596838.718		368.000	32.00	AC	-90	0
YA088	596936.508	6215268.105	376.000	27.00	AC	-90	0
YA089	597036.158	6215258.77	387.000	25.00	AC	-90	0
YA090	597135.108	6215246.762	394.000	4.00	AC	-90	0
YA091	597227.379	6215235.881	389.000	7.00	AC	-90	0
YA092	596967.797	6213951.911	389.000	6.00	AC	-90	0
YA093	596867.831	6213988.653	399.000	30.00	AC	-90	0
YA094	596750.269	6214021.529	397.000	8.00	AC	-90	0
YA095	596670.099	6214039.379	388.000	32.00	AC	-90	0
YA096	596578.458	6214055.847	384.000	50.00	AC	-90	0
YA097	596476.724	6214076.54	384.000	18.00	AC	-90	0
YA099	596658.521	6213221.687	381.000	32.00	AC	-90	0
YA100	596559.785	6213235.094	380.000	48.00	AC	-90	0
YA101	596463.889	6213249.919	382.000	27.00	AC	-90	0
YA102	596365.448	6213264.342	384.000	24.00	AC	-90	0
YA103	596266.466	6213279.271	388.000	24.00	AC	-90	0
YA104	596083.067	6212453.075	406.000	6.00	AC	-90	0
YA105	596181.226	6212434.688	401.000	12.00	AC	-90	0
YA106	596279.456	6212415.835	397.000	27.00	AC	-90	0
YA107	596377.863	6212397.746	394.000	15.00	AC	-90	0

Appendix 2 Drill Hole Collar Information Listing

SIGN UP TO LEGACY MINERALS' INTERACTIVE INVESTOR HUB

HoleID	MGA East	MGA North	RL	Total Depth	Hole Type	Dip	Azimuth
			(m ASL)	(m)		(degrees)	(degrees)
YA108	596476.474	6212379.578	395.000	24.00	AC	-90	0
YA109	596573.223	6212342.826	396.000	9.00	AC	-90	0
YA110	596669.902	6212323.744		6.00	AC	-90	0
YA190	599759.545	6219208.117	323.000	80.00	AC	-90	0
YA191	599473.36	6219255.367	326.000	58.00	AC	-90	0
YA192	599602.531	6220197.648	317.000	33.00	AC	-90	0
YA193	599695.244	6220184.905	316.000	54.00	AC	-90	0
YA194	599794.53	6220173.18	315.000	87.00	AC	-90	0
YA195	599660.654	6219798.166	318.000	65.00	AC	-90	0
YA196	599462.919	6219828.973	320.000	47.00	AC	-90	0
YA197	599562.082	6219811.335	318.000	58.00	AC	-90	0
YA204	597316.862	6220865.209	327.000	20.00	AC	-90	0
YA205	597414.484	6220849.199	329.000	15.00	AC	-90	0
YA206	597511.452	6220837.106	331.000	16.00	AC	-90	0
YA207	597605.117	6220824.072	336.000	9.00	AC	-90	0
YA208	597996.424	6220724.192	341.00	7.00	AC	-90	0
YA214	594939.587	6208223.058	334.000	39.00	AC	-90	0
YA268	597766.378	6221413.101	322.700	36.00	RC	-90	0
YA269	597668.978	6221429.601	322.800	24.00	RC	-90	0
YA270	597565.778	6221447.401	323.200	16.00	RC	-90	0
YA271	598450.577	6221333.801	325.400	6.00	RC	-90	0
YA272	598432.878	6221891.1	315.500	48.00	RC	-90	0
YA272	598330.178	6221909.3	314.800	60.00	RC	-90	0
YA274	598231.378	6221926.3	313.800	54.00	RC	-90	0
YA275	598639.478	6222486.9	309.300	58.00	RC	-90	0
YA280	599680.077	6221966.4	313.500	76.00	RC	-90	0
YA281	599577.577	6221983.7	313.100	60.00	RC	-90	0
YA281	598811.978	6222388.2	308.900	38.00	RC	-90	0
YA283	597969.936	6221660.42	319.000	39.00	RC	-90	0
YA284	599731.927	6221752.402	319.000	84.00	RC	-90	0
YA285	599685.919	6220526.403	315.000	66.00	RC	-90	0
YA285	599517.912	6219247.404	315.000	66.00	RC	-90	0
YA287	599392.903	6217866.405	334.000	46.00	RC	-90	0
YA288	599402.903	6217864.405	334.000	51.00	RC	-90	0
YA289			332.760		RC		0
YA289	599214.917 599317.204	6218562.248 6218548.269	330.280	29.00 53.00	RC	-90 -90	0
YA290	599416.608	6218530.882	328.330	48.00	RC	-90	0
-		6218530.882			RC	-90	0
YA292	599515.332		326.710	57.00			
YA293	599612.407	6218496.382	325.540	63.00	RC	-90	0
YA294	599712.796	6218478.45	324.760	66.00	RC	-90	0
YA295	599810.394	6218463.941	323.980	64.00	RC	-90	0
YA296	599302.771	6219035.386	328.140	23.00	RC	-90	0
YA297	599400.838	6219020.595	326.670	41.00	RC	-90	0
YA298	599499.58	6219003.864	325.270	47.00	RC	-90	0
YA299	599597.862	6218987.568	323.980	59.00	RC	-90	0
YA300	599659.81	6221228.521	310.010	52.00	RC	-90	0
YA301	599563.252	6221230.21	310.420	22.00	RC	-90	0
YA302	599758.929	6221197.26	311.440	77.00	RC	-90	0
YA303	599859.148	6221179.508	311.85	82.00	RC	-90	0
YA305	596035.032	6210931.894	384.000	24.00	RC	-90	0
YA306	595932.034	6210954.798	377.590	23.00	RC	-90	0
YA307	595840.329	6210967.339	373.160	29.00	RC	-90	0

HoleID	MGA East	MGA North	RL	Total Depth	Hole Type	Dip	Azimuth
			(m ASL)	(m)		(degrees)	(degrees)
YA308	595758.495	6210981.891	370.770	5.00	RC	-90	0
YA309	595642.385	6211000.607	369.580	35.00	RC	-90	0
YA310	595543.267	6211017.687	372.250	18.00	RC	-90	0
YA311	596556.898	6212105.57	396.510	28.00	RC	-90	0
YA312	596610.426	6212908.154	387.360	29.00	RC	-90	0
YA313	596704.671	6212893.155	393.350	9.00	RC	-90	0
YA315	599531.181	6220888.07	311.980	52.00	RC	-90	0
YA316	599587.099	6220548.658	313.600	52.00	RC	-90	0
YA317	599980.483	6220481.219	313.970	72.00	RC	-90	0
YA318	599417.739	6219563.234	319.870	43.00	RC	-90	0
YA319	599493.08	6219549.101	318.420	37.00	RC	-90	0
YA320	599589.858	6219534.429	318.000	92.00	RC	-90	0
YA321	599688.19	6219519.325	316.300	95.00	RC	-90	0
YA322	599795.08	6219494.54	316.700	76.00	RC	-90	0
YA323	599698.161	6218970.65	322.730	74.00	RC	-90	0
YA324	599796.096	6218954.078	321.450	72.00	RC	-90	0
YA325	599435.632	6217163.54	331.010	83.00	RC	-90	0
YA326	599336.883	6217181.643	330.850	71.00	RC	-90	0
YA327	599485.63	6220560.67	313.990	40.00	AC	-90	0
YA328	599781.17	6220500.07	312.680	40.00 60.00	AC	-90	0
YA329	596981.69	6215689.33	371.220	18.00	AC	-90	0
YA330	596891.62	6215704.08	359.120	22.00	AC	-90	0
YA331	596793.66	6215721.37	354.000	17.00	AC	-90	0
YA332	596757.93	6214909.96	377.560	6.00	AC	-90	0
YA333	596659.95	6214927.23	377.380	6.00	AC	-90	0
YA334	596559.21	6214945.28	379.210	6.00	AC	-90	0
YA335	596956.72	6214893.76	394.910	7.00	AC	-90	0
YA336	597052.47	6214860.43	396.680	27.00	AC	-90	0
YA337	597151.39	6214844.39	383.940	13.00	AC	-90	0
YA338	597287.01	6215640.04	386.000	4.00	AC	-90	0
YA339	597186.03	6215657.09	394.890	12.00	AC	-90	0
YA340	597099.27	6215677.28	389.000	13.00	AC	-90	0
YA341	596856.33	6214892.35	383.360	31.00	AC	-90	0
YA342	596497.62	6214543.57	401.320	10.00	AC	-90	0
YA343	596595.28	6214526.54	401.240	12.00	AC	-90	0
YA344	596691.27	6214508.99	397.140	12.00	AC	-90	0
YA345	596789.2	6214492.34	401.190	15.00	AC	-90	0
YA346	596886.63	6214475.17	411.350	8.00	AC	-90	0
YA347	596986.75	6214458.47	405.940	14.00	AC	-90	0
YA348	596840.77	6213675.08	370.180	38.00	AC	-90	0
YA349	596739.23	6213698.7	372.430	40.00	AC	-90	0
YA350	596543.85	6213723.5	375.390	35.00	AC	-90	0
YA351	596446.13	6213740.04	378.600	33.00	AC	-90	0
YA352	596345.99	6213757.04	382.000	15.00	AC	-90	0
YA353	596633.74	6213713.21	373.890	33.00	AC	-90	0
YA354	596309.16	6212957.44	387.980	12.00	AC	-90	0
YA355	596408.64	6212939.39	385.000	23.00	AC	-90	0
YA356	596507.7	6212920.12	384.240	14.00	AC	-90	0
YA357	596063.61	6212186.55	397.460	19.00	AC	-90	0
YA358	596259.73	6212154.77	395.170	23.00	AC	-90	0
YA359	596455.62	6212121.71	396.330	17.00	AC	-90	0
YA360	599884.34	6220494.75	313.170	35.00	AC	-90	0

HoleID	MGA East	MGA North	RL	Total Depth	Hole Type	Dip	Azimuth
noicie			(m ASL)	(m)		(degrees)	(degrees)
YA361	599592.57	6217833.82	326.650	58.00	AC	-90	0
YA362	599497.36	6217849.47	328.080	51.00	AC	-90	0
YA363	599298.92	6217882.82	330.840	22.00	AC	-90	0
YA364	599238.14	6217196.42	329.210	60.00	AC	-90	0
YA365	599116.3	6217151.59	329.690	59.00	AC	-90	0
YA366	599039.52	6217226.24	330.880	59.00	AC	-90	0
YA367	598940.29	6217345.58	334.190	15.00	AC	-90	0
YA368	599633.99	6217434.95	326.680	56.00	AC	-90	0
YA369	596858.32	6216097.34	345.940	29.00	AC	-90	0
YA370	596957.45	6216083.82	351.890	11.00	AC	-90	0
YA371	597052.71	6216048.52	362.000	11.00	AC	-90	0
YA372	597165.42	6216047.3	374.190	2.00	AC	-90	0
YA373	597252.29	6216016.98	384.120	15.00	AC	-90	0
YA374	597352.87	6216012.65	382.300	20.00	AC	-90	0
YA375	597443.36	6215996.52	381.280	11.00	AC	-90	0
YA376	597423.85	6216419.62	374.800	35.00	AC	-90	0
YA377	597322.4	6216437.23	365.420	23.00	AC	-90	0
YA378	597224.89	6216454.62	362.320	17.00	AC	-90	0
YA379	597127.36	6216469.61	356.230	12.00	AC	-90	0
YA380	596799.9	6215321.77	364.400	31.00	AC	-90	0
YA381	596852.26	6215321.77	366.550	21.00	AC	-90	0
YA382	596955.53	6215301.43	375.080	17.00	AC	-90	0
YA383	596801.55	6215232.17	367.560	22.00	AC	-90	0
YA384	596852	6215232.17	370.420	25.00	AC	-90	0
YA385	596900.93	6215213.68	375.020	23.00	AC	-90	0
YA386	597051.6	6215215.08	375.020	10.00	AC	-90	0
YA387	597102.91	6215280.1	391.460	8.00	AC	-90	0
YA388	597044.63	6215280.1	391.400	3.00	AC	-90	0
YA389				2.00	AC	-90 -90	0
YA390	597098.02 597048.9	6215190.66 6215112.44	392.000 396.580	25.00	AC	-90	0
	596969.12	6215112.44	390.380	6.00	AC	-90	0
YA391 YA392	597023.79	6215121.92	399.020	14.00	AC	-90	0
YA393	596931.08	6215002.7	399.020	4.00		-90	0
					AC		
YA394	597119.06	6215424.62	389.460	13.00	AC	-90	0
YA395 YA396	597131.96	6215519.36	390.950 374.430	7.00 26.00	AC AC	-90	0
	596641.37	6215060.88				-90	-
YA397	596716.76	6215043.91	372.900	12.00	AC	-90	0
YA398 YA399	596822.9 596773.49	6215030.98 6215147.35	375.670	28.00 32.00	AC	-90 -90	0
			369.680		AC		
YA400	596858.84	6215129.59	375.060	27.00	AC	-90	0
YA401	596811.63	6215382.82	362.340	30.00	AC	-90	0
YA402	596858	6215396.16	363.610	33.00	AC	-90	0
YA403	596988.95	6215408.36	373.570	20.00	AC	-90	0
YA404	596824.28	6215481.94	359.740	42.00	AC	-90	0
YA405	596924.64	6215493.12	364.980	20.00	AC	-90	0
YA406	597013.87	6215504.43	373.580	21.00	AC	-90	0
YA407	596845.29	6215590.39	357.250	23.00	AC	-90	0
YA408	596950.82	6215599.98	365.900	34.00	AC	-90	0
YA409	597035.02	6215620.37	377.600	14.00	AC	-90	0
YA413	597046.414	6214875.543	397.412	66.00	AC	-90	0
YA414	596753.89	6214914.739	377.376	57.00	AC	-90	0
YA415	596970.333	6215004.347	394.018	78.00	AC	-90	0

HoleID	MGA East	MGA North	RL	Total Depth	Hole Type	Dip	Azimuth
			(m ASL)	(m)		(degrees)	(degrees)
YA416	596980.899	6215121.832	390.836	45.00	AC	-90	0
YA417	596689.797	6215163.456	369.697	45.00	AC	-90	0
YA418	596972.18	6215203.615	384.543	72.00	AC	-90	0
YA419	597046.157	6215290.418	384.682	57.00	AC	-90	0
YA420	597038.15	6215426.03	378.902	69.00	AC	-90	0
YA421	596728.28	6215465.056	367.376	54.00	AC	-90	0
YA422	597102.672	6215515.756	386.526	75.00	AC	-90	0
YA423	597107.442	6215636.001	389.549	78.00	AC	-90	0
YA424	597129.613	6216055.443	368.457	54.00	AC	-90	0
YA425	596714.035	6214789.271	382.024	33.00	AC	-90	0
YA426	596812.929	6214767.461	386.878	75.00	AC	-90	0
YA427	596912.244	6214751.365	399.659	27.00	AC	-90	0
YA428	597008.485	6214727.674	402.550	78.00	AC	-90	0
YA429	597106.747	6214703.82	388.230	39.00	AC	-90	0
YA430	597204.693	6214688.258	377.532	29.00	AC	-90	0
YA431	597303.427	6214668.807	370.181	58.00	AC	-90	0
YA432	596674.941	6214666.324	389.374	42.00	AC	-90	0
YA433	596765.359	6214649.707	390.469	45.00	AC	-90	0
YA434	596864.099	6214624.596	401.230	78.00	AC	-90	0
YA435	596960.663	6214604.4	407.491	79.00	AC	-90	0
YA436	597061.056	6214586.663	394.272	29.00	AC	-90	0
YA437	597152.035	6214574.239	385.569	49.00	AC	-90	0
YA438	597254.226	6214557.398	375.075	58.00	AC	-90	0
YB001	596810.892	6215280.42	366.40	33.00	CALWELD	-90	0
YB002	596664.886	6214031.422	387.35	22.40	CALWELD	-90	0
YB003	596557.885	6213234.705	380.000	27.00	CALWELD	-90	0
YB004	596363.887	6213264.705	384.000	21.50	CALWELD	-90	0
YB005	596643.892	6215304.421	370.000	21.80	CALWELD	-90	0
YC001	596788.892	6215289.42	365.000	42.57	DD	-90	0
YC002	599559.915	6219811.404	318.000	60.60	DD	-90	0
YC003	598731.938	6222441.411	309.000	58.60	DD	-90	0

Endnotes

ⁱ ASX Release JRV, 22 November 2017, Nico Young Cobalt-Nickel Laterite: Further Information Re Listing Rule 5.8.1.

ⁱⁱ JRV ASX: AustralianSuper takes \$100m hit from collapse of cobalt miner Jervois

^{III} JRV ASX: AustralianSuper takes \$100m hit from collapse of cobalt miner Jervois

^{iv} ASX Release SRL, 29 August 2024, 2024 Annual Report

^v ASX Release SRL, 28 September 2020, Sunrise Project Execution Plan